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Among the fundamental questions about a smooth action of a compact Lie
group G on a smooth manifold M (with or without boundary &M) are the
description of the set F of points in M left fixed by G (it is known that F is a
smooth submanifold of M with ¢M N F = ¢F) and the deeper question
concerning the description of the equivariant normal bundle N (F) of F in M.

Since we may assume that G acts by isometries on M in some
riemannian metric on M, the tangent bundle T (M) (considered as a G-vector
bundle via the differential of the action of G on M) restricted to F
decomposes into the direct sum of T(F) (the trivial summand) and its
orthogonal complement (the nontrivial summand) which is canonically
equivalent to N(F). In particular, for any xeF, the tangent space T (M)
(considered as the representation of () decomposes into the direct sum of the
tangent space T.(F) (the trivial summand) and the normal space N, (F) (the
nontrivial summand).

The Slice Theorem asserts that, for any x in F—0F (resp., ¢F), there is
an open invariant neighborhood S, of x in M, such that the action of G on
S, is smoothly equivalent to the action of G on T,(M) (resp., the half-space
of T.(M)). Thus, the description of N, (F) provides information about the
action of G on M near x.

The Equivariant Tubular Neighborhood Theorem asserts, in turn, that
for some open invariant neighborhood U of F in M, there is an equivariant
diffecomorphism N (F)— U whose restriction to F (where F is embedded in
N (F) via the O-section) is the inclusion of F in U. Thus, the description of
N (F) provides information about the action of G on M near all of F.

Many survey articles on developments in transformation groups have

* This paper is in final form and no version ol it will be submitted [or publication
elsewhere.
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been published during the past two decades including a number of recent
surveys that have been submitted to the proceedings of the 1983 conference
on group actions at Boulder, Colorado (see, e.g., Assadi [3], Bredon [7],
Browder [9]. Cappell and Shaneson [11], Davis [12], Dovermann, Petrie,
and Schultz [18], Edmonds [22], Hsiang [23], Masuda and Petrie [32],
Milgram [34], Petrie [46, 47], Schultz [57-60], and Weinberger [66]: see, in
particular, Schultz [60] for an excellent survey of obtained results, as well as
for an extensive bibliography, and see also Schultz {61] for a large collection
of problems in transformation groups).

It turns out that the global invariants of smooth manifolds upon which
a compact Lie group G acts smoothly can impose some restrictions on the
fixed point sets F and their equivariant normal bundles N(F). A lot of the
cffort goes toward trying to describe £ and N (F) [or smooth actions of G on
homotopy spheres, disks, and euclidean spaces. Systematic surveys of related
results include the articles by Cappell and Shaneson [11], Dovermann,
Petrie, and Schultz [18], Masuda and Petrie [32], and Schultz [57-59]. The
aim of this paper i1s to survey further developments in the description of F
and N (F) for smooth actions of G on disks and euclidean spaces.

Here 1s a basic question that we would like to answer:

Which smooth manifolds occur as the fixed point sets of smooth actions of
G on disks (resp., euclidean spaces)?

Once we know that a smooth manifold F does occur, the following
question arises immediately:

For smooth actions of G on disks (resp., euclidean spaces) with fixed point

set F, which smooth G-vector bundles over F occur as the equivariant normal
bundles N (F)?

If F above consists of finitely many points x,, ..., x,, we simply ask:

Which lists of representations Vy, ..., Vi of G occur as the representations
of G on the tangent spaces at Xy, ..., X;’

We shall discuss the developments related to these questions in seven
sections ordered as [ollows:

§ 1. Preliminary remarks.

§ 2. Fixed point sets of torus actions and p-group actions.
§ 3. Fixed point sets of nilpotent group actions.

§ 4. Group actions with finitely many fixed points.

§ 5. Equivalence of representations at fixed points.

§ 6. Product equivariant normal bundles.

§ 7. Representations at isolated fixed points.

Almost all of the results discussed in this paper were discovered during
the past decade and most of the author’s work was done during the past five
years.
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§ 1. Preliminary remarks

We refer the reader to Bredon’s book [8] for background information on
transformation groups that we use in this paper.

Let G be a compact Lie group and let H be a closed normal subgroup
of G. If the quotient group G/H acts on a space X with fixed point set F,
then the quotient homomorphism G — G/H allows us to consider X as a G-
space with X¢ = F. Clearly, the action G on X may not be effective, but it is
easy to build up X to a space with an effective action G and with the same
fixed point set. For example, consider orthogonal actions of G on D" and R"
given via a faithful representation G — O(n), such that the fixed point set is
just the origin. Then, X x D" and X x R" (with the diagonal actions of G)
both have the required properties. Hence, the following proposition holds.

ProrosiTioN 1.1. Ler G be a compact Lie group and let H be a closed
normal subgroup of G. If F is the fixed point set of a smooth action of G/H on
a disk (resp., euclidean space), then there is a smooth effective action of G on a
disk (resp., euclidean space) with fixed point set F.

Let G be a finite group and let H be a subgroup of G with index n (here
H need not be normal). Assume H acts on a space X with fixed point set F.
Under these hypotheses, Oliver ([35], the proof of Lemma 6) defines an
action of G on X" the n-fold cartesian product of X, with fixed point set
equal to the image of F under the diagonal map X — X" It follows easily
from the construction of the action of G on X" that if X is a smooth
manifold and H acts smoothly on X, then the action of G on X" is also
smooth. Thus, the following proposition holds.

ProrosiTioN 1.2. Let G be a finite group and let H be a subgroup of G. If
F is the fixed point set of a smooth action of H on a disk (resp., euclidean
space), then there is a smooth action of G on a disk (resp., euclidean space) with
fixed point set F.

The following corollary follows immediately from Propositions 1.1
and 1.2.

Cororrary 1.3. Let G be a compact Lie group and let G, be the identity
connected component of G. If F is the fixed point set of a smooth action of u
subquotient of G/G, on a disk (resp., euclidean space), then there is a smooth
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effective action of G on a disk (resp., euclidean space) with fixed point set F.

Remark 1.4. Unlike for group actions on disks and euclidean spaces, the
arguments used to prove Propositions 1.1 and 1.2 do not work for group
actions on spheres. Clearly, we can get group actions on spheres from group
actions on disks, e.g., as follows: for a compact Lie group G acting smoothly
on D", restrict the action to the boundary éD" = S" ! or take the equivariant
double of D"; i.e., first consider D" x D! with the diagonal action of G, where
G acts trivially on D', and then restrict the action to the boundary
(D" x D') = S". However, there exist smooth group actions on spheres which
cannot be obtained in this way including smooth one fixed point actions
(cf. Remark 4.6).

Remark 1.5. In turn, we can get group actions on disks and euclidean
spaces from group actions on spheres as follows: for a compact Lie group G
acting smoothly on S" with at least one fixed point x, take (using the Slice
Theorem) a sufficiently small invariant g-disk D] in S" around x, so that G
acts orthogonally on D}, and now consider the action of G on §"—1nt D} =~ D"
and the action of G on int D" > R". The latter action we can also obtain by
adding an open equivariant collar to D" along 0D" or just by identifying S"
— Ix! = R". Note that the action of G on ¢D" is ortogonal. On the other

hand, there exist smooth group actions on D" which are not orthogonal on
D" (cf. Theorem 6.1).

Remark 1.6. Useful tools for constructing smooth G-manifolds include
equivariant thickening procedures (see, e.g., Assadi [1], Edmonds and Lee
[20, 21], and Pawalowski [40-45]) and equivariant surgery (see, e.g,
Dovermann and Petrie [17], Dovermann and Rothenberg [19], Petrie [46-
51], and Petrie and Randall [52]); compare, e.g., Assadt and Browder [4, 5],
Assadi and Vogel [6], Bredon [7], Browder [9], Cappell and Shaneson [10],
Davis, Hsiang, and Morgan [13], tom Dieck [14], tom Dieck and Petrie [15],
Jones [27], Loffler [29], Loffler and Raussen [30], Madsen and Rothenberg
[31], Oliver [35, 36, 39], Schultz [54-56], Stein [63]. and Weinberger [65].
Equivariant thickenings procedure produce smooth G-manifolds with
boundary (and thus boundaries of such manifolds) or open smooth
G-manifolds while equivariant surgery can also produce closed smooth
G-manifolds which are not equivariant boundaries (cf. Remarks 14 and
1.5); see Assadi [1], Chapt. III, Sect. 4 for a brief description of some
relations between equivariant thickening and equivariant surgery.

§ 2. Fixed point sets of torus actions and p-group actions

We say that a smooth manifold B i1s stably complex 1if there is a smooth
embedding of B into some euclidean space, such that the normal bundle
admits a complex structure (in particular, all connected components of B are
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either even or odd dimensional). Equivalently, B is stably complex if the
tangent bundle T(B) admits a complex structure perhaps after adding a
product bundle B x R" over B (c[. Edmonds and Lee [20], Sect. 2).

Edmonds and Lee ([20], Lemma (3.1)) have indicated that if a finite odd
order group G acts smoothly on a smooth manifod M, then the normal
bundle of the fixed point set M in M admits a complex structure. Hence, if
M is stably complex, so is MY Moreover, Edmonds and Lee ([20],
Proposition (3.2)) have shown that if G is a finite even order group with a
normal 2-Sylow subgroup and G acts smoothly on a Z,-acyclic (and thus
stably complex) smooth manifold M, then M€ is a stably complex manifold.

Now, let G be a compact Lie group with G, = T”", the n-dimensional
torus, where n = 1. If G acts on a Z-acyclic manifold M, then M®° is also Z-
acyclic by the Smith Theory. Recall that the quotient group G/G, always
acts on M°° with (M%) %°° = M®. Therefore, the above discussion yields the
following proposition.

ProrosiTioN 2.1. Let G be a compact Lie group such that G is abelian
(i.e., Ggo is either a trivial group or a rorus) and G/G, has a normal (possibly
trivial) 2-Sylow subgroup. If G acts smoothly on a Z-acyclic smooth manifold
M, then M€ is a stably complex manifold.

Let # be a class of compact Lie groups G such that G, is abelian and
G/G, has prime power order. According to Proposition 2.1, for each Ge #
acting smoothly on a disk or some euclidean space, the fixed point set F is a
stably complex manifold. Beside this restriction on F, there is the obvious
restriction which follows from the Smith Theory: F s Z-acyclic when G
= Gy, and F is Z,-acyclic when G/G, is a nontrivial p-group (p any prime);
recall that each Z-acyclic, as well as Z,-acyclic, smooth manifold is stably
complex. The following two theorems assert that these restrictions on F are
both necessary and sufficient.

THEOREM 2.2. Let G be a torus T", n = 1. Then, a compact (resp., open)
smooth manifold F is the fixed point set of a smooth action of G on a disk
(resp., euclidean space) if and only if F is Z-acyclic.

TueoreM 2.3. Let G be a compact Lie group such that G, is abelian and
G/Gy is a nontrivial p-group (p any prime). Then a compact (resp., open)
smooth manifold F is the fixed point set of a smooth action of G on a disk
(resp., euclidean space) if and only if F is stably complex and Z ,-acyclic.

Note that if F above were a closed manifold, then Poincaré’s Duality
would imply that F is just one point. Thus, Theorems 2.2 and 2.3 answer the
question of which smooth manifolds occur as the fixed point sets of smooth
actions of a given group Ge# on disks (resp., euclidean spaces).

In Theorems 2.2 and 2.3 the necessity has been discussed above and the
sufficiency follows via equivariant thickening (see Pawalowski [42]). For G
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= Z,, the result in Theorem 2.3 goes back to Jones [27], Theorem 2.1 and
Section 3. Generalized versions of Jones” Theorem have been obtained (using
different methods) by other authors (see, €.g., Assadi [2], Assadi and Browder
[4], Dovermann [16], Rothenberg and Sondow [53], and Weinberger [65]).

§ 3. Fixed point sets of nilpotent group actions

Oliver [35] has shown that, for a finite group G not of prime power order,
there exists an integer ng such that a finite CW-complex F is the fixed point
set of a finite contractible G-CW-complex if and only if the Euler
characteristic y(F) is congruent to 1 mod ng (see, e.g., Oliver [38] for the
calculations of the integer n;). For a compact Lie group G such that G, is
abelian and G/G, is not of prime power order, the same result follows with
ng = g, Oliver [36] has also shown that for a compact Lie group G such

that G, is nonabelian, the above result holds with n; = 1.

Recall that for a compact Lie group G, any smooth G-manifold (with or
without boundary) has the structure of a G-CW-complex, and the manifold is
compact if and only if the complex is finite (see, e.g., Illman [26] and
Matumoto and Shiota [33]). Therefore, the following proposition follows
immediately from the Smith Theory and the above discussion.

ProposiTION 3.1. Let G be a compact Lie group and let M be a compact
contractible smooth G-manifold. Then the following two statements hold.

(1) Ge.# implies y(M%) = 1.

(2) G¢# implies y(M°) =1 (mod ny).

Oliver ([371, Theorem 1) has described finite CW-compIexes which
occur {(up to homotopy equtvalence) as the fixed point sets of smooth actions
of a given compact Lie group G on disks (cf. Theorems 2.2 and 2.3). In turn,
the author has described compact smooth manifolds which occur (up to
diffeomorphism) as the fixed point sets of smooth actions of a given (up to
cyclic factor) finite nilpotent group G on disks. Recall that a finite group G 1s
nilpotent if and only if G is the direct product of its Sylow subgroups, and
also: if and only if all Sylow subgroups of G are normal. The announced
result is contained in the following two theorems (cf. Theorem 3.6).

THEOREM 3.2. Let p be an integer greater than 1. Then, a compact smooth
manifold F is the fixed point set of a smooth action of Z,, on a disk for some
integer q relatively prime to p if and only if F is stably complex and y(F) = 1.

THEOREM 3.3. Let G be a finite nilpotent group with exactly n noncyclic
Sylow subgroups, say, of py-power, ..., p,-power orders for distinct primes
Pis .-+s Pn. Then, a compact smooth manifod F is the fixed point set of a
smooth action of G xZ, on a disk for some integer q relatively prime to the
order of G, if und only if:
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n=1: F is stably complex and y(F) = 1.

n=2: F is stably complex and y(F)=1 (mod p, p,).

nz=3: F is stably complex.

In Theorems 3.2 and 3.3, the sufficiency is shown via equivariant
thickening (see Pawalowski [42, 45]) and the necessity follows from
Proposition 2.1 and 3.1 and the calculations of the Oliver integer ng (see
Oliver [38], Sect. 4). Those calculations show that, for a finite nilpotent
group G not of prime power order, n; depends only on the noncyclic Sylow
subgroups of G; more precisely:

() If G has at most one noncyclic Sylow subgroup, then n; = 0.

(2) If G has exactly two noncyclic Sylow subgroups, say, of p,-power
and p,-power orders for two distinct primes p;, and p,, then n; = p, p,.

(3) If G has at least three noncyclis Sylow subgroups, then n; = 1.

Now, recall that Edmonds and Lee ([20], Proposition (5.3) and Remark
(5.4)) have shown that for a given closed stably complex smooth manifold F
such that each connected component of F has the same dimension, there is a
smooth action of Z, on some euclidean space with fixed point set F
provided p and g are two relatively prime integers both sufficiently large with
respect to the dimension of F. Arguing similarly, we can construct a smooth
action of Z,, xZ,, on a disk with fixed point set F (the same as above)
provided p, g, and r are three relatively prime integers, again, all sufficiently
large with respect to the dimension of F (note that n, =1 for G=Z
X Z par)-

The author has removed both the dependence of p, g, and r on the
dimension of F and the restriction of the dimension of the connected
components of F (recall, however, that a stably complex manifold has
connected components either even or odd dimensional; see § 2). The result is
contained in the following proposition (see Pawalowski [45] for the proof).

rqr

ProrosiTion 34. Let p, q, and r be three relatively prime integers all
greater than 1. Ler F be a compact (resp., closed) stably complex smooth
manifold. Then there is a smooth action of Z,,, xZ,,, (resp., Z,) on a disk
(resp., euclidean space) with fixed point set F.

rar

The following corollary follows from Proposition 3.4 and Corollary 1.3.

CoroLLARY 3.5. Let G be a compact Lie group such that G/Gy has a
nilpotent subquotient with three or more noncyclic Sylow subgroups (resp.,
G/Gqo has a nilpotent subquotient not of prime power order) and let F be a
compact (resp., closed) stably complex smooth manifold. Then there is a smooth
action of G on a disk (resp., euclidean space) wirth fixed point set F.

Finally, Corollary 3.5 and Proposition 2.1 give the following theorem.

THEOREM 3.6. Let G be a compact Lie group such that G, is abelian and
the following two conditions hold:
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(1) G/Gqo has a nilpotent subquotient with three or more noncyclic Sylow
subgroups (resp., G/Gq, has a nilpotent subquotient not of prime power order).

(2) G/Go, has a normal, possibly trivial, 2-Sylow subgroup. Then, a
compact (resp., closed) smooth manifold F is the fixed point set of a smooth
action of G on a disk (resp., euclidean space) if and only if F is a stably
complex manifold.

§ 4. Group actions with finitely many fixed points

The question of which compact Lie groups have smooth fixed point free
actions on disks (resp., euclidean spaces) has been answered completely. The
result is contained in the following two theorems.

THEOREM 4.1. A compact Lie group G has a smooth fixed point free action
on a disk if and only if G¢ # and n; = 1.

THeoreM 4.2. A compact Lie group G has a smooth fixed boinrfree action
on some euclidean space if and only if G¢ 2.

Theorem 4.1 1s due to Oliver [35, 36] and Theorem 4.2 has been shown
independently by Assadi [1] and Edmonds and Lee [21].

The next two theorems answer the question of which compact Lie
groups have smooth actions on disks (resp., euclidean spaces) with two or
more isolated fixed points (cf. Theorems 4.1 and 4.2).

THEOREM 4.3. For an integer k > 1, a compact Lie group G has a smooth
action on a disk with exactly k fixed points if and only if G¢ 2 and k =1
(mod ng).

THeorem 4.4. For an integer k > 1, a compact Lie group G has a smooth
action on some euclidean space with exactly k fixed points if and only if G ¢ 2.

In Theorems 4.3 and 4.4, the necessity follows from the Smith Theory
and Proposition 3.1 (similarly as the necessity in Theorems 4.1 and 4.2) and
the sufficiency can be obtained via equivariant thickening (see Pawalowski
[42, 43]; cf. Assadi [1] and Edmonds and Lee [20]).

Remark 4.5. Recall that the class of finite groups Gé¢.# with n; =1
include the alternating group A, as the smallest group, S, x Z; and A, xS,
as the smallest solvable groups, and Z,, xZ,, as the smallest nilpotent
group (see, e.g., Oliver [35], p. 175). Moreover, n; = 1 for each compact Lie
group G with nonabelian G, (cl. § 3). Recall also that for a compact Lie
group G¢ 2, ng; =0 1If and only if G, 1s abehan and G/G, is “cyclic mod p”
for some prime p; i.e, G/G, has a normal subgroup Pe ¢ such that (G/G,)/P
1s cyclic (see, e.g., Oliver [38], p. 259).

Remark 4.6. Unlike for group actions on disks and euclidean spaces, the
question of which compact Lie groups G have smooth actions on homotopy
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spheres with exactly one fixed point secems to be of a rather deep nature and,
according to the author’s knowledge, it is still unsolved (see Stein [63] for a
construction of a smooth action of the binary icosahedral group on S7 with
exactly one fixed point, and see Petrie [48, 49] for further examples of
smooth one fixed point actions on homotopy spheres) Here, one may
conjecture that the answer to the above question is affirmative if and only if
G¢#? and n; = 1. One may also conjecture that for an integer kK > 1, a
compact Lie group G has a smooth action on a homotopy sphere with
exactly k+1 fixed points if and only if G¢# and k=1 (mod ng); cf.
Theorems 4.1 and 4.3 and Remark 1.5.

§ 5. Equivalence of representations at fixed points

Let G be a compact Lie group and let M be a smooth G-manifold. It follows
from the Slice Theorem that each point xe M® has an open invariant
neighborhood S, in M such that the tangent bundle T(M) restricted to S,
and the product bundle S, x T, (M) over S, are equivalent as G-vector
bundles. Therefore, if x varies within a fixed connected component of M€,
then as representations of G:

T.(M)= R"®V,

where n is the dimension of the connected component containing x, R" has
the trivial action of G, and V is a fixed representation of G with V¢ = 0 (cf.
the introduction of this paper).

For smooth actions of a compact Lie group G on homotopy spheres,
disks or euclidean spaces, the question of the equivalence of the
representations ol G at any two fixed points and thé weaker question of the
equality of the dimensions of any two fixed points set connected components
go back to Smith ([62], the footnote on p. 406), Hsiang and Hsiang ([24],
Problem 16), and Bredon ([8], the second remark on p. 58).

If Ge:#, the answers to these questions are affirmative for smooth
actions of G on disks and euclidean spaces, as well as for smooth actions of
G on homotopy spheres with at least three fixed points, because in these
cases, the fixed point sets of G are connected by the Smith Theory.

Let # be the class of compact Lie groups G such that in the quotient
group G/G,, each element has prime power order. Clearly, # > # and #
—# includes finite groups such as the symmetric groups S, and S,, the
alternating groups A4,, 45, and A,, the nonabehan groups of order pg (p and
g two primes with pl(g—1)), and the dihedral groups of order 2p” (p odd
prime, a = 1), as well as the extensions of these finite groups by a compact
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connected Lie group, and the extensions of finite prime power order groups

by a compact connected nonabelian Lie group; e.g., the classical groups
SO(n) and O(n) for n = 3.

THEOREM S5.1. Ler G be a compact Lie group. Then the following three
conditions are equivalent.

(1) For any smooth action of G on a disk (resp., euclidean space) ar any
two fixed points the representations of G are equivalent.

(2) For any smooth action of G on a disk (resp., euclidean space) each
fixed point set connected component has the same dimension.

(3) Ge #.

THEOREM 5.2. Let G he a compact Lie group. Then the following three
conditions are equitalent.

(1) For any smooth action of G on a sphere (resp., homotopy sphere) with
at least three fixed points at any two fixed points the representations of G are
equivalent.

(2) For any smooth action of G on a sphere (resp., homotopy sphere) each
fixed point set connected component has the same dimension.

(3) GeR.

In Theorems 5.1 and 5.2, (3) implies (1) by Proposition 7.1 and 7.2 of
Pawalowski [43], (1) implies (2) by the Slice Theorem (cf. the beginning of
this section) and in order to show that (2) implies (3), for any compact Lie
group G, such that G/Gq has a cyclic subgroup not of prime power order, the
author has constructed smooth actions of G on disks, spheres, and euclidean
spaces with fixed point set connected components of different dimensions (see
Pawatowski [43], Example 6.1, cf. § 6 of this paper).

Remark 5.3. Assume Ge #— # and n; # 0 (resp., Ge R — .#): cf. Remark
4.5. Then, it follows from Theorem 4.3 (resp., Theorem 4.4) that G has a
smooth action on a disk (resp., euclidean space) with two or more isolated
fixed points. However, at different fixed points, the representations of G
cannot be different (i.e., inequivalent) by Theorem 5.1.

Remark 5.4. In the case of smooth actions of a compact Lie group G on
homotopy spheres with exactly two fixed points, the question of the
equivalence of the representations of G at the fixed points in full generality 1s
still unsolved. Here, beside the linear equivalence, one studies extensively also
other kinds of equivalences (such as the topological equivalence and Smith
equivalence) between the representations of G at the fixed points (see, e.g.,
Cappell and Shaneson [11], Dovermann, Petrie, and Schultz [18], and
Masuda and Petrie [32] [or surveys of related results: see also Illman [25]
and Laiuinen and Traczyk [28]).
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§ 6. Product equivariant normal bundles

Let G be a compact Lie group acting smoothly on M, a disk, some cuclidean
space or a sphere; in the latter case assume further that there are at least
three points left fixed by G. Let F,, F,, ..., F, be the fixed point set
connected components and let V5, V;, ..., V, be representations of G such
that for some representation W of G, as representations of G:

T.(M)=R"@Vaw,

where xeF;,, m =dim F;, and R™ has the trivial action of G for i
=0,1,....k Then V=0 and W =0 (cf. the beginning of § 5).

If Ge.# (1e., each cyclic subgroup of G/G, has prime power order), then
m=n; and ¥, =V, for all 0 <, j <k (see Theorems 5.1 and 5.2). If G¢ A,
there is a weaker relationship between the n; and the V;, namely: for all 0 < i,
J <k, R"®V, and R"JGBVJ- are equivalent when restricted to any Pe #(G), the
family of all subgroups of G which are in -2, because the fixed point set MF
is connected by the Smith Theory.

Note that for i =0, 1, ..., k, the product bundle F;, x(V.@W) over F,
and the normal bundle N(F;) are locally equivalent as G-vector bundles.
Clearly, if they are equivalent, F; is a stably parallelizable manifold.

Now, we give examples of (stably) parallelizable manifolds F,,
F,, ..., F, such that for complex representations V,, V,, ..., V; of G with V°
= 0, the relationship

() resp(C" @ V) = resp (CY@V))

for each Pe 2(G), 0<i, j<k, 1s both necessary and sufficient for the
product bundles F, x(V,@W) over F, to occur as the equivariant normal
bundles N(F,) for some complex representation W of G. Here, n; is the
greatest integer in dim F;/2 and C" has the trivial action of G.

Let Fo, Fy, ..., F, be compact parallelizable smooth manifolds either
even or odd dimensional such that each F, has the structure of a CW-

complex containing as a deformation retract a subcomplex L; which is either
k

a point or a wedge of circles, and assume Y x(L) =1 (e.g., Fo = D},, the 2-

i=0

disk with k holes, F, = {x,]}, ..., F, = {x}). If n; > 0, F; has a boundary, and
we write DF; for the double of F; (eg., if F, = D(Z,\.'_,, DF; is the orientable
surface of genus k;).

Let G be a finite cyclic group not of prime power order and let V,,
Vi, ..., Vi be complex representations of G with Vé=0fori=0,1,..., k.

With the above hypotheses on G, V¥, and F,, the following three
theorems hold.

THeorem 6.1. There is a stably complex uction of G on a disk contdining
all F; as the fixed point set connected components with equivariant normal
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bundles equivalent to F; x(V.®W) for some complex representation W of G if
and only if the relationship (*) holds.

THEOREM 6.2. Assume further each n; > 0. Then there is a stably complex
action of G on a sphere containing all DF,; as the fixed point set connected
components with equivariant normal bundles equivalent to DF, x(V,@®W) for
some complex representation W of G if and only if the relationship () holds.

THEOREM 6.3. Assume further Fo = |xo! and n; >0 for i =1, ..., k. Then
there is a stably complex action of G on a disk (resp., euclidean space),
containing F,, DF,, ..., DF, as the fixed point set connected components, such
that the representation of G at x, is equivalent to VoW and the equivariant
normal bundles of DF, (i =1, ..., k) are equivalent to DF; x(V,;®W) for some
complex representation W of G if and only if the relationship () holds.

Herealter, by a srably complex action of G on M = D" §" or R" we mean
a smooth action of G on M such that the tangent bundle T (M) stably admits
the structure of a complex G-vector bundle.

In Theorems 6.1, 6.2, and 6.3, the necessity of the relationship (*) follows
from the Smith Theory (cf. the beginning of this section). The sufficiency is
proved using equivariant thickening (see Pawalowski [44]).

Remark 64. For G = Z,, with (p, q) =1 and any sequence of integers
0<ny<n <...<n, put

V,-=n,-!p+q®(nk—n,-)({p®fq), i=0, 1,..., k,

where r denotes the 1-dimensional complex representation of G given via
multiplication in C by the primitive pgth rooth of unity. Then resp(C" @V}
> resp(C7@®V)) for each Pe2(G), 0<i, j < k. Therefore, using Theorems
6.1, 6.2, or 6.3, it 1s easy to construct examples of smooth actions of G on
disks, spheres, and euclidean spaces with fixed point set connected
components of different dimensions (cf. Pawalowski [43, 44]).

§ 7. Representations at isolated fixed points

In § 6 we have studied (stably) parallelizable fixed point set connected
components and their product equivariant normal bundles, and in this
section we discuss the special case of smooth group actions with finitely
many fixed points and representations thereat.

Let G be a finite group not of prime power order and let V, ..., V, be
complex representations of G with V¢ =0 for i =1, ..., k. Assume further
that each Pe #(G) is contained in exactly one Sylow subgroup ol G. Then
the following two theorems hold (c[. Theorems 4.3 and 4.4).

TueoREM 7.1. There is a stably complex action of G on a .disk with
exactly k fixed points at which the representations of G are equivalent to
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Vi®eW, ..., V,®W for some complex representation W of G if and only if k
= | (mod ng) and resp(V) = resp(V)) for each Pe #(G), | <, j < k.

THEOREM 7.2. There is a stably complex action of G on some euclidean
space with exactly k fixed points at which the representations of G are
equivalent to Vi®W, ..., i@®@W for some complex representation W of G if
and only if resp(V) = resp(V)) for each Pe 2(G), 1 <1, j< k.

In Theorems 7.1 and 7.2, the necessity of k =1 (mod n;) follows from
Proposition 3.1 and the necessity of resp(V) =resp(V)) follows from the
Smith Theory (cl. the beginning of § 6). The sufficiency of these conditions
is proved using equivariant thickening (see Pawalowski [44]).

Remark 7.3. Note that each finite nilpotent group G fulfils the condition
that each Pec #(G) is contained in exactly one Sylow subgroup of G as well
as it does each extension G of the form

0-H-G—-K—-0,

where H is a finite nilpotent group, K is a finite group whose order is a
product of distinct primes, and the orders of H and K are relatively prime
(see Pawatowski [43] for the case H = Z, and K = Z,). Independently, using
equivariant surgery, Petrie [51] has obtained a similar result to Theorem 7.1
for abelian G (cf. Petrie and Randall {52]), and Tsai [64] has done it when H
above is abelian, K =2, s is a prime, and the following additional
restriction holds: each representation ¥, is a direct sum of ind%(S;) and R,
where S, 1s a complex representation of H and R; is a complex representation
of G/H considered also as a complex representation of G via the quotient
homomorphism G — G/H.

Remark 7.4. Using Theorems 7.1 and 7.2, we can construct examples of
smooth actions of G on disks and euclidean spaces with isolated fixed points
and inequivalent representations of G at different fixed points. For example,
if G=2Z, for (p,q) =1, we can do it on euclidean spaces; the first such
examples are due to Edmonds and Lee [20]. Note that it follows from
Theorem 5.1 that in order to obtain such examples of smooth actions of G, it
is necessary to assume that G has a cyclic subgroup not of prime power
order (otherwise G e #) and, for smooth actions on disks, it is also necessary
to assume that ng # 0 (otherwise k = 1). This holds, e.g., when G is a finite
nilpotent group with at least two noncyclic Sylow subgroup (cf. Remark 4.5)
or G 1s the dihedral group of order 2pq for two relatively prime odd integers
p and g; in the latter case ng =2 (cf. Pawalowski [43], Theorem 7.4,
Example 7.5, and Remark 7.6).

Added in October 1986. Recently the author has improved the results of Theorems 3.2 and
3.3 by showing which compact smooth manifolds can occur as the fixed point sets of smooth
G-actions on disks for a given compact Lie group G such that G, is abelian and G/G, is
nilpotent.

12 ~ Banach Center Publications
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