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Introduction

The problem of fixed precision estimation of a normal mean has been well
known since 1945, when Stein published his pioneering paper ([7]). From
that time this topic was carefully investigated by many authors. In their
papers it was usually required that the observed random variables be
independent and identically distributed. The independence assumption turned
out to be necessary in the sense shown in [2].

In this paper we make an attempt to relax these two assumptions. To
attain this goal we shall make use of Zielinski’'s approach ([11]), which
allows us to obtain the fixed precision estimation procedures for sequences of
dependent random variables and thereby to avoid the limitations of the
classical approach (presented by Blum and Rosenblatt in [2]).

Now we shall present the problem more formally.

Formalization

Let (X,) %, denote a sequence of normally distributed random variables. The
distribution of the stochastic process (X,) =, will be denoted by P, with 6 of
the form 6 = (u, 8') where u is assumed to be any real number and is called
the mean value or nearly mean value (we shall explain this term later on) and
¢’ is a certain nuisance parameter belonging to the known parameter set U,
so that we can write 6 € R x U. The parameter §' can be either a real number
or a finite- or infinite-dimensional vector.

Let us suppose that we can observe k (k > 1) independent copies of the
process (X)), namely (X'1), (X3, .. (X%). Usually in the theory of
statistical inference k is taken equal to one. The o-fields of events which are
observable up to time »n are denoted by

1 1 k k
FO =g(x\V . x00 X0 Xy
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The problem of fixed precision estimation of the parameter y consists in

finding such a sequence of #®-measurable estimates (ji,) and a stopping rule
N with the property ’

IN=n}eFP

that the following conditions are fulfilled:

a) Py(N<ow)=1, (VOeRxU)

b) Pe(iy—pl <dyza, (VOeRxU)
where d and a are given constants, d >0 and 0 <a < 1. We call the pair
(), N) a sampling plan. Of course, if no constraints are imposed on the set
of nuisance parameters U, then this problem has no solution. A positive
answer exists for some special cases only, and now we give a short review of
them.

The case of independent identically distributed random variables
The distribution of the observation X, is denoted by N(u, ¢?) for every n.

1. The first case. The variance 6§ is known.

This means that 6 = g and U = {6,}. This problem is a trivial one. To
obtain the 2d-length aconfidence interval for u it is enough to take k =1
and to define the sampling plan as follows:

7 =X1+X2+ .+ X,

=
3

]
a

2.2
; a“ap
n0=mf{n>1; n;—ﬁ}

where a is such a real number that 2&(a)—1 = a and & 1s a standard normal
distribution function. Then for every real u

P (Xpy—pl < d) 2 a.

For a less trivial procedure and the proof of its optimality see [8].

2. The second case. The variance o is unknown and
0 = (u, 0), U={g; c>0}.
This case is more complicated. The fixed length fixed confidence interval
for u cannot be achieved by means of any deterministic stopping rule.

THeoreM ([10]). Given d >0 and a€(0, 1), there is no sampling plan
(), no) such that for every p and o

Pu.zr('ﬁno_ﬂ| < d) Za
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provided that:

— the number k of copies observed is equal to one,

— the stopping rule ny is a deterministic one,

— estimates [i, are functions of the sufficient statistics: fi, = jin(X,, S?)
where

o,
Si= LW

, Let us remark that, since the sample mean is a minimax estimate of the
mean value u with respect to the risk function R(f,, p) = P, ,(|j,—pl > d), it
is always assumed that ji, = X,. This implies that the problem of finding the
proper sampling plan reduces to that of finding the stopping rule N. The first
such stopping rule, the famous two-stage procedure, belongs to Stein ([8]).
The story of searching for the best stopping rule is long and not finished yet.
The more important works in this field are [3], [5], [6] [9]

Dependent observations

Let us assume now that the subsequent observations X, X,,... can be
dependent random variables. Once the independence assumption is relaxed,
Blum and Rosenblatt have proved in [2] that fixed precision estimation is
impossible if k =1, even in the small class of m-dependent Gaussian se-
quences. We shall present their result.

Let ..., X_,, Xo, X, ... be a doubly infinite sequence of independent
random variables with common normal distribution N (0, 1). The obser-
vations Y,, Y,, ... are of the form

YII = #+XH+Z'I,M

0 if m=0,
z{ L.

where

— Y X,; if m>0,

Jmis
and 0 =(g,m), U=10,1,2,...}
THEOREM. Let 2d > 0 and 0 < a <} be given. Under the condition that
20(d)—1 <1-3a

there exists no FV-measurable sampling plan terminating with probability one

for all real yand all m =10, 1, ... and leading to a 2d-length (1 — a)-confidence
interval for pu.
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The intuitive reason for such a phenomenon is as follows: If m is large
and Z, ,, = z, then the Z, .’s vary only slightly with n. So, by observing only
one copy of the process (Y,), it is impossible to distinguish between the case
where m is large and the case where m = 0 and the mean value is equal to u
+z.

In [11] a samplng plan for the Blum-Rosenblatt process is given
provided that k > 4 copies of this process are observed. In fact, Zielinski
considered a more general situation, namely that of a class of processes

Xn =u+ én (1)
where the &.’s are normally distributed with zero mean. Let us take 6
=(u, (K,)ix) where K, is a covariance matrix of the vector (¢, &,, ..., &,).

Suppose that for some 6 >0, K, belongs to U (d), where

UG = {Kd1s 2 2 Euuap €& =009, n> oo}

i=1j=1

Then the following theorem is true:

THEOREM. Given d > 0 and a€(0, 1) there exist such a positive integer k
and such an F-measurable sampling plan ((ii,), N) that N terminates with
probability one and for every 6e R x U (9)

Po(jiy—pf < d) = a.

It is easy to show that the Blum—Rosenblatt example can be covered by
this theorem. Zielinski gave an explicit form of the sampling plan too. It will
be presented in due course.

Now we shall consider a slightly more general class of processes. We
would like to make a 2d-length a-confidence interval for the “nearly” mean
value u of the process

X, =u+p,+¢, (2)

where p, tends to zero as n tends to infimity, ¢, are Gaussian random
variables: &, ~ N(0, 62) and o,— 0 as n tends to infinity. The unknown
parameter 6 is of the form

0 = (1. (1), (o)),

where the sequence ((u,), (o,)) belongs to a certain known set U.
Such a process is general enough to include many important cases:

a) Let us take the iid. sequence (X,) where X, ~ N(u, 0?) and make
the transformation

X X+ .+ X,
- :

Y,
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It is easily seen that the process (Y,) has the properties required for process
(2) with u, =0 and o, =on '/2.

b) If (X,) is the process from the Blum-Rosenblatt example, then
X, ~ N(u, 2), and the same transformation as in the preceding example
makes Y, be of the form (2).

c) It is easy to show that processes with the properties of process (1)
are contained in the class just defined.

d) Let (X,) be a Robbins-Monro procedure for finding the zero of a
regression function f (see for example [1]). Let u be the zero of f

f(w=

and assume that noises are normally distributed. If the assumptions of the
convergence theorem for the Robbins—Monro procedure ([1]) are fulfilled,
then X, can be written in the form X, = u+ u,+¢&,, where all the properties
of process (2) hold.

Now we shall define, after Zielinski, the sampling plan. The estimate f,
of the parameter u is the sample mean over k copies:

XU+ XD+ .+ XY
. .
The stopping rule N is described as follows:

fin =

N = N{(ny, d, (c,) = {inf{" > ny; ¢, S, < d} if such n exists,

otherwise,

where
1 k .
St =g L -’

18 a sample variance over k copies, n, is a fixed positive integer and (c,) is a
fixed sequence of positive reals.

The properties of the stopping rule N are described by the following two
lemmas:

LemMma 1. If for each Be R x U
lim ¢,0, =0, (3)

n—ac

then for every n, = 1, for every 8c R xU and for every d > 0
Py(N(ny, d, (c,)) < 0) =1
provided k = 2.
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LEMMA 2. Let d be greater than zero. If a sequence (c,) and the number
of copies k are chosen in such a way that for every e R x U

k—-1)d?
Z Cn0 CXP( (zzi—z)<00, (4)
then for each ny and m=1, 2, ...

Eg[N(ny, d, (cp))]" < (VOeR x U).

The proofs are easy and are based on the fact that the random variable
SZ has chi-square distribution with k—1 degrees of freedom.

In the sequel we denote by T'(k, ) a random variable with the noncen-
tral Student distribution with k degrees of freedom and the noncentrality
parameter . For such a random variable the following lemma can easily be
proved:

LemMMA 3. If x is greater than zero, then
P(T(k, 3)| > x) < [B1(k)+ By (k) {3]*] x ¥,
where B, (k) and B,(k) are some constants which do not depend on x.
Now we can formulate the main theorem.

THEOREM. Let a be a fixed confidence level and let 2d be the prescribed

length of the confidence interval. Let the number of copies k and the sequence
(c,) be such that for every 8c R xU
a) limc,0,=0,

'l‘*CD

-1
T8 G |
b < o0,
) nzla ck-1
S |
) ) 4= <.
n= lc

Then there exists an n; = ny(«) such that N = N(n,, d, (c,) has the
following properties:

1) Py(N<w)=1 (VBeRxU)

) Pyliiinv—u <dyza (VOecRxU).

Additionally, if (c,) fullfils the condition

d) limsup(c,0,./logn)<3d (VOeR xU),

then
3) E4N™ <0 for every m=1, 2, ... and every 8eR x U.

We shall sketch the proof of statement 2). The deﬁnltlon of the stopping
rule N implies that
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m .
Py(lin—pl >d) < Y. Pollily—pl > d, d >c,S,)

< § n(HEH g

n=n

The random variable \/l;(ﬁ,,—,u)/S,, has a T(k—-1,c,0,* \/l_c) distribution,
which is independent of u. This statement and Lemma 3 yield

B,(k) & 1 Bz(k) 165"
Py (lfin— .u'|>d)\k(k 1)/2 Z ERE k(t—l)/z Z k 1

l'l!ll n=ny

where 6, = pu,0, fk The series on the right-hand side of the above
inequality are convergent by the assumptions b) and c). Now it is easily seen
that there exists an n; = n, (a) such that

Py(lgy—pl > d) <1 —ua,
which ends the proof.

Statement 3) is a result of combining assumption c¢) of this theorem and
assumption (4) of Lemma 2.

One can ask how to use this theorem. Let us suppose that two
sequences (a,) and (b,) are given such that for every e R x U

a0, 'l <b, and  a,=0(a,).
In other words, one has to know that 6e R xU and

Hn

U = U((ay), (ba) = {((1a), (0,)); #, — 0, 6, >0,

< by, 6, = 0(a,)}.

If sequences (a,) and (b,) are given, then it is possible to compute the value of
n, (@), which defines the stopping rule allowing the construction of a 2d-
length a-confidence interval for u.

Remark. 1t can happen that the sequence (c,) fulfilling the conditions of
the theorem does not exist. For example, if

Cn

0 d
logn - an ;

9 — Banach Center 1. 16
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Let us consider the special case

()

o,=0|—= ).

I

It is easily seen that this case covers all four examples governed by the
general model (2).

Let us take ¢, =n’, B> 0. Conditions c,0,—0 and Y ¢, % " <o
a=1

yield the inequality

1 1
-1~ P <7
and this implies that the number of observed copies k has to be greater than
3: k > 4. Additionally we have

CaOn+/logn— 0,

which implies that all moments of the stopping rule N exist. Of course k = 4
is a minimal number of copies. It can be greater than four in order to fulfil
condition c) of the theorem.

Can we decrease the number of copies? The change of the sequence (c,)
does not help since there is no such a sequence (c,) that

Cp it

-0 and (Zl—<ooor Ziz<oo).
Jn :

n=1(’n n=1%n

In order to decrease the number of copies one has to obtain sharper bounds
in the proof of statement 2) of the theorem.

Let us go back to the Robbins—Monro procedure. It can be shown that
a, = 0(n~ /%) provided the assumptions of the Sacks theorem ([4]) on
asymptotic normality hold. These assumptions ensure, too, that there exists a
sequence (b,) such that the conditions of our theorem are fulfilled but the
explicit form of that sequence is not known as yet.
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