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Abstract. Boehmians are defined by an algebraic construction which is similar to the con-
struction of a field of quotients. If the construction is applied to a function space and the multi-
plication is interpreted as convolution, the construction yields a space of generalized functions.
Those spaces provide a natural setting for extensions of transforms like the Fourier, Laplace,
Radon, or Zak transforms. Since the abstract algebraic definition of Boehmians allows different
interpretations, not necessarily based on the convolution product, those transforms are actually
isomorphisms between spaces of Boehmians.

Introduction. The construction of Boehmians given in [3] was motivated by
the idea of regular operators introduced by T. K. Boehme in [1]. The algebraic
construction of Boehmians is similar to the construction of the field of quotients.
The main difference is that Boehmians can be constructed even if the ring has
divisors of zero. This feature enables us to define a space of “convolution quo-
tients”, similar to the Mikusiński operators [2], but without the restriction on the
support. Basic properties of Boehmians and connections with other theories of
generalized functions are discussed in [4], [6], and [7].

The purpose of this note is to show that some transforms have natural exten-
sions onto appropriately defined spaces of Boehmians. Then they become map-
pings between different spaces of Boehmians. Such an extension is possible if the
transform satisfies the following two conditions. First, it has to be a homomor-
phism between function spaces. Second, it has to map delta sequences in one
space to delta sequences in the other space. The meaning of these two conditions
becomes clear after one looks at the examples given below.

We discuss three transforms. The first one is the Fourier transform. We define
two extensions of the transform. The first one is based on the fact that the Fourier
transform changes convolution into pointwise multiplication. The other one on
the fact that it transforms pointwise multiplication into convolution. These two
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extensions of the Fourier transform act on different spaces of Boehmians. The
second transform discussed here is the Radon transform. This transform changes
convolution on Rq into a partial convolution on a cylinder. Both the Fourier
transform and the Radon transform are examples of integral transforms. The
third transform considered here is the Zak transform, which is not an integral
transform. This transform changes convolution on R into a partial convolution
on R2. In all these examples, the delta sequences have to be defined in such a
manner that the transform carries delta sequences to delta sequences.

In Section 2 of this note we give a general definition of Boehmians. The defi-
nition presented here is more general than those previously considered. The main
difference is that we allow two different “convolutions” in the basic space. This
generality is necessary to include some new applications of Boehmians [13].

Functions are assumed here to be complex-valued unless otherwise stated. The
norm in Rq is the Euclidean norm

‖x‖ = ‖(x1, . . . , xq)‖ =
√
x2

1 + . . .+ x2
q.

By Bε we mean the ε-ball at the origin: Bε = {x ∈ Rq : ‖x‖ < ε}.

2. Boehmians. In order to construct a space of Boehmians we need the
following:

(1) a complex vector space G,
(2) a commutative semigroup (T,�),
(3) an operation ⊗ : G×T → G such that for all f, g ∈ G, ϕ,ψ ∈ T, and λ ∈ C,

we have
(f ⊗ ϕ)⊗ ψ = f ⊗ (ϕ� ψ),
(f + g)⊗ ϕ = f ⊗ ϕ+ g ⊗ ϕ,
λ(f ⊗ ϕ) = (λf ⊗ ϕ),

(4) a family ∆ of sequences of elements of T such that if f ∈ G and f 6= 0, then
for every {ϕn} ∈ ∆ there is n0 ∈ N such that f⊗ϕn0 6= 0, and if {ϕn}, {ψn} ∈ ∆,
then {ϕn � ψn} ∈ ∆.

Elements of ∆ are called delta sequences. A pair of sequences ({fn}, {ϕn})
is called a quotient of sequences if fn ∈ G for all n ∈ N, {ϕn} ∈ ∆, and fn ⊗
ϕm = fm ⊗ ϕn for all m,n ∈ N. A quotient of sequences ({fn}, {ϕn}) will be
denoted simply by fn/ϕn. Two quotients of sequences fn/ϕn and gn/ψn are
called equivalent if fn ⊗ ψn = gn ⊗ ϕn for all n ∈ N. It is easy to check that this
is an equivalence relation. The equivalence class of fn/ϕn is denoted by [fn/ϕn].
Finally, the space of all such equivalence classes is denoted by B(G,T,�,⊗, ∆).
Elements of B(G,T,�,⊗, ∆) are called Boehmians.

If we define

λ[fn/ϕn] = [λfn/ϕn] and [fn/ϕn] + [gn/ψn] = [(fn ⊗ ψn + gn ⊗ ϕn)/ϕn ⊗ ψn]
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then B(G,T,�,⊗, ∆) becomes a vector space. It is important to note that every
f ∈ G can be identified with the Boehmian [(f ⊗ ϕn)/ϕn] where {ϕn} ∈ ∆.
This identification turns out to be an isomorphism of G with a subspace of
B(G,T,�,⊗, ∆). The operation ⊗ can be extended onto B(G,T,�,⊗, ∆)×T if we
define F ⊗ϕ = [(fn⊗ϕ)/ϕn]. Then, for every k ∈ N, we have [fn/ϕn]⊗ϕk = fk.

3. The Fourier transform. In this section we define the Fourier transform
of integrable Boehmians. To obtain the space of integrable Boehmians we take:

G = L1(Rq) = the space of Lebesgue integrable functions on Rq,
T = D(Rq) = the space of infinitely differentiable functions on Rq with com-

pact support,
⊗ = � = ∗ (i.e., the convolution defined by (f ∗ϕ)(y) =

∫
Rq f(x)ϕ(y−x) dx),

∆ = ∆0 = the family of sequences of real-valued functions ϕ1, ϕ2, . . . ∈ D(Rq)
such that ∫

Rq

ϕn(x) dx = 1 for all n ∈ N,∫
Rq

|ϕn(x)|dx < M for some M > 0 and all n ∈ N,

σ(ϕn)→ 0 as n→∞ (where σ(ϕ) = inf{ ε > 0 : suppϕ ⊂ Bε}).

The Fourier transform of f ∈ L1(Rq) is defined as

Ff(s) =
∫

Rq

f(x)e−i〈x,s〉 dx

and the Fourier transform of an integrable Boehmian [fn/ϕn] is defined as

F[fn/ϕn] = [Ffn/Fϕn].

The Boehmian [Ffn/Fϕn] is an element of the space B(C(Rq), S(Rq), ·, ·, ∆p)
where

C(Rq) = the space of continuous functions on Rq,
S(Rq) = the space of rapidly decreasing functions on Rq,
· denotes pointwise multiplication,
∆p = the family sequences of real-valued functions ϕ1, ϕ2, . . . ∈ S(Rq) which

converge to 1 uniformly on compact sets.

When checking that the Fourier transform can be extended in this way one
realizes that the following two properties are crucial:

F(f ∗ g) = (Ff) · (Fg).
If {ϕn} ∈ ∆0, then {Fϕn} ∈ ∆p.

A more detailed discussion of this extension of the Fourier transform can be
found in [5].
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It is possible to interchange the roles of convolution and pointwise multipli-
cation in extending the Fourier transform. For this purpose consider the space of
Boehmians defined by:

G = C0(Rq) = the space of continuous functions with compact support,
T = D(Rq),
⊗ = � = ·,
∆ = ∆× = the family of sequences of real-valued functions ϕ1, ϕ2, . . .

∈ D(Rq) such that ϕn(x) = ϕ(x/n) for some ϕ ∈ D(Rq) such that ϕ(0) = 1.

Note that the space B(C0(Rq),D(Rq), ·, ·, ∆×) can be identified with C(Rq).
Indeed, if f ∈ C(Rq) and {ϕn} ∈ ∆×, then [fϕn/ϕn] ∈ B(C0(Rq),D(Rq), ·, ·, ∆×).
Conversely, if [fn/ϕn] ∈ B(C0(Rq),D(Rq), ·, ·, ∆×), then the sequence f1, f2, . . .
converges to an element of C(Rq).

The Fourier transform of a Boehmian [fn/ϕn] ∈ B(C0(Rq),D(Rq), ·, ·, ∆×)
can be defined as before:

F[fn/ϕn] = [Ffn/Fϕn].

Now the Boehmian [Ffn/Fϕn] is an element of B(W(Rq), S(Rq), ∗, ∗, ∆S) where

W(Rq) = the space of all continuous functions which are bounded by a poly-
nomial,

∆S = the family of sequences of real-valued functions δ1, δ2, . . . ∈ S(RN ) such
that ∫

Rq

δn(x) dx = 1 for all n ∈ N,∫
Rq

|δn(x)| dx < M for some M > 0 and all n ∈ N,

lim
n→∞

∫
‖x‖≥ε

|δn| = 0 for every ε > 0.

We thus have a simple definition of the Fourier transform which can be applied
to any continuous function. As before, the extension is possible because:

F(fg) = (Ff) ∗ (Fg).
If {ϕn} ∈ ∆×, then {Fϕn} ∈ ∆S.

More general definitions of the Fourier transform can be found in [8] and [9].

4. The Radon transform. In this section we give a brief description of the
Radon transform of Boehmians introduced in [11] and [12]. The domain of this
extension is the space of integrable Boehmians B(L1(Rq),D(Rq), ∗, ∗, ∆0). The
range is a space of Boehmians defined on the cylinder:

Σ = {(p, ξ) ∈ R× Rq : ‖ξ‖ = 1} = R× Sq−1.

For this space of Boehmians we take:



TRANSFORMS OF BOEHMIANS 205

G = L(Σ) = the space of all functions f(p, ξ) on Σ such that f(·, ξ) is Lebesgue
integrable for almost all ξ ∈ Sq−1,

T = D(Σ) = the space of all infinitely differentiable functions on Σ with
compact support,
⊗ = � = •, where f • g is the partial convolution defined by

(f • g)(p, ξ) =
∫
R

f(t, ξ)g(p− t, ξ) dt,

∆ = ∆Σ = the family of all sequences of real-valued functions ϕ1, ϕ2, . . . ∈
D(Σ) such that∫

R

ϕn(p, ξ) dp = 1 for every ξ ∈ Sq−1 and every n ∈ N,

sup
ξ∈Sq−1

∫
R

|ϕn(p, ξ)|dp < M for some M > 0 and all n ∈ N,

sup
ξ∈Sq−1

σ(ϕn(·, ξ))→ 0 as n→∞.

The Radon transform of f ∈ L1(Rq) can be defined by

(Rf)(p, ξ) =
∫

Rq

f(x)δ(p− 〈x, ξ〉) dx, (p, ξ) ∈ Σ.

The Radon transform of a Boehmian [fn/ϕn] ∈ B(L1(Rq),D(Rq), ∗, ∗, ∆0) is
defined by

R[fn/ϕn] = [Rfn/Rϕn].
The Boehmian [Rfn/Rϕn] is an element of B(L(Σ), D(Σ), •, •, ∆Σ). Again,

this simple extension of the Radon transform is possible because:

R(f ∗ g) = (Rf) • (Rg).
If {ϕn(x)} ∈ ∆0, then {(Rϕn)(p, ξ)} ∈ ∆Σ .

5. The Zak transform. Our final example is the Zak transform. To define
the domain of the extended Zak transform we take:

G = L2(R) = the space of square integrable functions on R,
T = S(R) = the space of rapidly decreasing functions on R,
⊗ = � = ∗,
∆ = ∆S.

The Zak transform of f ∈ L2(R) is defined by

(Zf)(t, ω) =
∞∑

k=−∞

f(t+ k) e−2πikω.

The extension to B(L2(R), S(R), ∗, ∗, ∆S) is defined as

Z[fn/ϕn] = [Zfn/Zϕn]
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where [Zfn/Zϕn] ∈ B(P, P̃, c©, c©, ∆Z). Here

P = the space of all functions on R2 such that f is square integrable
on [0, 1]2, f(t, ω + 1) = f(t, ω) for all t, ω ∈ R, f(t + 1, ω) = e2πiωf(t, ω) for
all t, ω ∈ R,

T = P̃ = {Zf : f ∈ S(R)},
� = ⊗ = c©, where f c©g is the partial convolution defined by

(f c©g)(t, ω) =
1∫

0

f(s, ω)g(t− s, ω) ds,

∆Z = {{Zϕn} : {ϕn} ∈ ∆S}.
Although the Zak transform is not an integral transform, this extension is

possible because, as before, we have the following:

Z(f ∗ g) = (Zf) c©(Zg).
If f ∈ L2(R) and g ∈ S(R), then Z(f ∗ g) = (Zf) c©(Zg).
The presented extension of the Zak transform is discussed in more detail

in [14].
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