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1. Introduction. A rooted tree is a partially ordered set (W, <) such
that W has a least element w, and whenever a, b, ceW with a < ¢ and
b < ¢, then either a < b or b < a. The objective of this paper is to introduce
a semigroup of order-preserving partial transformations defined on a tree
W and to investigate the structure and properties of this semigroup.
In particular, information about trees is obtained via information about
the associated semigroup. Since rooted trees appear in such diverse areas
of mathematics as algebraic linguistics [6], foundations [1], graph theory
[2], and semigroups [7], there are several interpretations and applications
of our results.

Recall that a subsequence, finite or infinite, of a real-valued sequence
on a well-ordered set (W, <) is a function s: W — W such that s(z) < s(y)
whenever x <y in W. A generalized (real-valued) sequence f is a function
from a partially ordered set (W, <) with the least element w, to the real
numbers such that the domain of f is a totally ordered lower segment
of W. Further, a generalized subsequence, finite or infinite, of f is just
a strictly increasing function b: W — W such that the domain of b is
also a lower segment of W. A second Interpretation of this paper is the
study of the algebraic properties of generalized subsequences defined
on trees. From this point of view, the results form an extension and a
generalization of the work of Goetz [5] on real sequences defined on the
positive integers N and subsequences with domains either N or initial
segments of N. '

There is also a connection of the present work with the work [8]
of Reilly, in which semigroups of order-preserving partial transforma-
tions on totally ordered sets are investigated. Reilly’s semigroup is con-
tained in ours and, in fact, is characterized as the subsemigroup of regular
elements of our semigroup. We note that Reilly found his semigroup
useful in extending certain results on transformation groups. We hope
that the same is true of the semigroup introduced here and intend to study
these relationships in a subsequent paper.
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A brief summary is now given. In Section 2, some basic definitions
are presented and the semigroup of generalized subsequences S(W),
equivalently, the semigroup of order-preserving partial endomorphisms
of a tree W is introduced. Algebraic properties of S(W) are investigated
in the third section. In Section 4 we show that the semigroup S(W) char-
acterizes the tree W up to isomorphism. In the next section we return
to the properties of S(W) and, in particular, to order properties. The
main result here is Proposition 5.5 which shows that if the tree W has
an additional property, then the semigroup S(W) can be faithfully
represented as a semigroup of endomorphisms of a certain semilattice.
In the final section we investigate the problem of obtaining an abstract
characterization of S(W). We find necessary and sufficient conditions
on a semigroup 8 such that 8§ is isomorphic to a certain subsemigroup
of S(W) for some tree W.

2. Definitions and basic results. Let W = (W, <) be partially ordered
set, henceforth called poset, with the least element w,. An ideal of W
is a subset Y of W such that if ye Y and z <y, then ze¢Y. If 8 is any
subset of W, the ideal generated by S is the set {weW | & < y for some y eS8}
and is denoted by 8]. In particular, @ = @]. The ideal {z|z < y} gen-
erated by the singleton {y} is called the principal ideal generated by y and
i3 denoted by y].

Convention. In this paper, all posets will contain a least element.

A poset (W, <) is said to be well-ordered by < if every non-empty
subset of W has a least element. (W, <) is said to be totally ordered by <
if, for x, yeW, either 2 <y or y < 2. When we say W is a well-ordered
(totally ordered) set, we always mean it is well-ordered (totally ordered)
by the given ordering. (Note that each well-ordered set is totally or-
dered.)

A poset (W, <) is called a tree if every principal ideal of W is totally
ordered. W is said to be a strong tree if every principal ideal of W is well-
-ordered. It is clear that a strong tree is a tree but not conversely. In
the case of finite sets the two concepts do agree. There is also the fol-
lowing relationship which points out that on strong trees well-ordering
and total ordering agree:

ProposiTION 2.1. Let (W, <) be a poset. W is well-ordered if and
only if W is a strong tree and W is totally ordered.

Proof. Suppose A is a non-empty subset of W. For aed, Ana] # O,
and since Ana] < a], Ana] has a least element, say a,. But since all
elements of A are comparable to a, a, is the least element of A.

Recall from graph theory (see [2]) that a tree is a connected (finite)
graph without cycles, and a graph is directed provided one specifies for
each edge the beginning and terminating vertex. A path n in a directed
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graph V is a sequence of vertices v,, ..., v,, such that (v;, v;,,) is an edge
for each 4, 1 < ¢ << m. In this case = is said to start at v, and end at v,,.
A directed tree is said to be rooted if there is a unique vertex v, (called
the root) such that, for any vertex » (v # v,), there is a unique path = (v,, v)
starting at v, and ending at v. An order relation < is defined on V by
v, < v, if there exists a path from v, to v,. Since V has no cycles, < is
a partial order on V and the root v, is the least element. For veV, the
uniqueness of the path =n(v,, v) implies that the set of vertices of this
path is the principal ideal v]. It is clear that if v,, v,ev], then v, < v,
or v, < v,, and so we have a tree as defined above in terms of the order
relation.

We note that a tree is sometimes defined as a poset (P, <) such
that whenever a < ¢ and b < ¢, a, b, ceP, then. either a < b or b<a [7].
This is again equivalent with our original definition under the standing
hypothesis that all posets have a least element. With this convention,
our trees are “rooted”.

For a set K, P(K) denotes the semigroup of partial transformations
on K under the operation of function composition. For ae¢P(K), A(a)
denotes the domain of the transformation a, and V' (a) denotes the range.

Let W be a tree (strong tree) and define S(W) to be the collection
of aeP(W) such that

(Di) A(a) is a totally ordered (well ordered) ideal of W;
(Dii) for x,yed(a), if x <y, then a(x) < a(y).
Since S(W) < P(W), for a,beS(W) we have

A(ab) = {xeW|zeA(b) and b(x)ed(a)} = A(b).

From this it is easy to see that A(ab) is a totally ordered (or well-
-ordered) ideal of W, and # < y in A(ab) implies ab(z) < ab(y). Therefore,
S(W) is a semigroup. Since the empty set is considered as a well-ordered
ideal, the empty map is a two-sided zero for S(W).

If W is a strong tree, then the elements of S(W) are called generalized
subsequences; for, when W is the well-ordered set of positive integers,
S(W) is the semigroup studied by Goetz [5]. For aeS(W), W a strong
tree, it may be the case that x and a(x) are not comparable (zea(a)).
However, if they are comparable, then, as is the case for subsequences,
a(x) > x. Otherwise, {yed(a)|y > a(y)} is a non-empty subset of 4(a),
and thus has a least element, say y,. But y, > a(y,) implies a(y,)ed(a);
consequently, y, > a(y,) > a(a(yo)), contradicting the choice of y,.

S(W) can also be considered as a certain subsemigroup of the semi-
group of partial endomorphisms of the poset (W, <). In either interpre-
tation, we investigate the structure of S(W) in order to obtain information
about W.
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3. Semigroup properties of S(W). In this section, several results
about the semigroup S(W) are established, where, unless otherwise indi-
cated, W is a tree.

First, if ¢ is an idempotent of S(W), then ee(xr) = e¢(w) for each x
in A4(e), i.e., e(x)e A4(e). In fact, e(x) = x; for if e(x) > z, then e(z) = ee(x)
> ¢(z), and similarly if ¢(z) < 2. Hence ¢ = 1,4, the identity function
on A4(e). Conversely, it is clear that the identity function on any totally
ordered ideal of W is an idempotent. For e, f < E(S(W)), the set of
idempotents in S(W), we have A(e¢f) = A(e)nA(f). Thus ef = 1,4y,
= 1,4 = fe which shows that E(S(W)) is a semilattice. Recall [4] that
the natural partial ordering < on E(S (W)) is given by e<f <ef =e.
We collect the above results in

ProprosITION 3.1. The idempotents of S(W) are the identity functions
on totally ordered ideals of W. The set E(S(W)) of idempotents of S(W)
i8 a semilattice.

As one indication of how information about S (W) yields information
about W, we present the following easy result:

ProrosiTioN 3.2. W is totally ordered if and only if S(W) has an
identity.

PROPOSITION 3.3. If Z(S(W)) denotes the center of S(W), then Z(S(W))
< E(S(W)) and 1 < |Z(S(W))|< 2 (V).

Proof. The empty function @ is in the center. Suppose @ = a<Z (S(W)).
If a¢ E(S(W)), then there exists a ked(a), a(k) # k. If ¢ = ¢, then
A(ae) = A(e). Thus if a(k) and k are not comparable or if a(k) > k, then
ke A(ae), but k¢ A(ea) which implies ae # ea. If a(k) < k, then for f = ¢,y
we find that af # fa. In either case a¢Z(S(W)).

If ecZ(S(W)) and @ S A(e) S W, then let y, be an arbitrary but
fixed element in W —A(e) and define beS(W) by 4(b) = {w,} and b(w,)
= 9Y,. Then 4(eb) = @ but A4(be) = {w,} which contradicts the fact that
e<Z(S(W)). Hence A(¢) =@ or A(e) = W. If W is not totally ordered,
then, of course, the second case is impossible. Thus, if W is totally ordered,
Z(8(W)) = {9, 1,;-}; otherwise, Z(S(W)) = {D}.

We now turn to a characterization of the regular elements in S(W).

PROPOSITION 3.4. a is a regular element of S(W) if and only if V(a)
ts an ideal of W.

Proof. If V(a) is an ideal of W, then V' (a) is order isomorphic to
A(a), and hence a totally ordered ideal of W. Define beS(W) by 4(b)
= V(a) and b(a(y)) = y. Then aba = a. Conversely, if a = aba for some
beS(W), then V(a) < 4(b). To complete the proof, we must show that
if # < yforyeV(a), then xe V(a). Now, ye V(a) implies y = a(y,), Yo 4(a),

(1) For a set A, |A| denotes the cardinality of A.
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and since V(a) = 4(b), we have b(x) < b(y) = ba(y,) = y, (recall ba is
an idempotent). But then b(z)e4(a) and, consequently, x = a(b(w))
= ab(x), since ab is an idempotent. Thus x¢ V' (a), as desired.

From the proof of Proposition 3.4 and the fact that E (S (W)) is a semi-
lattice, we have the following consequence:

COROLLARY 3.5. Let J(W) = {aeS(W)| V(a) s an ideal of W}. Then
J (W) is an inverse subsemigroup of S(W).

Reilly [8] has considered a certain semigroup J x of order-preserving
partial transformations on a totally ordered set X. In the case where W
ig totally ordered, the semigroup J (W) of Corollary 3.5 is the semigroup
studied by Reilly. If W is not totally ordered, then J (W) is a generali-
zation of Reilly’s semigroup to trees.

An element ¢ in a semigroup 8 is called a right conserver if, for each
ae8, ac = a or ac = ¢. If ¢ is a right conserver, then ¢ is an idempotent
since cc = c¢. Right zero-elements and right identity-elements are examples
of right conservers. In S(W), @ is a right conserver. For non-trivial right
conservers in E(8(W)) we have the following result:

PROPOSITION 3.6. For a tree W, the following are equivalent:

(1) There exists a totally ordered ideal K of W, |K|> 2, such that,
for each ideal A of W, either A < K or K < A.

(ii) B** = E(S(W))— {9, 0} is a semigroup with a right conserver.

Proof. (i) = (ii). Let ¢,feE*™. If A(¢) 2 K and A(f) =2 K, then
A(ef) 2 K and efe E**. If K = A(e) and K 2 A(f), then = in A(e) — {w,}
and y in A(f)—{w,} are comparable, say z < y. Hence ze 4(f), ef(x) = =
and e¢f<E**. Similar arguments hold for the other cases. Thus E** is
a semigroup. Moreover, ¢x = 1 is a right conserver since 4(eeg)
= A(e)nK. If A(e)n K = K, ee; = ¢x while K = A(e) implies eex = e.

(ii) = (i). Let ¢ be a right conserver in E**, A(¢) = K and let A
be any ideal of W. If A =0, Ac K. If 1,¢ =1, for each zed,
then 2]NK = «] or z¢K. On the other hand, if 1,;¢ = ¢ for some ze4,
then z]Nn K = K or K < z] < A.

CorROLLARY 3.7. If S(W) has a right conserver ¢ such that ¢+ O,
then ¢ = 1, where K satisfies (i) of Proposition 3.6.

Let K be any totally ordered ideal of a tree W. Using Zorn’s lemma,
one establishes the existence of a totally ordered ideal, maximal with
respect to containirg K. Those totally ordered ideals maximal with respect
to containing {w,} are called branches of W. The intersection of all branches
is called the trunk of the tree W and is denoted by T(W). If |T(W)| = 2,
W is said to have a non-trivial trunk. We use these concepts to illustrate
again how information about W can be obtained from S(W).
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LEMMA 3.8. T(W) = {weW|z<w or w< o, weW}.

Proof. By the deflmtlonf T(W) = M B,, where B, is a branch of W.

Let-us take
={zxeW|s<w or w<z,weW}.

Let ze(\B, and w be arbitrary in W. Then {w,} < w] implies w] is
contained in some branch B, and, consequently, # and w are comparable.
Thus T(W) < T. On the other hand, let <7 and consider any B,. If
xz < w for some weB,, then zeB,. If > w for each weB,, then #]2 B,
2 {w,} which contradicts the maximality of B,. Thus T < B, for each a
or T = T(W).

PrOPOSITION 3.9. W has a non-trivial trunk if and only if E** has
a right conserver.

Proof. Suppose 7' (W) is non-trivial and let A be any non-empty
ideal of W. If, for each aeA, there exists an x¢T (W) such that a < =,
then A < T(W). If this is not the case, then x < a for some ae¢Ad and
each xeT(W). But then A = T(W). The result now follows from Propo-
sition 3.6.

Conversely, if E** has a right conserver ¢, then ¢ = 1g, |[K|>2
For each weW, either 1,,¢ =1,; or 1,¢ =c. In the first case w] = K
while in the second case K < w]. However, in either case, each ke K is
comparable with w. Thus K < T(W) which implies that T'(W) is non-
-trivial. , -

COROLLARY 3.10. For a tree W, T(W) = U {K|K = 4(c), ¢ a right
conserver in E(S(W))}.

Proof. If #<T(W), 1, is a right conserver in E(S(W)).

COrROLLARY 3.11. If S(W) has a right conserver c¢ such that ¢+ O,
then W has a mon-trivial trunk.

4. S(W) determines W. In this short section we show that, for trees
W, the semigroup S(W) determines W uniquely up to isomorphism.

PROPOSITION 4.1. Let W, and W, be trees. W, is order isomorphic
to W, if and only if S(W,) and S(W,) are semigroup isomorphic.

Proof. We note first that the map y,: W, - §(W,) given by v, (w)
=1, determines an order isomorphism between W, and the poset of
idempotents whose domains are principal ideals of W, where, of course,
the idempotents have the natural ordering. An analogous situation holds
for W,. If ¢: S(W,) - 8(W,) is a semigroup- isomorphism, then ¢ is
also an order isomorphism of E (8(W,)) onto E(8(W,)). Hence to establish
that W, is order isomorphic to W, we need only show that, for each
weW,, A(p(1,)) is a principal ideal of W,.

Let K = {ye<W,|y < «} and, for any weW,, let ¢, denote the idem-
potent 1,,. Since e,1x = 1g, ¢(e;)p(lx) = ¢(lg) which means that
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Ap(1g) < Agp(e,). Since 1, # e,, we have ¢(lg) # ¢(e;), and since ¢(1g)
and ¢(e;) are idempotents, Ap(lx) < de(e,). Now,

Ap(1g) G w] < dple,)  for we(dp(e,) —Ap(1g)),

which implies ¢(1x)e,, = ¢(1x) and e, ¢@(e,) = e,. There exists an idempo-
tent e such that ¢(e¢) = ¢, and from this we find that ee, = ¢, 1x¢ = 1¢
or K c A(e) < «]. Since ¢,, # ¢(1g), we must have A(e) =x] or ¢ = e,
=1,;. Hence Ad¢(1l,) = Adp(e) = w], as desired.

Conversely, if y: W, — W, is an order isomorphism, then the map
which takes feS(W,) to wfy™' determines a semigroup isomorphism
between S(W,) and S(W,). This completes the proof of the proposition.

COROLLARY 4.2. Let W, and W, be trees and E(S(W,)) the semilattice
of idempotents of S(W;), © =1,2. Then W, is order isomorphic to W, if
and only if E(S(W,)) is semigroup isomorphic to E(S(W,)). Hence,

8(W)) = 8(W,) < E(S(W,)) = E(8(W,)).

5. Order properties and a representation of S(W). As mentioned
above, it is well known that a semilattice £ can be partially ordered by
defining, for e, f in E, e < f if there exists some heE such that e = fh.
In this section we define a relation on S(W), where W is a tree, which,
when restricted to E(S(W)), agrees with this “natural” partial order
on E (S (W)). In the case where W is a strong tree much more can be
obtained. In fact, we find that S(W) can be represented as a semigroup
of semilattice endomorphisms.

Let W be a tree or a strong tree. For a, beS(W), we say apb if there
exists a ceS(W) such that a = be. The transitivity of g is clear and, since
a = al,g, 80 is the reflexivity, whence ¢ is a pre-order. We see from
the following characterization that, in general, ¢ is not a partial order:

ProPOSITION 5.1. Let a, be S(W), where W is a tree. apb < V(a) = V (b).
Proof. If a = bc for some ceS(W), then V(a) < V(b).

For the converse, if V(a) = V(b), then, for each ze 4(a), there exists
a y,e4(b) such that a(x) = b(y,). (Since b is one-one, this y, is unique.)
Define ceS(W) by A(c) = A(a) and c¢(x) =vy,, ved(a). Now z, > z,
implies a(z,) > a(x,) or, equivalently, b(y,,) > b(y,,). Since 4(b) is totally
ordered, ¥, <Y, Or ¥, >Yy,,. If y, <y, then b(y,)<b(y,), but
this is impossible, which means y, >y, . Hence ceS(W) and a = be.

For the remainder of this section, we assume W is a strong tree.
Recall that the domains of the elements in S(W) are taken as well-ordered
ideals of W. The next proposition generalizes results of the work [5]
of Goetz to arbitrary well-ordered sets.

ProPOSITION 5.2. o is a partial order on S(W) if and only if W is
well-ordered by <.
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Proof. Suppose < is a well-ordering on W and let a, beS(W) be
such that agb and bgpa. Since 4(a) and A(b) are ideals of the well-ordered
set W, either A(a) = A(b) or A4(b) = A(a), say A(a) = A(b). Then a(x)
= b(x) for each xeA(a). If not, let x, be the first element in 4(a) such
that a(z,) # b(x,) where, without loss of generality, we take a(x,) > b(z,).
Then a(x) = b(x) < b(x,) for x < z, and a(x) = a(x,) > b(z,) for z > x,.
Thus b(z,)¢ V(a). But apb and bea imply V(a) = V(b). This contradic-
tion shows that a(x) = b(x) for zed(a). If A(a)S 4(b) and y, is the
first element in A(b) —A(a), then b(y,)e V(d), but b(y,) > b(z) = a(x)
for all e 4(a). This again contradicts V' (a) = V' (b). Therefore, 4(a) = A4(b)
and a(z) = b(x), xed(a); i.e., a = b.

Conversely, if W is not well-ordered, then W is not totally ordered
(Proposition 2.1). Thus, if # and y are non-comparable elements in W,

z]Nny]S 2] and 2]ny]SZyl.

Let z, be the first element in z]— (z]Ny]) and y, the first element
in y]—(x]Jny]). These elements exist since W is a strong tree. Define
ceS(W) by A4(¢) = y,], where ¢(w) = w, wex]ny] and ¢(y,) = z,. Then
Vie) = V(1) but ¢ # 1, ;. That is, cel,,; and 1,,0c, but ¢ #* 1,,.

As with any pre-order ¢ on a set X, one defines an equivalence rela-
tion = on X by z, = x, if x, oz, and z,0x,. This leads to a partial order <
on the set X /o of equivalence classes by defining [z,] < [z,] if x,0x,.
In our case, for a, beS(W), a =b if and only if V(a) = V(b). Since
aeaS(W), we note that the equivalence = on S(W) agrees with the left
Green equivalence #. (a#b if a and b generate the same right ideal of
S(W) (see [4])). Thus S(W)/# is a poset with a well-defined map
from S(W)x8(W)/# to S(W)/# given by (s, [a]) > s-[a] = [sa] such
that

(81°85):[a] = 8,°(85-[a]) for sy, 8,e8(W), [a]leS(W)/A.

In other words, S(W)/# is an S(W)-set.

We now show that S(W)/# is an S(W)-semilattice. That is, there
is a binary relation A such that S(W)/# is a semilattice under A and
the function (s, [a]) — s-[a] has the property

8:([alAa[b]) = s8-[alas-[b] for seS(W), [al, [b]eS(W)/R.

For [a], [b]eS(W)/R, let V(a)nV(b) = M. Then M is isomorphic
to some subset of 4(a), and hence to an ideal A of A(a) (see [3], p. 36,
Exercise 2). .Let anb: A —- M denote this isomorphism. Since
V(aand) = V(a)nV (b),
we have [aAbd] < [a] and [aAnb] < [b]. If [¢] < [a] and [¢] < [b], then
V(e) < V(aynV(b) which implies [¢] < [aAnb]. We define [a]A[b] = [aAb]
and obhtain the following result:
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ProPoOSITION 5.3. (S(W)/®, A)> 18 a semilattice.

We now claim that a-([b]Aa[c]) =a-[b]aa-[¢] for aeS(W), and
(0], [c]eS(W)/#. Indeed, it suffices to show that V(a(bac)) = V (aba ac).
To this end we first observe that zeV(a(bac)) if and only if there
exists a y e S(W) with « = a(bA ¢)y which is true if and only if vea (V' (ba)).
But V(bac) = VbnlVe and since a is a one-one map,

aV(bac) = a(VbnVe) = a(Vb)na(Ve) = VabnVac = V(abaac).

PRrROPOSITION 5.4. {(S(W)/®R, A) is an S8(W)-semilattice.

From this proposition we see that, for each seS(W), the left trans-
lation A,: S(W)/# — S(W)/R (A;[a] = s-[a] = [sa]) is a semilattice
morphism. Moreover, the map Ai: S(W) — End(S(W)/®) (s —4,) is
a semigroup morphism. Thus S(W) can be represented by a semigroup
of semilattice endomorphisms. We will show that this representation
i8 faithful; i.e., for s, teS(W), A(8) = A(f) implies s =¢. '

If A(s) = A(t), then [sa] = [ta] for each aeS(W), which is equivalent
to V(sa) = V(ta) for all aeS(W). Using a = 1,, and then a = 1,
we find s = t1,,b, and ¢ = s1,4b, for some b,, b,eS(W) which, in turn,
implies V(s) = V(#). Using a = 1, (recall w, is the least element of W),
we find s(w,) = t(w,). If K = A(s)nA(t), then

V(slg) = V(tlg) and A(slg) = AS)NK = A(XQ)NnK = A(tly).

Suppose {we K |slx(x) = s(x) # t(x) = t1g(®)} is non-empty and let x,
be the least element in this subset of* A(s). Without loss of generality,
take s(x,) <i(w,). For zeK, if v <ux,,

tlg(x) = t(x) = 8(x) = slg(x) < 8lg(x,),
while if &> x,, |
tlg(0) = t1x (20) > 8(2o) = 81k ().

~ This is a contradiction to Vsly = Vil,. Hence s(z) = t(x) for all x
in K. It remains to show that 4(s) = A(t). If this is not the dase, then
K S A(s)or K G A(t), say K S A(8). Let y, be the first element in 4(s) —K.
Then Vsl,, = Vi1, which implies that s(y,) = t(w) for some weA(tl,;)
S Yol- Since y,¢A4(t), w # y,. But then w < y, implies that weK and,
consequently, t(w) = s(w) # 8(y,). This means we must have 4(s) = A(t)
and thus s = 1.

ProrosiTioN 5.5. If W is a strong tree, then S(W) can be faithfully
represented as a semigroup of endomorphisms of a semilattice.

Suppose W is well-ordered by <. It follows from Proposition 5.2
that the pre-order ¢ on §(W) is a partial order which implies that the
equivalence = (or #) is just the equality relation. Therefore, S (W) becomes

3 — Colloquium Mathematicum XXXII.1
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a semilattice, with the semilattice operation again denoted by A, having
the property a(bac) = abaac, a, b, ceS(W); i.e.,, (S(W), -, A> is a left
distributive semilattice.

COROLLARY 5.6. If W is well-ordered by <, then (8(W), -, A i8 a left-
distributive semilattice and (S(W), -> can be faithfully represented as a semi-
group of endomorphisms of (S(W), A).

We remark that a pre-order ¢ on S(W) can also be obtained by
defining aob if there exists a ceS(W) such that a = ¢b. An equivalence ~
with @ ~ b if acb and boa is then obtained. This also gives a partial order
on S(W)/~. Further, the equivalence ~ agrees with the right Green
congruence % on S(W). (a%b if and only if a and b generate the same
left ideal of S(W)). We note that if a ~ b, then 4(a) = 4(b), but Exam-
ple 5.7 shows that the converse is false. However, this is not surprising if
one considers the lack of symmetry in the domains and ranges of elements
in S(W). We also remark that the Green equivalence # (J# = £NR)
is just the equality relation on S(W). In fact, as#b implies V' (a) = V (b)
and A(a) = A(b). As already established above, these two conditions
imply that a = b.

Example 5.7. Let (W,<) be the tree w, < w, < w, < wy < w,.
Define a: {wy, w,} — {w;, w,} and b: {wy, w,} - {ws, w,}. If there exists
a ¢ such that a = ¢b, then w, = a(w,) = ¢b(w,) = ¢(w;). But no such ¢
exists. Thus we have A4d(a) = A(b) but a ~ b.

6. Characterization. In this sgction an abstract characterization of
certain subsemigroups of S(W) is given. In other words, necessary and
sufficient conditions are obtained, so that any semigroup S satisfying
these conditions is isomorphic to a certain kind of subsemigroup of S(W).
In order to simplify the statements of our results we make the following
definition. We also remark that unless otherwise specified (W, <) is
a tree.

Definition 6.1. A semigroup S is said to be a semigroup of tree
functions, abbreviated if-semigroup, if E(S) is a tree under the natural
partial ordering < on the idempotents of 8, and if there exist mappings
L: 8§ > E(S) and R: 8 — E(S8) such that, for a, beS and ee¢E(S),

D1. L(a)a = a while if ea = a, then L(a) < ¢ and, dually, aR(a) = a
while if a¢ = a, then R(a) < e;

D2. R(a) = R(b) and L(ae) = L(be) for ¢ < R(a) if and only if a = b;

D3. Lo4, is order-preserving on R(a)], and if L(b) < R(a), then
Lo ,(L(b)) < L(ab);

D4. e < R(ab) if and only if e < R(b) and Loi,(e) < R(a).

We observe from the following proposition that if W is a finite tree,
then 8(W) is a tf-semigroup:
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PROPOSITION 6.2. Let H be a subsemigroup of S(W) such that

(a) for heH, A(h) i8 a principal ideal of W, and

(b) for ecE(S(W)), if A(e) is a principal ideal of W, then ecH.

Then H is a tf-semigroup.

Proof. We first show that E(H) is a tree. For ¢ H, we have 4(e)
= z,], thus we define a map E(H) - W by ¢ — z,. Recall that the natural
ordering in E(S(W)) is just the pre-order g restricted to E(S(W)). Hence
e, 06, is equivalent to V(e,) < V(e,) or A(e,) = A4(e,) which, in turn, is
equivalent to z, < @,,. Thus ¢, = ¢, if and only if #, = =, which implies
that our map is a one-one order-preserving function. Let x« W and define
¢,<E(S(W)) by 4(e,) = x]. But then, by (b), ¢,¢H and e, — x. Therefore,
(E(H), o) is order isomorphic to (W, <), and hence is a tree.

For aeH, we have A(a) =x,]. Now we define the mappings
L: H -~ E(H) by A(L(a)) = a(x,)] and R: H — E(H) by 4(R(a)) = z,].
For yeA(a), we have a(y) < a(x,), whence a(y)ea(x,;)] and L(a)-a = a.
If ea = a, then V(a) < 4(¢) and, consequently, AL(a) = VL(a) < 4(e)
= V(e) or L(a)ge. Clearly, aR(a) = a, and if ae = a, then VR(a) = AR(a)
= A(a) € A(e) = V(e). That is, R(a)ge.

To verify property D2, suppose R(a) = R(b) which is equivalent to
A(a) = A(b). For xzed(a), define ecE(H) by A(e) = x] and note that
eoR(a). Then A(ae) = A(e) = x] and L(ae) = ¢,, where A(e,) = a(x)].
Similarly, A(be) = x] and L(be) = e,, A(e,) = b(x)]. But L(ae) = L(be)
for epoR(a) implies a(x) = b(x). Since xr was arbitrary, a = b.

For property D3, let ¢,, e;¢R(a)], €, = €,. Thus A(e,) S 4(e,) = 4(a),
and so there exists an xz,e 4(e;) such that z, > y for each ye A(e,). For
i=1,2, A(ae;) = A(e;) = =x;] and A(L(ae;)) = a(x;)]. For we A(L(ae,)),
w < a(z,) < a(x,) < a(x,). Therefore, 4(L(ae,)) S 4(L(ae,)) which is equiv-
alent to the fact that Lo 4, is order-preserving on R(a)]. Suppose further
L(b)oR(a). If A(b) = =,], then b(x,)] & 4(a) which, in turn, implies
A(ab) = A(b). For weA(Lo,(L(b))), » < aL(b)(w) for some weA(L(b)).
From this we obtain

r< a(w)<ab(x,) or wxeab(xy)] = AL(ab),

and so LoA,(L(b))eL(ab), as desired.

For D4, if eoR(ab), then A4(e¢) = A(adb) = A(b), and so epoR(b). If
A(e) = =], then A(be) = x]and L(be) = 1,y . Since b(x)eA(a), 1,,),0R(a).
Conversely, if again we let A(e) = x], then z] < 4(b), A(be) = x], and
from L (be) oR(a) we obtain b(x)e 4(a) which, in turn, implies 4(e) = A4(ab)
or eoR(ab).

Turning to the converse problem, we have

ProrositioN 6.3. If S is a tf-semigroup, then, for some tree (W, <),
S is isomorphic to a subsemigroup S of S(W) such that S satisfies (a) and
(b) of Proposition 6.2.
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Proof. Since S is a tf-semigroup, E(S) is a tree under the natural
ordering <. For W, choose E(8) and, for each a8, define a: W — W by

A(@) = {eeE(S)|le< R(a)} and a(e) = L(ae).

Since E(8) is a tree, A(a) is indeed a totally ordered ideal in W,
and the first part of property D3 guarantees that @ is order-preserving.
Thus, if we let S = {@|aeS}, then S < §(W).

We now show that S is a semlgroup under function composition;
in particular, we show a@ob .= ab. To this end, A4( a,b) {e|e < R(ab)}
while

A(@ob) = {e|lecA(b) and b(e)eA(a)} = {e|e < R(b) and L(be) < R(a)}.

Thus, from property D4, A(ab) = A(aob). It remains to verify that
ab(e) = a(b(e)), ecA(ab). For ecA(ab), we have L(be)< E(a), and
80 L(Z (L(be))) < L(abe) by the second part of D3. On the other hand,
we know

a-L(be) = L(a-L(be))a-L(be)
which implies
abe = a-L(be)-be = L(a-L(be)jabe.

Using D1, L(abe) < L(a-L(be)). Consequently,
L(abe) = L(aL(be)) = Lo A,(L(be))

which is equivalent to
ab(e) = a(b(e)).

This completes the proof that ab = @aob and also establishes that
the map a — @ is a semigroup epimorphism of S onto S.

If @ = b, then 4(a) = 4(b) or R(a) = R(b). Also, for each ¢ < R(a),
L(ae) = a(e) = b(e) = L(be). Using D2, a = b and, consequently, S is
isomorphic to S.

It remains to show that S satisfies properties (a) and (b) of Propo-
sition 6.2. Clearly, 4(@) is a principal ideal of W for every @ in S. Let
eeS(W), 4(e) = €,], e, W = E(8). Under the above epimorphism, ¢, — ¢,
and 4(e,) = {e|e < R(e¢,)}. However, ¢,R(6,) = ¢, implies ¢, < E(e,), and
from e¢,¢, = ¢, we obtain R(e,) < e,. Thus A4(g,) = ¢,] which implies
that ¢ = ¢,, and thus eeS.

Combining Propositions 6.2 and 6.3, we obtain

COROLLARY 6.4. A semigroup S is isomorphic to a subsemigroup S
of S(W) for some tree W, where acS implies A(a) is a principal ideal of
W, and S contains all idempotents e such that A(e) is a principal ideal of
W if and only if 8 i8 a tf-semigroup.
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A subsemigroup H of a semigroup S is said to be a full idempotent

subsemigroup if E(H) = E(8). Clearly, H is a full idempotent subsemi-
group of S if E(8) < H. Gf course, if E(8) is a subsemigroup, then it is
a full idempotent subsemigroup. For finite semigroups we now have
the following special case of the above results:

COROLLARY 6.5. Let S be a finite semigroup. S 18 a if-semigroup if

and only if S is isomorphic to a full idempotent subsemigroup of S(W) for
some finite tree W.
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