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Introduction

In the numerical analysis of finite difference methods a discrete maximum
principle plays a central role. In papers [6], [16], this principle is presented
for finite difference schemes in the canonical form with a finite difference
operator of “positive type” In [17], R. S. Varga gave a discrete maximum
principle for an N x N matrix A.R.S. Varga’s maximum principle includes
a class of coherent matrices with operators of positive type and furthermore
can be applied to operators which are not of positive type. A description
of these maximum principles is presented in § 1. In § 2 (cf. [12]) we propose
an extension of R. 8. Varga’s maximum principle to nonlinear mappings and
to an a priori estimation. An application of these extensions of the maximum
principle is given in § 3. Namely, in § 3 (cf. [12]) we prove a difference
analogue of the maximum principle for nonlinear elliptic equations with
boundary value conditions of the first, second and third kinds. In particular,
we prove that a solution v of the difference schema (3.3) attains its maximum
on that part of the boundary 9Q, of a net @, on which the Dirichlet’s
condition is given.

As we mentioned above, there exist finite difference schemes which satisfy
R.S. Varga’s maximum principle and which are not in a canonical form
with an operator of positive type. Such a finite difference scheme for
nonlinear elliptic equations is considered in §4. Also, in §4 we solve
a nonlinear elliptic equation by a finite difference method of higher order
accuracy.

In § 5 we propose a new maximum principle for ordinary differential
operators and present its satisfactory conditions. We use this maximum
principle in the proof of convergence of the method of lines for nonlinear
parabolic equations

k(t, x)u = Gt, X, U, Ueyyovns Uy s Ugyzys ooes Uy pe,)s

which can be degenerated to elliptic equations (cf. § 6 and [9]).

We [ace another situation when approximating systems of differential
equations by the finite difference methods. Then we approximate a vector-
function # = (u,, 5, ..., u,). This fact must be taken into consideration in
a definition of a maximum principle, In § 7 and 8 (cf. [10], [11]) we present
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certain sufficient conditions of satisfying a maximum principle which concerns
direction and length ol a solution & = (u,, u,,...,u,) of a system of finite
difference equations approximating an elliptic system of differential equations.

§ 1. A maximum principle for linear mappings

A discrete maximum principle is a finite diflerence analogue of Hopf’s
theorem [2]. Below we present this principle for an operator of “positive
type” (cf. [6], [16]).

A net. Let & be a set of isolated points x = (x;, X;,...,xy) Of the
real space R¥ A finite subset .4 (x) € & such that xe.4"(x) is called the
neighbourhood of x. Let Q be a non-empty subset of 4. The set

0Q = {xeQ: there exists a ye #—@Q such that xe. |} (y) or ye.¥ (x)}.

is called the boundary of Q. We define the interior 2 of the set Q as
follows: Q = @—¢2Q.
The set Q- with the boundary 82 and the interior @ is called a net.

A connected net. A set  is said to be a connected net if and only
“if for every couple of points x, yeQ, xe 2, there exists a finite sequence
{x"}m., such that

a) x"eQ,

b) x"*le 4" (x"), n=1,2,....m—1,

c) x! =x, x"=y,

A weak connected net. A set Q is said to be a weak connected net

if and only if for every xeQ there exist a yedQ and a sequence {x"}m_,
for which conditions a), b), ¢) hold.

_ Remark 1. If a connected net Q has a non-empty boundary 92, then
2 is also a weak connected net, but the contrary does not hold in general.

A dense family of nets. Finite difference schemes are considered on
a family of nets which is dense in the real space RM, A dense family
of nets is defined as follows: Assume a parameter he H = (0,1] and let
inf H = 0. With a parameter h we join a family {X,}, where X, is a set
of isolated points x e RY such that
(1.1) sup inf g(x, y) < Ch,
xeXp yeX)
yEx
C = const > 0, g(x,y) — a distance from a point x to y.
A family {§,} of nets 2, < X,, he H, is called dense if a set &, satisfies
condition (1.1) for every he H.
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An operator of positive type. A linear operator x is said to be of
positive type if the lollowing conditions are satisfied:

a) a[u](x) = ), alx,y)u(y) for xeQ,

Ye i (x)
b) a(x,y) — real functions which are defined for xeQ, yeQ,
c) a(x,y) <0 for x # y, xeQ, ye. 1 (x),
d) ¥ alx,)) 20, xe.t'(x),

Ye V(x)
where a function u(x) is defined on .
A strong maximum principle. Let u(x) be a real function defined on

a connected net Q. If the function wu(x) attains its positive maximum
(or negative minimum) at a point Xe Q and if

a[u] (x) <0 for xeQ (or a[u](x) = 0 for xeQ),

then u(x) = const.

A maximum principle. Let u(x) be a real function which is defined on
a weak connected net Q. If the inequality

alul(x) 0 for xeQ (or afu](x) = 0 for xeQ),
is satisfied, then

u(x) <.max {0, max u(y)} (v(x) = min {0, min u(y)}),
C rec rerid
The above maximum principles imply convergence of the following finite
difference schemes:

(1.2) o [u](x) = @(x) for xeQ,,
(1.3) u(x) =y(x) for xeoQ,,

where a, — an operator of the positive type.

A finite difference schemes (1.2) and (1.3) is called canonical (cf. [6]).

A maximum principle for an NxN matrix A. In [17] R.S. Varga
considers a maximum for an N x N matrix A. R. S. Varga’s maximum principle
also implies convergence of finite difference schemes of the form (1.2), (1.3).
Moreover, this principle can be applied in the analysis of finite difference
schemes of different form from (1.2), (1.3) (cf. § 4).

Let Vy(C) be an N x N vector-space with elements z = (z,, 25, ...,2y)"
and complex components z;eC, i =1,2,...,N, and let S" be a subspace
of Wy(C) spanned by vectors d;e{e;,e,,....,ex} 1 <j< N, ¢ = (8y;, 0, ...
vy Oxg) (i =1,2,...,N). The projection of a vector z on the subspace §"
we denote by Pgz, where Ps = diagonal (dy, d,,...,dy), d, = 0 if ¢ ¢S" and
di=11if ¢;eS" (i=1,2,...,N).

DerINITION 1.1. An N x N matrix A satisfies a maximum principle with
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respect to a subspace S” of Vy(C) (in symbols A e M) if and only if every
solution z of Az = Psb satisfies the inequality

|zl < |Psble, for any beVy(C),
where |z|, = max |z

In [17] R.S. Varga presents the following sufficient and necessary
condition for this maximum principle:

LemmA 1.1. An Nx N matrix A belongs to Mg if and only if there
exists an A~ and |A™'Ps|, < 1, where |A|, = max Y. |4;l, 4 = (4y).
i 7

The relation AeMs is equivalent to the conditions: there exists an
AL A 'Ps20(A=(4)=0if4;,20,i,j=1,2,...,N) and a matrix 4
is normalized with respect to a subspace S" of Vy(C) in the following sense:

DeriNITION 1.2, An NxN matrix A is normalized with respect to
a subspace S" of Wy(C) (in symbols AeMs) if and only if AE = Pg¢
for ¢ =(1,1,..,1)7

To verify the relation A%ty we can also use the following corollaries
resulting from Lemma 1.1.

CoroLLARY 1.1. If a monotone matrix A belongs to Ns, then AeMs.

CoroLLarY 1.2. If a matrix B belongs to Ns Mg and if a nonsingular
matrix A satisfies the inequality

|A~'Ps| < B! P,

then AeMs, where |A| = (|A4;)).

The classes Ms and Ks. Let us consider the class Kg of coherent
matrices of operators of positive type.

Ks = {4 = (A))ij=1: A= a(x',y)) for x'eQ and ye N (x),
A =0 for x'eQ and y'¢ N(x) or x'€df2 and i # j,
A“ = 1 fOl‘ xieag},

where a(x, y) — coefficients of an operator « of positive type which is defined
on a connected net Q, x' = (x|, x}, ..., x})eQ, an index i follows from the
lexicographical ordering of points of the net &, N is a number of points of Q.

Let S be a subspace of R spanned by vectors e; for ielg
= {j: x/ = (x], x4, ..., x)) € 0Q}.

Now, we shall prove that if an Nx N matrix A belongs to Kg, then
AeMs. Namely, let us observe that every matrix A belonging to the class
Ks is of positive type in the sense of the following definition:

DerinitioN 1.3 (cf. [1]). A matrix B = (Bj;) is said to be of positive
type If the following conditions are satisfied:
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a') Bj,' <0 forj-';é i,
b’) zk:B,k 2 0 for all j, and further there exists a non-empty subset J(3)

of the integers 1,2,..., N such that ) B, > 0 for all jeJ(B),
k

¢) for i¢J(B) there exists a jeJ(B) and a sequence of non-zero elements
of B of the form Bj s Biyiys ooy Byy

From the definition of an operator « of positive type and from the
definition of K5 we have

Ay <0 for j#i

and
N
ZAJ(?O for i=1,2,...,N.
i=1

Furthermore, from the assumption that the net Q is connected and from the
condition ¢) of the definition of an operator of positive type a it follows
that for every i¢ Is = J(A) there exists a sequence of non-zero elements of A
of the form

a(-\:is ykl)s a(xkl ’ ykz)a cens (xkr’ yj)’

where y'se. " (x*s-1), s = 1,2,...,r. We also have
N

(1.4) Y Ap=1 for jels.
i=1

Thus, all the conditions of Definition 1.3 are satisfied and therefore the

matrix A4 is of positive type. On the other hand, every matrix A of positive

type is monotone (cf. [1]). Let B = 4A—A, where A = diagonal (4,, 4,, ..., Ay),
N

A= Z1 Ay if j¢lIs and A, =0 if jels. Since the matrix Be9tsn My

(cf. (1.4) and Corrollary 1.1), then from Corollary 1.2 it follows that 4 e M.

Remark 2. In the class Mg there exist matrices which do not belong
to Ks. We meet such matrices when approximating differential equations
with a higher order of accuracy than two, (cf. [1], §4).

§ 2. A maximum principle for nonlinear mappings

Below, we present an extension of R.S. Varga’s maximum principle to
nonlinear mappings (cf. [12]) and to a priori estimations. Next, we use
this extension to prove stability finite difference schemes for nonlinear
elliptic equations with boundary value conditions of the first second and third

kinds (cf. § 3).
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Let us consider the following system of nonlinear equations:
(2.1) f@ =h. b=(b.b* .. bYTeR",

where a vector-function f(¢) = (f!(v). f2{v), ..., f¥(v))" is defined for ¥
= (vy, U3...., 0y)" €D, DY — a domain of R"

DerFiNITION 2.1, A mapping f () satisfies a maximum principle with
respect to a subspace S of the space RY (in symbols feMs) if and only
if for any vector be R every solution Z of f(F) = Psb satisfies the inequality

|‘:-:Ia: s 'P.SBI::\

From Lemma 1.1 it follows that a vector-function f (V) satisfies the
maximum principle if for every #eD" there exists a matrix A(7) such that

f(@) =A@

and A(v)eM;.

Il a vector-function f(r) is continuously diflerentiable in DY and if
f(0) = 0, (here we assume that O = (0,0, ..., 0)eD"), then for every seD"
there exists a 6 = (8,,0,,...,0y), 0 < 0, < 1 (i=1,2,...,N), such that the
matrix
aft (46,)

ov,,

satisfies the condition f(¥) = M (7, 6) 7.

Of course, then feMs if M (G, 6)e My for 7eDY

Now, we present an extension of this maximum principle to an a priori
estimation.

DeFINITION 2.2, A mapping f (V) satisfies a maximum principle as an
a priori estimation with respect to a subspace § of the space R and with
respect to a constant K (in symbols feWis(K)) if and only if for any
beR" every solution z of (2.1) satifties the inequality

o < |Psbl+K (E—Ps)bl,

where E is the unit matrix.

A sufficient condition for satisfying the relation fe Mg (K) can be written
as follows:

THEOREM 2.1. If there exist a vector &€ R" and a monotone matrix A(v)
such that for ve DY

(2.2) M(7,0) = (i,k=1,2,..., N)

J @)= A@®)7,
A(E)C?PS“:s é=(1,ls"'a1)Ta

A(D)d = (E— Pg) ¢,
then feMs(|o|,,).
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Proof. Let § = |Psb|, &+ |(E—Ps)b|@ and let 7 be a solution of ()
= b. Then, we have

A@G+2) = |Psblo A@)E+|(E—Ps)bl,, A(DEFH
2 |Psblo PsE+|(E—Ps) bl (E—Ps)EFH > 0
Since the matrix A(Z) is monotone,
g¥z=0.
Hence, we have |7, < |glo, < |Psb|g+|dl. |(E—Ps)b], . Thus the theorem is
proved.

§ 3. A finite difference analogue of a maximum principle
for nonlinear elliptic equations

A boundary value problem. Let us consider the following boundary value
problem:

(3.1) G(x,u,u,u,)=¢(x) for xeDP,
(3.2) B(x) %+ Cx)u=y(x) for xedD?

where x = (xy,%3,...,X,), U= u(x), u, = (uxl,uxz, . uxp), Upe = (Uzyx s Unyxgs oo
du

rees Mex0), v normal vector, D? = {xeR”: 0 < x; <1, i=1,2,...,p},

0D? — the boundary of D*

The assumptions. 1° The function G(x,q,r,s}, r=(r;,rs, ....r,), s
= (8;, 53, ..., 5,) is defined in D? x R***! and continuosly differentiable with
respect to variables gq,r,,7r;,...,7,,8,..., 85, G(x,0,0,0) =0 for xeD?,
G,(x,q,7r,8) <0 for (x,q,r,5)eD?x R***!, the given functions B(x) > 0,
C(x) 2 0, ¥(x) and ¢ (x) are bounded on dD? and DP, respectively, B(x)+
+C(x) > 0 for xedD?, there exists a point X & D? such that G,(x,q,r,s)
< 0 for (g, r,s)e R*®*! or there exists a point XedD? such that C(¥) > 0.

2° There exist functions y;(q,r,s) > 0, L;(q, r, s) and constants K; > 0,
(= 1,2...., p) such that

G
——(x q,r,s) = plq,r,s),

Li(g,r,s),

’—(x q,r,8)| <

Lj(qxr S Jﬂj(q," S),
for (x,q,r,s)eDPx R?P*1,
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A finite difference scheme. Let Q, be a net defined as folTows:

O = lih =iy hyighye ooy ighy)t = (iy iy, ..., 0,) — integers,
0<i, € N, Njhy=1,s=1,2,....p},

r P
n / N N
(.th = FO.Q,,UPA Qh‘ f."th = U (‘!}OQ,‘. (1 Qh = U a, ‘Zh‘
=1 =1

[‘}?Qh = {HT = (l] hl" llzhz, .....l'php)EQh: iI = O}.
ﬁ?'Q,, {ih = (’l hl,izhz...., l'php)eé,,: i] = Nl}‘ Qh = Qh—EQ;.

i

Next, let ¢/ be a value of a [unction v at the nodal point (i; hy, iy hy, ..., iph,)
and let

1 . . , . i
4,00 = m (u(:1 hy,iyhy, ..., (is+ 1) hy, ..., 1php)——v),

1 S : .
h—‘s(v‘—v(!1 hy,izhy, ..., (i;—=1)h,, ..., rph,,)),

A_svi = %(As+l7s)vl'
Avi = (Al l‘i. AZ "’iv [ERRY Apvf)'
Vel = (P, Vo', L 0.

Now, we can write a difference scheme for Problems (2.1) and (2.2).

(3.3) Gih, v, Av', APV = @',  iheQ,,
(3.4) B A0 +C' = yf,  ihedl Q,,
(3.5) BP0’ +Cv' =y, ihed¥Q,,
Below, we shall write the difference scheme (2.3), (2.4), (2.5) in the form
(3.6) f@=5

where 7 = (o', v2,...,0")", N = (N, +1)(Ny+1) ... (N,+1), o™ = v(ih), an
igdex_’m(i) follows from the lexicographical ordering of points of the net
Q,. b= (b",b% ..., 6N,

miy _ )@ 1hELy,
(3.7) b ‘{ o, ihed,
F® = (1. 2D, ... YO
~G(ih, o', Av', AVYY), iheQ,,
(3.8) £ () = { B AV +Civf, ihed®Q,s=1,2,...p,
BV.v+Civf, ihedsQ,, s=1,2,...p.

A priori estimations. To estimate a solution v of the system of equations
(3.6) we shall first prove the following theorem:
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TreoREM 3.1, If h; < hy = mlin(l/K,) G =1,2,...,p), then the matrix

of 1 (v0)) ) i k

M(5,0)=( " =1,2,...,N),
k

is of positive type for every TeRN, 6= (8,,0,....,0x), 0<0 <1,
G=1.2..... N).

Proof. From (3.8) if follows that
(2" 1 c?Gi_aGi P
’;1 3, s k=m(i), the&,,
1 a6 _ 1 oG
h[z as; + 2hl ar, )
om0 k=m@FN,+1) (N2 +1) ... (Ni+1),

(3.9)

il
A

I=1,2,....p, ihe Q,,

vk

[ . ,
TB‘+CI, k = M(i), lhe{*?Q,,u@f‘ Q,,, l= 1,2,...,p,
I

|
— B’, this element appears in the row m(i) iheoQ,
i only once,

\ the remaining elements of M are equal to zero.

Let us observe that the matrix M (v, 6) satisfies the conditions a’), b’), ¢')
of Definition 1.3. Namely, from (3.9) for h, < hy (s = 1,2,...,p), we have

MJk(atH)soo j?ﬁk"
N
Y Mu@.6>0, j=1,2,..,N.
k=1
Furthermore
N
Z Mjk(ﬁ, 6) > 0! jEJ(M)‘
k=1
and the non-empty set

oG
J(M) = {m(he(1,2,...,N): C(ih) > 0 for ihedQ, or a—q(ih, g. 7,85 <0
for (ih, q,r,s)eQ, x R*?*1},
A sequence of the [orm
My, Migagzts Migzigzzs - Mj-qy

satisfies condition c¢') of Definition 1.3. Thus, the matrix M(v,0) is of
positive type.
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From Theorem 2.2 in [1] it follows that the matrix M (v, f) is monotone
for hy < hg (s=1,2,...,N),

BeRY, 0=(0,0,..6y) (0<6,<1,j=12,..,N).

Now, we can formulate a difference analogue of the theorem given
in {3] p. 165.

THEOREM 3.2. If B(x) = 0, C(x) = 1, ¥ (x) = 0 (or Y (x) < 0) for xedQ,
and if (x) =20 (or @(x) <0) for xeQ,, then a solution v of the finite

difference scheme (3.3), (3.4), (3.5) is non-positive (or non-negative) in ,.
Proof. If v is a solution of (3.3), (3.4), (3.5), then from (3.6) we have

M@.0¢=b for certain 8 = (6,,8,,..., 0y).

Since the matrix M (7, §) is monotone, we have ¥ > 0 if b > 0. From the
assumption and (3.7) if follows that b>0 (or b <0) and this ends the
proof.

Let T (M) be a non-empty subset of the set J(M) and let § be a subspace
of RY spanned by vectors e, = (8,;, 83, ..., On)), j€ T (M).

A MAXIMUM PRINCIPLE. Every solution U of the system equations f(v)
= P_b satisfies the inequality

|#|. < |D!Psbh|l, for any beRV,
where D' = diugonal (D}, D}, ....D}),

(')G:' -1
( ) Jor  m(i)eT(M), iheQ,,
l Y —1 (’,q
) (C(ih)™"  for m()eT (M), iheR,,
1 Sfor  m(i)¢ T (M).
Prool The vector ¢ satisfies the following system of equations:

M(#, 0% =Psb and D'M(5,6)5 = D! Pgh.

From Theorem 3.1 it follows that

D' M (7, 0)—D*e M, A M,

where D? = diagonal (D}, D%, ..., D3),
0 for m(i)¢J(M), ihel,,
D2, = B oG
oq
Clih)y  for mii)eJ(M)—T(M). ihedQ,.

for m(i)eJ(M)—T(M), iheg,,
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Since
D' M (7, 0)—D* < D' M(7, 0)
and
(D*M (¥, 0))"* < (D' M(7,0)-D»)"L,
from Corollary 1.2, we have
7. < ID*Pyb,.

Thus the theorem is proved.
Now, let us assume that

1 for xedQR-Z,
B(x) =
(x) {0 for xeZX,

0 for xedQ-X,
C(x)-{l for xeZ,

where 2 < 0Q and ¢(x) =0, xeQ; y(x) =0, xedR—-Z; T(M) = {m(i):
iheZ}. This maximum principle implies the following corollary.
CoroLLARY 3.1. Let the above assumptions hold. Every solution v of the
difference scheme (3.3), (3.4), (3.5) attains its extremum on that part of the
boundary 0Q, on which Dirichlet’s condition is given. Then v satisfies the
inequality
max |v(ih)| < max | (ih),
ihegd, theZ)y,
where X, < X.
AN EXTENSION OF THE MAXWWUM PRINCIPLE, Let B(x) = 0, C(x) = 1 for
xe 0. Then every solution u of the finite difference scheme (3.3), (3.4), (3.5)
satisfies the following inequality:

(3.10) max |v(ih)] <€ max |y (ih)| +exp (y) max | (ih)|
ﬂh aﬂh 2,

for y = llisnl_iélp (Li+ /42wy, hy S hg (s = 1,2,...,p).

Proof. The vector U satisfies the system of equations

(@) =b,
where the vector b and f () are given by (3.7) and (3.8). Let
= (ay,a,....,0n) 05 =exp(P—(1+yhY.j=1,2, . .Nyoy=a_y,.j=
(N,+1), (N;+2),...,N, and let S be a subspace of R" spanned by the
vector e; = (d;1, 0j, ..., Opn), jeJ (M) = {m(i)e{1,2,..., N}: ihed®,}. Now,
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we shall show that the mapping f (i) satisfies the assumptions of Theorem
2.1, Namely, from assumption 2 it follows that

e;ME, )= M;; o +Mpo;+ M0,
2 (u—3h L)y*=Lyy, Jj¢S, hy < ho,
where the matrix M (i, ) is given by (3.9). Hence, we have
M@, 6> PE, E=(11,.., 1)
and
M, 0)d 2(E-P)¢ if (u,—%h L)y*—L,y>1.
But

(uy—%hy L)y =Liy 21 for 9= (Li+/Ci+2p)u.
Thus, inequality (3.10) is true. Changing the coordinates of RY, we can obtain
inequality (3.10) for y = min L;+./L}+2y4/p;, and this ends the proof.

§ 4. A finite difference scheme of higher order accuracy

In this section we consider an elliptic equation (p = 1) of form (3.1).
Namely, we deal with the following boundary value problem:

4.1) Gx,u,u)=¢(x), O0<x<l,
4.2) u0) = aq, u(l) = ay.

Also, we assume that the functions G (x, g, s) and ¢ (x) satisfy assumptions
1°, 22 in § 3.
We approximate problem (4.1), (4.2) by the following finite difference
scheme:
v =a, i=0,N,
G(ih, o', vy =o', i=1,2,..,N—1,

where Nh = 1, v/ = v(ih),

(4.3)

1 .
h—z(v"l—Zv"+v‘“), i = I,N—l,
o' =

O (=o' 2+160' "' =300 + 160"t =72, i=2,3,..., N=2.

It is easy to verify that if ue C®(0, 1) then the finite difference scheme (4.3)
approximates the boundary value problem (4.1), (4.2) with accuracy O (h?)
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at the points h, 1 —h and with accuracy O (h*) at the points 2h, 3k, ..., (N —2)h.
In the linear case, (G (x, u, u,) = u"(x)+q(x)u(x)), J. H. Bramble and
B.E. Hubbard (cf. [1]) proved that the finite difference scheme (4.3) is
convergent as fast as O(h*) in spite of O(h®) approximation at the points
h, 1—h. Below, we solve the finite difference scheme (4.3) using an explicit
form of an inverse matrix to a coherent matrix.
Let us write the finite difference scheme (4.3) in the form

(4.4) f@) = b,
where § = (%, 0", ..., ™), @ = (/°@), /' @) . S @),
e J 0 i=0,N,
S e = { ~G(ih, v\ 1,0, i=1,2,..,N—1,

b= (b°, b, ..., bNT,
b= a;, i=0,N,
—@(@h), i=1,2,..,.N-1,

The coherent matrix

a*

6 =(6,,6,,..,0y), 0<8, <1, (i=0,1,...,N), can be presented in the
following form:

M, 6) = B! (5, 0) A (0)+ B2 (3, 6),

where B! = diagonal (B}, Bi, ..., BY)

(1, i=0,N,
1 4G .
Bgl-:ﬁh—zw, l=1,N'—1,
1 3G
————— =2,3,...,N=-2,
L 12k 05 °

B%(v, ) = diagonal (B3, B3, ..., B}),

0, i=0,N,
2 __ i
B = —iG—, i=1,2,...,N,
dq
G' = G(ih, 6,¢", 8;l,v") (i=1,2,..,N=1),
8y

2 — Dissertationes CLXXXIII W
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1 0 0 0 0
-1 24a -1 0 0
1 —16 30+a -—16 1
0 1 —16 30+a —16
4.5 A(a)= ’
30+a —16 -1
-1 24a -1
0 0 OJ

0 <ax< 36
The inverse matrix A~* (a). The explicit form of A~ (a) = (¥{¥ (n)), where
Y{ (n) is the general solution of the following system of difference equations:

(4.6) yn+4)—16y(n+3)+(30+a)y(n+2)—16y(n+1)+y(n) = du.,
k.n=20,1,...,N,

8.« — the Kronecker’s symbol.
To find Y!?(n) we compute the roots i, (a), 1,(a), A3(a), A4(a) of the
characteristic polynomial

W(a) = (2—@8+./36—a)A+1) (A>—(8~./36—a) A +1),
A (a) = 4(8+/36—a—/96+16 \/36—a—a),
J2(@) = 4(8+/36—a++/96+16 \/36—a—a),
13(a) = $(8—+/36—a—~/96—16 . /36—a—a),
2e(a) = $(8—+/36—a++/96—16 . /36—a—a).

Let us note that 4, (0) = 7~4./3, 1, (0) = 7+4./3,4;(0) = 4,(0) = 1. Thus,
the function

C111+C215+C3n+C4 fOI‘ a=0,

46) Y9n) =
(4.6) (n) {C,l'l"l'cz '5+C3).'5+C411 for 0<a< 36,

is the general solution of the homogeneous equation (4.6). We find the general
solution Y@ (n) of (4.6) in the following form:

(4.7) Y (n) = YO(CY, C%, CF, C%, m+ 32 (),

where y{”(n) is a solution of (4.6) which can be obtained by the method
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variation of the constants C,, C,, C3, C,. We note that

»n—1
z 5t+2.k [t-—n+2+—-—l—— (A‘l+2)',2'.—;|"i '112'&-2)], a=0,

1=0 12 3\/5
n—1 FLy S gt
(x) — 241 _ 1 A1 N
Vi) (n) = < ‘§) [().2—3.1) (As=2A2) (Ag—23)  (A2—=24;) (A3 —4,) (Ag—4y)
+ A3 A5t _ LY ]5
Vo (Ae—A) (R —A) (Aa—23)  (A3—245) (A3 —43) (Ag—43) t+2,k>

0 < a< 36,
for k,n=0,1,2,...,N.
Thus, we have
48) Y®m) =Y™nm, Ck,CY C ChH+y(m), k.n=0,1,..,N.

The constants C%, C%, C4, C%, k = 0,1, ..., N are found from the conditions:

Y9(0) = Sox,
- Y 0)+(2+a) YO ()-Y?(2) = 65,
~YON=-2)+2+a) K (N-1)=Y?(N) = dn- 1
Y (N) = O,

4.9

Hence, for a = 0

é On-1x—0
 _ 1k N=-1,k 91k
R R L S SR

Cg - 5lk—5~—1.k

AT AT, -
1
Ci = N (Bax+Ch+Ch— 60— AY CY — 25 CY),

C: = 50k—'C'{—C§,

D} D
k _ 1 kK _ 72
C‘_D’ & D
D DX
ko 73 ck = %
C3 Da Ds

where A} = Q+a)l—A2—1, A} = 2+a)Af 1 =2 =22,
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1 1 1 1
D= Al A3 A Al
A2 A3 AF ALl
AN A AR
1 1 1 1
Dk — 61.’( Aé Aé Ai
U= oy ety (V) A2 A3 A2
St 2N Ay AY A
1 1 1 1
Dk _ A]i 61'( A% Ai
2 A} SyoixtYP(N) A3 A%
A byt N) Ay A
1 1 1 1
Dk — All. Ai 51k Ai
3 A} A3 Sy_ 1k tYR(N) AR
A A St Af
1 1 1 1
pe_ |4l Al A sy
, A3 A3 AF Sn_, AV N) |
A A A o+ (N

YO (N) = 32 (N -2)—(2+a) y (N= 1)+ y“(N),
XO(N)= -y(N), k=0,1,..,N.
Thus, we have
(4.10) A" a) = (Y2 (n),

The matrix 4 (0) is monotone and normalized with respect to the subspace
S of R spanned by the vectors eq = (1,0,...,0), eys; = (0,0,...,1).
Furthermore (cf. [1])

0<eA ' (0)B el < 3K,

k,n=20,1,...,N.

k=1, N-1,i=0,1,...,N,

{ 1 1 11 {
“h%C 12p 077 12020 B2 )
Thus BA(0) e NMs N Ms. On the other hand, from the assumptions 1°, 2°
if follows that
M(v,0) = B' (v, 6) A(a)+ B*(7, 6) > u(q, s) BA(0).

Hence, we have

where B = diagonal (

M~'(5,8) < — A" (0)B

1
U
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and from Corollary 1.2 we have MMe M and

3
M '(@5,0e] <—h*, k=1,N-1,i=0,1,...,N.
T

A bound error. Let ue C®(0, 1)~ C°[0,1] be a solution of (4.1), (4.2)
and let v be a solution of the finite difference scheme (4.3), (4.4). Then,
we have

f® =b and f(ru) = b+vu,

where ru = (u(0), u(h), ..., u (1)), v = (vp, v, ..., )7,
0, i=0,N,
viw) ={ —G(ih, u(ih), u" (iR)+0;(h?»), i=1,N—1,

—G(ih, u(ih), u" () +0;(h*), i=2,3,...N=2,

O;(W")—0 as fast as h*—=0, a >0, i=1,2,..., N—1.But for certain
0 = (6p,0,,....68),0< 8 <1(i=0,1,...,N)

fu)—f6) = M, 0)z,
where 7 = ryu—5, M(Z,6) = B'(Z, 6) A(0)+B*(Z. §). Hence

ME6)Z=0w. O0=(0,0,,0,,..0y_1,0)

and

Since

3
IM~'Z, 0o < and 0< M;'(Z,0) < 7;&,

1
u
k=1,N-1;i=0,1,..., N, we have

N-2
z; = M1 0, (W) +Mat, Oy (h*)+ ,;2 M1 0;(h%)

and there exists a constant K, > 0 such that
K
(4.11) 2., < —plh“ = Ch*,

where C is a constant.
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ExaMPLE. Let us consider the following boundary value problem:

d*u\? d*u\? d*u
(4.12) (dxz) +p; (%) (W‘) + P, (x) W—a“ = ¢(x),

0<x<l1l,a20,
(4.13) u©) = ap, u(l) = ay.
An approximated solution v of (4.12), (4.13) is found from (4.4; In
this case we have G(x,q,s) = s*+p,(x)s*+p,(x)s—aq. For a = 0, system
(4.4) is solved by Newton’s method

i) — Fm— A~¥(0) B~/ (B) S B,

where B/ (v) = diagonal (Bf, B{, ..., B{),

(1, i=0,N,
1 G
—— i =1,N-1,
Bf ={ h* 05’ '
1 oG
\WF’ l=2,3,...,N—2

Below, we present the results of the computations.

Table 1
pi(x) = pa(x) = 1, ¢(x) = —sin® x+sin? x—sin x,
a=0,09=0.

x u = sinx o™ r?u-b"”"

0.0 0.000000 0.000000 0.000000
0.1 0.099835 0.099833 0.000002
0.2 0.198672 0.198669 0.000003
02 | 0295523 0.295520 0.000003
04 | 0389422 0.389418 0.000004
0.5 0.479430 0.479426 0.000004
0.6 | 0.565647 0.564642 0.000005
0.7 0.644223 0.644218 0.000005
0.8 0.717362 0.717356 0.000006
0.9 0.783333 0.783327 0.000006
1.0 0.841471 0.841471 0.000000

OCLuLLLLLELYLKLLULWKO| I

The error Z = r,u—0 = Ch*, h = 0.1, C = 0.1,
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Table 2

P1(x) = exp (x), py(x) = exp (2x), @(x) = 3 exp (3x).
a=0,7%=0.

-
x |u=exp(x) ptm ryu—gm™

3
-

0.0 1.00000 1.00000 0.00000
0.1 1.10517 1.10518 0.00001
0.2 1.22140 1.22142 0.00002
0.3 1.34986 1.34987 0.00001
04 1.49182 1.49184 0.00002
0.5 1.64872 1.64874 0.00002
0.6 1.82212 1.82214 0.00002
0.7 2.01375 2.01377 0.00002
0.8 2.22554 2.22556 0.00002
0.9 2.45960 245962 0.00002
1.0 2.71828 271828 0.00000

[ 2o W= S o Mo N« N« W= W= N v W

The error £ = r::f—i)’ = Ch*. h=01,C =1,
Table 3

p1(x) = 16 exp (4x), pa(x) = 256 exp (8x). @ (x)
49152 exp (12x), a = 0, '@ = 0.

- hd -
x |u = exp(4x) g™ ryit—p'™ n

0.0 1.00000 1.00000 0.00000 0
0.1 1.49182 1.50287 0.01105 10
0.2 2.22554 2.24444 0.01889 10
0.3 1.32012 3.34673 0.02661 10
04 4.95303 498750 0.03447 10
0.5 7.38906 143161 0.04255 10
0.6 11.02320 11.07420 0.05100 10
0.7 16.44460 16.50455 0.05995 10
0.8 24.53250 24.60170 0.07920 10
0.9 36.59820 36.59820 0.07390 10
10 54.59820 54.59820 0.00000 0

The error 7 = rpu—¢ = Ch* h = 0.1. C = 500.

§ 5. A maximum principle for systems of ordinary
differential equations

Let us consider the following initial value problem (cf. [8]):

@

dt
(5.2) v(0) = ¢,

(5.1) Pv = D(t,v) —A(t,)v=b(), 0<rt<T,
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where v = (01, 02,..., 07, b = (b4, b%, ..., B"), ¢ = (¢}, %, ..., M), D = di-
agonal (D', D?,...,D"), A =(4,), i,j=1,2,..,N.

We assume that the entries of the given matrices A (¢, v), D(t, v) and
the vector b(t) are real functions in [0, T]x R" and [0, T], respectively.
Furthermore, we assume that problem (1), (2) has a continuous solution
v(¢) in [0, T].

DerFiniTION 5.1 An operator P of form (5.1) satisfies the maximum
principle with respect to a subspace S of the space R" (in symbols Pe ;)
if and only if for any b, ¢ every continuous solution v(t) of the problem

(5.3) D(t, v)—j— = A(t,0)v+Psb(t), 0<t<T,

(5.4) v(0) = c,

satisfies the following inequality:

(5.5) lvll < max {le|y, [|Psbll, | Psvl},
— l —

where ||, = max Il vl = max max. [v*(2)].

An application of this principle to an approximation of parabolic
equations by the method of lines is presented in [9].

THEOREM 5.1. Let veC°[0, T1NC* (0, T] be a solution of (5.3), (5.4).
If the following conditions are satisfied:

I° the matrix A(t,v) is of positive type for (t,v)eQ = [0, T]x R",
2 Y Apt,v) =1 for kels = {i: ¢,e8S}, (t,v)eR,
%

3* D*(t,v) < O for k¢ls, (t,v)eQ,
then

lol < max {iclo, IPsbll; [Pso(T)|x}-

Proof Let t;,t;,...,ty be points of the interval [0, T] satisfying the
relations

((p) — i
v {8) ofier (&)
and let
p = i
vP(t,) max v ().
Now we show that
(5.6) v (t,) < max {lc|y, |Psbl, |[Psv(T)o}-

Ift, = 0 or v”(¢,) < 0, then inequality (5.6) is satisfied. Thus, let 0 < t,<T
and vP(t,) > 0. From assumption 1° and the definition of the pomt t it
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follows that

N
(B.7) vP(t,) ;;1 Aytp,v(t) < Y Ayt v(e) v (2,)

J=1
dvP (t
D?(t,, v(t,)) dE‘ ») for pé¢ls,
- dv?
—bP(t,)+DP(t,, v(t,) dz(*tp) for pels,
< {0 for péls,
h =b?(t,) for pels, t,<T

Hence we have inequality (5.6) or p¢ls and p¢J(A(tp, v(tp)). However,
for p¢J (A (t,, v(t,,))) there exists jeJ (A (t,s v(tp))), (from the assumption 1°)
and a sequence of non-zero elements of A4 of the form

A'pkl (tpa v(tp)')t Aklk;_ (tps v(tp))s vrey Ak,.j (tpa 1% (tp))'

Also, for pels from (5.7) if follows that v”(t,) = v*1(t; ) and we can take
tyy = tp. In this way we obtain

(5.8) () =0 (t,) = v (,) = =0, = v,
Thus, from the assumption 2° and inequality (5.7) it follows that
P (t,) < max {|clo, | Psbll, |Psv(T)lx}

Since the function w(t) = —v(t) satisfies the following Cauchy problem:
d
D(t, —w)—- = A(t, —w)w-+Ps(=b(1),

w0 = —c,
therefore by (5.7) we find
—v'(t,) = min min ¢'(t) = max max w'(f) < max {|c|w, [|Psbl, (Psv(T))}

and this ends the proof.

An estimation of a solution v in space RY by all components of the
vectors b, ¢ will be called an extension of the maximum principle. This
principle we formulate as follows:

DEFINITION 5.2, An operator P of form (5.1) satisfies a maximum principle
as an g priori estimation with respect to a subspace S of the space R"
and with respect to a constant K (in symbols PeMs(K)) if and only if
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for any b, ¢ every continuous solution v(t) of (5.1), (5.2) satisfies the following
inequality:

(59) loll < max {|Pscle, |Psvll, [Psb|}+K max {|(E—Ps)cle, [(E—Ps)bl|},

where E is the unit matrix.
THEOREM 5.2. Let ve C! (0, T] A C°[0, T] be a solution of (5.1), (5.2)

and let
B(tls [2y ey tN) = (Al'f(tl" U(t.')))

for any ti,t5,....ty€[0, T). If the matrix B(ty,t,,...,ty) is monotone (cf.
[18]) for any t,,t;,....ty and if the following conditions hold:

100 B(tl'! t2! (ERS] tN)£ ; PSéa é = (ls 1, ey l)T:

2° there exists a vector ae RY such that

B(tl, tz, s tN)a (E PS){

3 Di(t,v)<0,i=1,2,...,N,

4° |AQ©, ¢)clo € |Clw,
then

vl < max {|[Ps A0, ¢)c|w, [Psb]}+

+ |loe]| max {|(E—Ps) A (0, ¢)c|o. |(E— Ps)b|}

and by condition 4*° we have PeMs(||x)).

Proof. Let g = F\{+F,a, where F, = max {|PsA(0, ¢)c|,, |Psh]},
F; = max {|(E—Ps)A(0, ¢)cly, (E—Ps)b|}. From equation (5.1) it follows
that

d
(510)  A@Fv) = AgTDtb=F, A¢+p2AaiD%§’-ib.

Let t],t7,...,ty be points of the interval [0, T] satisfying the following
relations:

v'(t") = max v'(2),
v (t7) = min o' (8),

and let w* = (o' (t§), 2 (t3), ..., V" (t})).
If (tF)e(0, T, then from (5 10) we have

e.B¥ (gFW) = Fye Psé+Fye(E—Pg) DI d“‘ ) 1 b >

Il tf =0, then from 1° and 2° we have

e; B (gFwh) > 2 FreiPs&+F,e;(E—Ps)éFe; A0, c)c >
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Since the matrix B is monotone, we have
gFvif)=0, i=1,2,..,N.

Hence we have |v]] < [lg|l. On the other hand, |g|| € F,+ ||| F,. Thus
we obtain the following estimation:

o]l < max {|[PsA (0, c)cla, |IPsbl}+
+ fle]| max {{(E—~ Ps) A(0, ¢)clw, |(E—Ps)bll}
and this ends the proof.

§ 6. The method of lines for nonlinear parabolic equations
which can be degenerated to elliptic equations

Using the maximum principle for systems of ordinary differential
equations, we prove the convergence of the method of lines for nonlinear
parabolic equations which can be degenerated to elliptic equations.

Let us consider the following Fourier problem, (cf. [9]):

2
(6.1) k(:,x)a—': = G(t,x,u,u,,u,), xeD?,0<t<T,
6.2) u0,x) = ¥(x), xeD?,
(6.3) u(t,x) = 0, xedD?, 0 <t < T,

where DP = {x = (x;,X3,...,%,): 0 < x; <1, i=1,2,...,p}, ODP — the
boundary of DP, u = u(t,x), uy = (Ux,, Usys s u,p), Ups = (Uxyxys Uxgegs oo
ey “xpx,,)-

Assumptions. 1 The function G(t,x,q,r,s), r=(F;,rz,...,1p), §=
(5152, ..., Sp) is defined in [0, T]x D? x R?**! and continuously deflerentiable
with respect to variables g, ry,...,7p, 51, ..., 5,

oG(t,x,q,r,s) <
oq

The functions k(t, x) = 0, ¢ (x) are given in [0, T]x D? and DP, respectively.
2° There exist functions y,(q,r,s) > 0, L;(q,r, s) and constants K; > 0

(i=1,2,...,p) such that '
oG(t,x,q,r,s)

('Jsi
oG(t,x,q,r,s)

(7}‘,

0 for (t,x,q,r s)e[0, T]x D?x R?*?*!

= wilq.r,9),

< Li(q,r,s),
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Li(q: r, S) s Kiﬂf(q, r,s),
for (t,x,q,r,s)e[0, TIxDPx R*?*! i =1,2,...,p

An approximation of the Fourier problem. We approximate the (6.1),
(6.2), (6.3) by the following system of ordinary equations:

dy™®
dt

m(i)

=" ihedQ,, 0<t<T,

(6.4) k(t, in) = G(t, ih, v, 4", AVY), iheQ,, 0<t< T,

o™ (0) = ¢ (ih), ihefly,

where ¥ = (v*, v?, ..., oM)T, v™® = p(¢, ih), the index m(i) follows from the
lexicographical ordering of points of the net ©, and N is the number of
points of Q,.

Let u(t, x) be a solution of (6.1), (6.2), (6.3) four times continuously
differentiable with respect to variables x,, x,, ..., x, and twice continuously
differentiable with respect to the variable ¢ and let 5(t) = (v' (2), v2(2), ..., o™)7
be a continuous solution in [0, T] of (6.4).

THEOREM 6.1. If hnax < min (1/K)), then there exists a constant Ko, > 0
such that

[u(t, ih)—v™9() < Kqexp (p) b, ihe,, te[0,T],

where a constant Ky is independent of h,

y = miin (Li+/ B +2m) i,

h < 1
w = max mm X

Furthermore, if there exists a constant p, > 0 such that p;(q,r,s) = yo,
(q,r,s)eR*P*Y (i =1,2,...,p), then v™™(t) > u(t,ih) as fast as hZun —0.
Proof. From the regularity of u(t, x) and G(t, x, g, 7, s) it follows that

d m(i) .
—_— u = um(l), iheaﬂ;,, tE(O, T]!
dt
m{i) -
(6.5) k(t, ih) = G(t, ih,u™®, Jum, AVy")+wm® (h),
ihEQh, IE(O, T])
u™@(0) = 0,

where u™ = y(t, i), W(h) = (w'(h), w(h), ..., w" (h))T - 0 as fast as h%,, -0,
= (Ny+1)(Ny+1),...,(N,+1).
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From (6.4) and (6.5) it follows that
— d (" _ ymt)
b —— ) om0 heoQ,, te(0, T,
d (U™ — ym) _
(6.6) k(t,ih) I = G(t, ih, u™", JumD, AVy" D) —
—G(t, ik, v, A0™0 AV"D) W™D (h),
iheQ,, te(0, T],
um(0)—=v™P(0) = 0, iheQ,.
Substituting in (6.6)
G(t, ih, w™®, AumD AVPU™D)—G(t, ih, v™P, o™, AFp™D)
oG .
= . G W™ -, jheQ,,te(0, T],
m

we can write system (6.6) in the following form:
dz

Z(0) =0,

29

where 7(t) = (2! (1), 22(2), ..., 2 (®)", z™O(t) = w"@(t)—v"¥ (1), D = diagonal

(D1’D13 very DN)!
B () = -1 for ihedQ,, te[0, T],
mi\*) = —k(t,ih) for ihe&y, tel0, T],
a matrix A(t,2) = (Au(t, 7)),
P 1 989G oG
2 - ’
I=Zl h[z 0sf 5q
1 0G'_ 1 oG
W os, | 2m or

r

k = m(i), ithek,,

k=m@FN,+1)...(N:+1),
| =1,2,....p, ihe @,

Ami = < —

U1, k= m(), ihed®,,
the remaining elements of A are equal to zero.

Let us observe that the matrix A is of positive type and satisfies the

assumptions of Theorem 5.2 for the vector & = (ay, a5 ... oax)7,
— {exp('y)—(l-}-yhl)j, ]= 1a2’--': Nl,

P loyenys J= (N D, (N1 +2), N,

(cf. the prove of (3.10)).
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Since Z(0) = 0, from Theorem 5.2 it follows that

“E“ S KO exp (}') hlznax .

Hence for (g, r.s) = g, (i = 1,2,...,p), (g, 7,5)eR?***! we have Z(t) =0
as fast as hZ,, — 0. Thus the theorem is proved.

§ 7. A geometrical interpretation of a maximum principle for
a system of difference equations

1. Let Q = E" denote a domain consisting of a finite number of paral-
lepipeds with edges parallel to the hyperplanes x; =0, s = 1,2,...,n. Let
us introduce the net @, = {ih = (i, hy, iz ha, ..., inhy)€Q}, where i = (iy, iz, ...
., i,) is a set of integers, h = (hyhy, ..., 1), B, >0, s=1,2,...,n, 0
= 0QuU. Q — denotes the boundary of the domain . We shall call

two points jh, kh, j= (j1,j2,---2Ju)» k = (ki ks,..., k;), adjacent if
n
Y |ks—jl = 1. Then, an internal point of the net Q, may by defined as
s=1

a point ithe Q2 whose adjacent points all belong to 2. The set of internal
points of the net £, will be denoted by ,. Let w; = (o}, @?, ..., of)€ E*
be a vector-function defined on the net £, and let Q, = E? denote the set
of values of the vector-function w. Below, we shall consider the difference
analogue of the maximum principle in the following sense:

DerFINITION 7,1, We shall say that the vector-function w satisfies the
maximum principle if for every point w;ef2, — such that there exists
a hyperplane /, supporting the set 2, at the point w; — the inverse image
of w; belongs to the boundary 8%, of the net £,.

DEFINITION 7.2. We shall say that the vector-function w satisfies the
maximum principle if the function R = (w, w)!/? attains its maximum on
the boundary 9%, of the net Q,.

The above definitions are not equivalent since if the function w satisfies
the condition of Definition 7.1 it also satisfies the condition from Definition
7.2 but not conversely, in general.

In paper [7] the maximum principle in the sense of Definition 1 is
studied for certain systems of differential equations of form (7.1). In papers
(5], [11], [13] and [14] the maximum principle in the sense of Definition
7.2 is also considered for systems of differential equations of form (7.1). In
the case A*(x) = a*(x) E, (a*(x) > 0,5 = 1, 2, ..., E — denotes the unit matrix)
in paper [10] the maximum principle in the sense of Definition 7.1 is
considered for any system of difference equations of form (7.2).



§ 7. A geometrical interpretation of a maximum principle 3

2. Let us consider the following system of equations:

0

uoo& L Ou
52 + s;l B*(x)

+C(x)u = F(x),

(7.1) Lu(x) = Zn:l A% (x) Em

where x = (x;,X%3,..., X)€8Q, u= (uy,u,...,u)", F=(Fy,F,y,...,F),
AT — denotes the transposed matrix A4, A5, B*, s =1,2,...,n, and C are
matrices of the dimension p x p.

We introduce the following assumptions:

A. We assume that A°(x), B*(x), s=1,2,...,n,C(x) and F(x) are
bounded in the Q. Furthermore, we assume that the matrix B(x) is the
product of some function b*(x) and the unit matrix E.

B. We assume that for any fixed unit vector a = (a,, a,, ..., a,) and an
arbitrary vector n = (11, 732,...,7,) the following inequalities are satisfied:

aCu 20, (ad*n)(an) = K,(an)*,

where the constants K, > 0, s = 1, 2,...,n are independent of the vector .
3. Now, we shall deal with the following approximation of system (7.1):

(7.2) Lyvy= Y A4,V,0+ Y Bid,v+Civ; = Fy,
s=1 s=1

where iheQ,, v; = v(ih), 4,9, = (vf+l_vi)/h.n Vevy = (Ui_v?-l)/hsa A—s =
A+ V)2, i1 = v(iyhy, iz hyy .o, (5 F )by, ..., iy hy),
Let v; be a solution of system (2) for F = 0. We shall prove the following,
THEOREM 7.1. If assumptions A and B are satisfied and if for some i° there
exists a hyperplane 1o supporting the set Q, at v, such that at least one
of the points ij; ', s=1,2,...,n, does not lie on the hyperplane l,, then the

inverse image of the point v, belongs to the boundary 0Q, of the net Q,.

Proof. Let us suppose that the inverse image of the point v, belongs
to the net Q,. Suppose that the unit vector a | [, has inward direction
to Q,. Multiplying both sides of the kth equation, k = 1, 2, ..., p, of system
(7.2) by the kth component of the vector and taking the sum of all the
equations, we obtain the following equation:

(7.3) aLyv; = Y adiA,Vyu+ Y aBid,vi+aCv; = 0.
s=1

s=1

Let us substitute

A,V 0 = (@] + i)k, Ay = (0] —wfT1)/2h,
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where wf*! = {71 -y, in to equation (7.3)
1

n n

—_ s+ 1 5= 1
(74) aL;, v = s=zl h2 (CU + w; s=l 2h

(it —wi™ )+ aCv, = 0.

. . T
Since poelo and at least one of the points vy , s = 1,2,...,n, does not

lie on the hyperplane o, we have awf ' > 0 and Z awls * > 0. From the

assumptions A and B it follows that
ad} o s” > Koawi ', aBhwls ' = bfoacuﬂ1 aCov, = 0.

Then at the point i° he Q, we obtain

o (K b‘ s+ 1 bso s—1
(75) aL,, Dlo = SZI h,sz 2h + Z hz 2h W0 +aC‘oUl.0.

For sufficiently small h; inequality (7.5) implies the inequality al,v; > 0,
which contradicts the assumption L,v; = 0. Then i®h¢Q, and i°he0Q,,
which ends the proof.

Theorem 1 implies the following

THEOREM 7.2, If the matrix C is non-positive and the matrices A°, B’
s = 1,2, ..., n, satisfy the assumptions A and B, then the function R = (v, v)'/2
attains its maximum on the boundary 8Q, of the net .

Proof. Let us suppose that v, is not constant function and R, = max R;.
Then there exists a hyperplane /, supporting the set Q,, at thc point v,
Furthermore R, > 0 and at least one of the points v" 1 s=1,2,. ,n,
does not lie on the hyperplane /. For a = —v,o/Rp wc have

acl.o vso = - V.o C{O U‘O ? 0.

R, ¢

Hence the assumptions of Theorem 1 hold and therefore i°h belongs to
dQ,. For v, = constant this theorem is obvious. This ends the proof.
ExAMPLE. Let us consider the following system:

*u 0%u
7.6 Al A? =0,
(7:6) ox? * ox3

where u = (ug, uy), A' = E, A* = (@rdrs=1,2., 811 = G2 = 0,355 = a3y = 1.
It is easily seen that the vector a = (ay, a,) has to satisfy, for every n = (14, 1),
the inequalities ad'nan > K, (an?), aA2nan > K, (an?) in order to fulfil the

assumption B. Since for a; = a, = -l_-l/\/f
ad'nan = (an*), ad’nan = (an®),
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the vector a = (il/\/i , j—_l/ﬁ) satisfies the assumption B. Let v, be
a solution of the difference equations

(77) A1A1 Vl v‘+AZA_7_Vzvl=O for ihEQ,,.

From Theorem 2 it follows that if the function R = (v,v)'/? attains its

maximum equal to R0 in the direction of the vector a = (;tl/ﬁ, il/\ﬁ),
then iyh belongs to 09Q,.

§ 8. A strong maximum principle for an elliptic system
of nonlinear equations

1. W.J. Skorobogatko [7] proved the maximum principle for a system
of two differential equations of the Monge-Ampere type. Here we extend
this result and present a difference analogue of the' maximum principle for
the system of equations of form (8.1) (cf. [11]). We give certain sufficient
conditions for the strong maximum principle. Other sufficient conditions
for this principle and for non-linear of equations are presented in article
by R. M. Redheffer [4] and in the monograph by W. Walter [15].

Let D, = R* be a bounded domain and let

Q= {(x: Ty Ses txx); X = (xI!xZS“"x'I)EDn; r= (rlarla-“’rp)EDp;
s, = (si,s%, ..., s,‘,,s%,s%,...,s,’,,...,s;)eD,,p;

tee = (15 t15 01 631, 632 L 83" L 88 L ) € Dy}

Let us consider the following system of equations:

Bl Y A (x, u iy, ) O
. k=1 o 1 fhes Hhex ox axk
+ (x u ul’ XI) a +C(x u ux’ uxx)u
i=1 Xq

P
[F™ (x, u, thy, U 0%+ Y. CF(x, 1, Uy, ) uwl¥],
v=1

where

u=[uy, g, .o, ,]7, = [v¥, v, ..., v¥]7,

*u, *u  Pu, Oy )
ox} oOxg  Ox;0x, Ox;0x,

3 — Dissertationes CLXXXI!I
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and A, B!, C, F"*, G are matrices of the dimension p x p, AT is the transposed
matrix to A4.

Assumptions. 1° The coefficients of the system of equations (8.1) are
continuous in £.

2 A% (x, u, Uy, Uy,) = ay(x, u, ug, u,) E, where E is the unit matrix, and
A = (a,) is a matrix symmetric and positive defined in Q.

3 The matrices F*,G*,i,k=1,2,...,n, v=1,2,...,p, satisly the
following conditions: F*(x,u, u., u,,) = f*(x,u, u,, u.,)E, the function
S*(x, u, u,, u,,) < 0for (x,u,u,,u,)eR,and G*(x, u, u,, u,.) are asymmetric
matrices i,k =1,2,...,n, v.=1,2,...,p.

Let u(x) be a smooth solution of system (8.1) in D,,

R(x) = (uf (x)+ud (x)+...+u2 (x))'/2,

and let e(x) be the unit vector in direction of the vector u(x).
We introduce the following notations:
de

ﬂ0=e(X), :u'i=a—x" i = 1,2a-",na

Z (“—1”‘ l'll E] luk)’

ik=0

where 4% = C, A% = } B, 4% = (49, 4% = — A% | k= 1,2,...,h Now,
we prove the following

THEOREM 8.1. If the function R(x) attains its maximum at the point x°eD,
and in a neighbourhood K of the point _x° the function & is not greater
than 0, then R(x) = R(x°) for every xeD,.

Proof. Substituting u(x) = e(x) R(x) for R(x) # 0 in (8.1), we have

z N de OR
8.2 e———+ Ble+2 — |+—
¢2 u:zl am ax1a Xk i=zi|: ‘ kz1 i aka+ 0x; +
[ n " az e
+| Ce+ Bi — 4 a R
t=21 axi -kz 1 * axiaxi]

n p
= Y [F**+R ¥ G*ew*
Lk=1 v=1

Multiplying both sides of the /th equation, I = 1,2,...,p, of system (8.2)
by the Ith component of the vector e(x) and taking the sum of all the
equations, we obtain the following equation:
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*R
Bxi 6xk

. de " d%e
Ce, B e
+[( e, e)+ f§1 ( ~ e)+ ”;1 a (e oo, )] R

n P
= L S [t T (@],
R k=1 yv=1

" i oR
(8.3) Y, an + Y, (Be,e)—+
Lk=1 { 0x;

=1

Now, we use the following relations:

8.4) Te ). ( f i k=12
(' €, axiax‘ - ax‘$ axk or l’ = 1l,4,...,n.

In the neighbourhood K of the point x° we have
" 3R
ik=1 6x,- ax,,

(8.5)

l{lk $0, (Ai,lz,...,ln)ERﬂ.

Inequality (8.5) implies the following inequality:

¢y ( A PR
8.6 U 2 <0,
(8.6) i.kz=l .-;1 0x; 3xk) g
for xeK and (44, A;, ..., 4,)€R". From inequality (8.6) we have
P PPy L4 0% u,
:;1 Ye 6x,2 s=1 U 6x1 (3xk
8.7 ) 5 , 52 <0,
Uy Us
3;1 “ 6x‘ ax,‘ 5121 “s 8x§

for xeK,i,k = 1,2,...,n. From assumption 3° and inequality (8.7) it follow
that the right side of equation (8.3) is not negative. So, we have
d*R " OR

8.8 S g + 55 R oR >
(8.8) L gt L PGt OR >0,

for xe K, where b' = (B'e, e). Let Dpx be a set of points xeD, in whic
the function R(x) attains its maximum R(x®) # 0. The set Dmx is close
Let X € Smax, Where Smax denotes the boundary of Dmex. Let us take & >
so small that in the sphere K(X,¢) = D, the assumptions of the theorer
are satisfied. Then, inequality (8.8) implies the following inequality:

n 2 n
8.9) )) o°R b‘—(2

ay———— =0, xeK(x,e).
Lk=1 ! 6x,6xi i=1 6x,
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So, the function R(x) satisfies the assumptions of the strong maximum
principle (cf. E. Hopf [2]) in K (X, &) and R(x) = R(x°) for xe K (X, €). Thus,
we conclude that Dmex = D,. For R(x%) = 0, we havc R(x) =0 in D,. The
end of the proof.

Remark 8.1. The condition & < 0 (cf. [11]) is satisfied if (C2,u)
> —p(u,u) for (x,u,uy, u,)eR, where pu is a sufficiently large number.

2. A difference analogue of the maximum principle. Let D, < R" be a domain
consisting of a finite number of, parallelepipeds with edges parallel to the
hyperplanes of the coordinate system. Below, we consider a difference scheme
which approximates the following system of equations:

n 2

! o}
(810) Z as(x’u'ux’ulx) 2 + Z Bs(x,u:uxvuxx) ! +C(xsusux! uxx)u
s=1 a s s=1 5xs

- LA

G (x, U, Uy, Uxx) UWS

llM'u

We assume that the coefficients of system (8.10) satisfy the conditions 1°, 2°, 3°
Let ih = (iy hy, iy hy, ..., I, h,), Where i = (i1, i5,...,1,) is a set of integers,
h=(h,hy,....,h), he >0, s =1,2,...,n. We introduce D% = {iheD,} (D,
denotes the closure of the domain D,). We shall call two points jh, kh,

J=U1szs--sjn)s k= (ky,kq,..., k,), adjacent if ) [ji;—kJ = 1. Then an
s=1

internal point of the net D! may be defined as a point iheD, whose
adjacent points all belong to D,. The set of internal points of the net
D!, we denote by D!. The set S' = D!—D! is the boundary of the net
D!. The value of the function v at the point ik is denoted by wv;. The
system of equations (8.10) is approximated by the following difference
scheme

n n _ n 14
(8.11) Y @V oo+ Y BiAn+Co= Y Y Gudw,
s=1 s=1 Ls=1v=1

where ihe D!,

s+ 1 . s—1
— U Uy —U;
—, Vv, = ——,
h P hg
A,v; = 3 (4, +Vv;, 6 th = VA, wy VIAIW (VsAJW?‘)z,
U?+1 = U(il hl,izhz, ...,(is:Fl)hs,..., i"hn).

It is convenient to introduce the following denotations:
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AR = AR = 3C, Al = AR =3B, AP = AT = 1B,
At = AM = YgkES,, (8, =0 for I # k and 8, = 1 for I = k).
ple = pi- = e for Ry#0, pl =pf =0 for Ry=0,

e = d,e;, p_ =V, s=1,2,...,n.

n n
O = Y (Ah e, ph), 07 = ¥ (A, k).
Lk=0 Lk=0

Now, we prove the following

THEOREM 8.2. If the function R; attains its maximum at a point {° he D!
and &5+ Do < 0, then R; = const in D},

Proof. Let us perform the following substitutions into system (8.11):

sti = Zx(elR!) = é(e?+1A:Ri+RiAsei+ef_1 ViR;+R;Ve),
VSASU,- = VsAs(e,-R,-) = & VsdsRi+AseiAsRl+ VSEf VSR5+R" VsAse,.

(8.12) z ea; V. AR+
s=1

=

+ Y [a(d,e;4,R;+V.e,V R, +4B(ef** A, R +ei™ 'V, R)]+
1

s

| sl
Gﬁi U‘ 53 W\.( .

b=
M=

Is=1v=1

+[Ciei+3 Y. Bi(4dse,+V,e)+ Y astAset] R, =
s=1 s=1

Multiplying both sides of the Ith equation, /| = 1,2, ...,p of system (8.12)
by the /th component of the vector e; and taking the sum of all the equations,

we obtain the following equation:

8.13) Y aiP AR+ Y b4, R+ Y BiV R+
s=1 s=1

s=1

+[(Crepy e)+3 Y (Bidce;, e)+% Y (BiVe,e)+ Z aj (e, Vs 4 el)] R; =0,
s=1 s=1 s=1

where

s s+ 1

bi = aj(e, 4,¢)+3(Bjei™ ", e),
Ef = a?(eis Vsel)'*'%(B?ei—la el):
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for iheD!, s =1,2,...,n. Using the identity (e, ¢) = 1, we obtain the
following equation:

n n n
8.14) Y aiV. 4, R+ Y biA, R+ ¥ BiV,R+
s=1 s=1

s=1

+[(C;e,, e)+% Z (Bi 4 e, e)+% 21 (Bi Ve, e)—

s=1 =

—3 Z a(4,e;, 4,e) Z ai(V.e:, Vse)] R, = 0.

So, we have

H bs as bs
8.15) L,R, = z (:; W )R’“-{- )) (h; . )Rs L4

h, h, B2

+Z

s=1

(b bi 2“S)R[+(¢++¢i)R_o ihe D!,

Let

Dk, = {iheD?: maxR = Rj}
JheD

and let D, # D"; we have R # const. Then there exists such a point jhe D!,
that, at least at one point kheD! adjacent to point jh, R, < R;. Now,
we introduce the following sets:

S={1,2,...,n},

3 bs
s ={ es: %+— 0},

- aj b;
S( = { : h: hs > 0}1

From equation (8.15) we obtain the following estimation:

a;, b a, bl
8.16) L,R, < R-[ ( ,+_,)+ (_f__1)+
n £y j se% R h, sg_ h?  h,
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N Z& (Bjdse), e)+3 ), (BjV,e;, e)—
SE seS

-% ZS a;(As €, As ej)—% ZS aj(Vseja Vsej)J

_ _9 1
= Rj{ Z . [ h (9}, Asej) 2,18

S

(Bj es+ 1 ej)

SES—SJ s ,2
+'£'(B5Asej, ej)_%a;(ASEJ, Ase])]+
s aj
+ Z —3 (eji % ej)+ (.B . ej)_ 5 +
- h, h
SES—Sj S
+3(B5V,e;, e)~1a}(V,e, V,e,)]-!—(CjeJ,e})-f-
+3 Y [(Bjdse;, e)—aj(d,ey, A,e)]+

4
seS i

+'£ Z [(Bj Vsej) ej)—a‘}(Vsej, Vsej)j}

SESJ_

K, o

a
‘~<~ R}{ Z [?j‘(dsej, Asej)l,z'l""h__ hz +
S s

srs.S‘—.S‘jF s

+ Ks (As E’j, As ej)llz - %aj(As eja As ej):l +

aj K
+ z |:h (Vse.ls Vsej)llz'*"h_s—

seS—Sj

as

J
+
h

+K (Pye;, Vie) P —4ai(P, e, V,ej)J+Ko+

+ Z [Ks(Aseja Asej)llz_%aj(ds

sssf

+ Z [Ks(Vseja Vsej)llz_%aj(vs

seSJ'_
where K, = nsup sup [C¥|, K, = sup sup |B¥|.
Lk iheph Lk ipeplt

lowing set of auxiliary functions:

aj aj K, a
Gi(t) = | K,+— Jt—— 124 ———-,
i) ( s+ hs) ™

€j, Asej)]'l‘

ej’ I7s ej)]} *

Let us consider the fol-

a
Hi(0) = K,c—T‘zZ.
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Thus, estimation (8.16) implies the inequality
(817) LhRj < R}[ Z Grsnnx‘f‘ Z Gf:mx"i" Z H:'mx_ Z Hrsnux +Ko]

ses — Sf S-S seS; seS;
where
s s ai K, 2K;
Ol = _ 0, G0 = =9t T
K
- S(4) = o5
oo = _ e, Hj0 =
For sufficiently small 7 and S* % S or S~ # S from (8.17) we have
(8.18) L,R; < 0.
On the other hand, we have the equality
(8.19) L,R; =0,

which contradicts (8.18). Thus, we have D!, = D! and R, = const in D,
For §* = §~ = § equation (8.15) implies the inequality
(8.20) L,R; < (8] +®])R, <0,

which also contradicts (8.18). The end of the proof.
Remark 8.2 The condition &}+® <0 is satisfied if (C;1;.r;)
= —u(v;, v;) where u > Knfda, K = max K,, a = inf igf a(x,r, s, t..)
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