Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Vector-valued multipliers: convolution with operator-valued measures

Seria

Rozprawy Matematyczne tom/nr w serii: 385 wydano: 2000

Zawartość

Warianty tytułu

Abstrakty

EN

CONTENTS
Preface.........................................................................................................5
1. Introduction...............................................................................................6
  1.1. Measurability and vector measures.....................................................6
  1.2. Convolution and vector measures.....................................................12
  1.3. Operator-valued measures................................................................14
2. Harmonic analysis....................................................................................17
  2.1. Commutative harmonic analysis for vector-valued functions...............17
3. Convolution with respect to operator-valued measures...........................24
  3.1. General theory....................................................................................24
  3.2. Vector-valued p-multipliers..................................................................28
  3.3. Characterising operator-valued Fourier-Stieltjes transforms..............44
  3.4. Strong 1-multipliers.............................................................................47
  3.5. Locally compact groups in general: Wendel's theorem.......................54
  3.6. Costé's theorem..................................................................................57
4. Convolution with respect to spectral measures........................................60
  4.1. General theory....................................................................................60
  4.2. Translation: the canonical spectral measure on L²(G)........................65
  4.3. Applications........................................................................................72
References..................................................................................................74
Index............................................................................................................76

Miejsce publikacji

Warszawa

Copyright

Seria

Rozprawy Matematyczne tom/nr w serii: 385

Liczba stron

77

Liczba rozdzia³ów

Opis fizyczny

Dissertationes Mathematicae, Tom CCCLXXXV

Daty

wydano
2000
otrzymano
1999-03-08
poprawiono
1999-10-19

Twórcy

autor
  • School of Mathematics, University of NSW, Sydney, NSW 2052, Australia
autor
  • School of Mathematics, University of NSW, Sydney, NSW 2052, Australia
  • School of Mathematics, University of NSW, Sydney, NSW 2052, Australia

Bibliografia

  • [1] J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976.
  • [2] S. Bochner, A theorem on Fourier-Stieltjes integrals, Bull. Amer. Math. Soc. 40 (1934), 271-276.
  • [3] P. Brenner, The Cauchy problem for symmetric hyperbolic systems in $L_p$, Math. Scand. 19 (1966), 27-37.
  • [4] Z. Bukovská, Characterization of Fourier transforms of vector valued functions and measures, Mat. Časopis 20 (1970), 109-115.
  • [5] J. Diestel and J. J. Uhl Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977.
  • [6] N. Dinculeanu, Vector Measures, Pergamon Press, London, 1967.
  • [7] I. Dobrakov, On integration in Banach spaces I, Czechoslovak Math. J. 20 (1970), 511-536.
  • [8] W. F. Eberlein, Characterization of Fourier-Stieltjes transforms, Duke Math. J. 22 (1955), 465-468.
  • [9] R. E. Edwards, Functional Analysis: Theory and Applications, Holt, Rinehart and Winston, New York, 1965.
  • [10] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, Berlin, 1977.
  • [11] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
  • [12] E. Hewitt, A new proof of Plancherel's theorem for locally compact abelian groups, Acta Sci. Math. (Szeged) 24 (1963), 219-227.
  • [13] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis II, Springer, Berlin, 1970.
  • [14] E. Hewitt and K. R. Stromberg, A remark on Fourier-Stieltjes transforms, An. Acad. Brasil. Ciênc. 34 (1962), 175-180.
  • [15] E. Hewitt and K. R. Stromberg, Real and Abstract Analysis, Springer, Berlin, 1965.
  • [16] E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Colloq. Publ. 31, Amer. Math. Soc., Providence, RI, 1957.
  • [17] B. R. F. Jefferies, An operator bound related to Feynman-Kac formulæ, Proc. Amer. Math. Soc. 122 (1994), 1191-1202.
  • [18] S. Kwapień, Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math. 44 (1972), 583-595.
  • [19] I. Kluvánek, Characterization of Fourier-Stieltjes transforms of vector and operator valued measures, Czechoslovak Math. J. 17 (92) (1967), 261-276.
  • [20] I. Kluvánek, Fourier transforms of vector-valued functions and measures, Studia Math. 37 (1970), 1-12.
  • [21] I. Kluvánek and G. Knowles, Vector Measures and Control Systems, North-Holland, Amsterdam, 1976.
  • [22] W. Littman, C. McCarthy and N. Rivière, $L^p$-multiplier theorems, Studia Math. 30 (1968), 193-217.
  • [23] S. Okada and W. J. Ricker, Uniform operator σ-additivity of indefinite integrals induced by scalar-type spectral operators, Proc. Roy. Soc. Edinburgh Sect. A 101 (1985), 141-146.
  • [24] W. Rudin, Fourier Analysis on Groups, 2nd printing, Wiley, New York, 1967.
  • [25] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.
  • [26] H. H. Schaefer, Topological Vector Spaces, 4th ed., Springer, Berlin, 1980.
  • [27] J. T. Schwartz, A remark on inequalities of Calderón-Zygmund type for vector-valued functions, Comm. Pure Appl. Math. 14 (1961), 785-799.
  • [28] I. E. Segal and R. A. Kunze, Integrals and Operators, McGraw-Hill, New York, 1968.
  • [29] A. B. Simon, Cesàro summability on groups: Characterization and inversion of Fourier transforms, in: Function Algebras (Tulane Univ., 1965), 208-215.
  • [30] E. M. Stein, Harmonic Analysis, Princeton Univ. Press, 1993.
  • [31] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
  • [32] U. B. Tewari, M. Dutta and D. P. Waidya, Multipliers of group algebras of vector-valued functions, Proc. Amer. Math. Soc. 81 (1981), 223-229.
  • [33] G. E. F. Thomas, Integration of functions with values in locally convex Suslin spaces, Trans. Amer. Math. Soc. 212 (1975), 61-81.
  • [34] G. E. F. Thomas, Totally summable functions with values in locally convex spaces, in: Measure Theory (Oberwolfach, 1975), Lecture Notes in Math. 541, Springer, Berlin, 1976, 117-131.
  • [35] J. L. Torrea, Multipliers for vector valued functions, Proc. Roy. Soc. Edinburgh Sect. A 99 (1984), 137-143.
  • [36] J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2 (1952), 251-261.
  • [37] J. Wermer, Commuting spectral operators in Hilbert space, Pacific J. Math. 4 (1954), 355-361.
  • [38] J. S. W. Wong, On a characterization of Fourier transforms, Monatsh. Math. 70 (1966), 74-80.
  • [39] A. C. Zaanen, Integration, North-Holland, Amsterdam, 1967.

Języki publikacji

EN

Uwagi

2000 Mathematics Subject Classification: Primary 46G10, 42B15; Secondary 43A15, 43A05.

Identyfikator YADDA

bwmeta1.element.zamlynska-7a144ce8-64ae-46ea-940b-11c8758319b2

Identyfikatory

ISSN
0012-3862

Kolekcja

DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.