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1. Introduction

At present time there exist a number of results dealing with the theory
of discrete optimal control systems. For all let us recall at least the refe-
rences [1], [2], [6], [10], where various classes of discrete systems are
studied in detail and the respective necessary optimality conditions are
presented. As a rule, the original discret econtrol problem is interpreted
as a mathematical programming one, and the existing results in this
area are then applied to derive necessary conditions for the original control
problem. Application of the classical results of the mathematical program-
ming theory usually requires to assume the continuous differentiability
of problem describing functions. Moreover, if the aim is to obtain necess-
ary conditions in the form of a discrete maximum principle, then one
cannot avoid some additional assumptions concerning the convexity of
the problem in question.

In recent years a considerable progress was achieved in the direction
of releagsing the rather stringent differentiability assumption. Most of
the respective theory deals with the so-called locally Lipschitz functions.
The basic theory including the definition of generalized gradients can be
found in [3]}-[6], [11}-[15]. In this way also the classical results of the
mathematical programming theory were generalized to the case of locally
Lipschitz functions.

Our aim is to apply some of these results to discrete optimal control
problems and to derive necessary conditions for intrinsically “nonsmooth”
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discrete control problems described by locally Lipschitz funetions. To do
this, first some basic definitions and results are summarized for conve-
nience. It is shown that in the general case only rather formal necessary
conditions can be deduced which, however, are still of practical and
theoretical interest. More familiar form of necessary conditions is cob-
tained under some additional assumptions which, on the other hand,
considerably narrow the class of studied discrete optimal control problems.
The main reagon is a somewhat unsatisfactory definition of partial gene-
ralized gradients, and this fact turns out to be crucial for this application.
Therefore, an alternative approach is suggested, based on a modification
of the definition of partial generalized gradients. Then it is possible to
deal also with the general case in a straightforward way and without addi-
tional assumptions, Some details in this respect were given by the author

in [71-[9]).

2. Preliminary results

Throughout the paper we shall work with the class of locally Lipschitz
real functions. This means that for every bounded set § — R", there exists
a constant ¢ such that for all z, y €@

(1) If(®) —f(y)] < elw—yl.

It is known that functions of this type have almost everywhere the deri-
vative Vf(gradient). Xt will be assumed that all functions appearing further
are locally Lipschitz (in the vector case component-wise).

DEFINITION 1. The generalized gradient of a function f: R*—->R' at z,
denoted by df(x), is the set (co denotes the convex hull)
of (@) = co{lim Vf(a,)| &},

i—r00

with f differentiable at z,; for each 4.

It can be easily shown that Jf(v) is a nonempty compact convex
set in R". Many interesting properties, equivalent definitions and gene-
ralization of this concept to Banach spaces are listed in the mentioned
references [3]-[5], [11]-[15], where also locally Lipschitz mathematical
programming problems are studied from the point of view of necessary
conditions, For convenience, let us include some basic results here, which
will be used in the sequel. All vectors are treated as column-vectors for
the sake of simplicity and, as usual, T denotes the transposition.

Let ¢ € B! and let f,g: R*—>R' be locally Lipschitz. Then

(2) o(of) (x) = cof(x),
(3) a(f+9) () = of(x)+ 0g(=),
(4) f has a local extremum at =0 € df(x).
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If now @ < R" is nonempty and closed, denote by d,(z) the real function
giving the distance of z to Q. It is not difficult to prove [3] that the fune-
tion dg is Lipschitz. Then as the iangent cone o Q al the point ¥ €@ let
us define the set

(5) T(Q;2) = {veR"* vTg<0 for all g € ddg(x)},

i.e., T(Q; #) is a polar cone to ddy(z). The normal cone N(Q; ) at z can
be then defined as a polar cone to T'(Q; x), or directly as

(6) N(@;x) =cl{rg y>0,qeddy(z)},

i.e., N(@; ) is the closure of the conical hull of 6d§(:n).

Consider further a problem of minimization of a function f: R"->R!
subject to the constraints ¢ € Q@ < R*, and M(z) =0, 7 =1,...,p, and
g,(z)<0,j=1,...,q where h and g; are real functions on R", and
all the functions are locally Lipschitz. According to [14], if & is the min-
imizing point, then there exist a number u <0, multipliers y,, ..., v,,
and v,, ..., v, with <0, j =1,..., ¢, not all zero, such that

» q
(7 3(.uf+ D wihi+ D v,0) (3)AN(Q; )+~ @,
i=1 J=1
With ngj(é) = 0, j = 1, ceey q.
For Q = R"*, denote by int@ the interior of the set @ in R". Further,
let @, and @, be nonempty and closed sets in R" and let # € §, NQ, be a point
for which T'(Q,; z) NintT (Q,; ) #* Q. Then, according to [15], one has

(8) N(@:0Q,y; @) © N(Qy; @) +N(Qq; 2).

Further details and consequences are given in the mentioned refe-
rences, e.g. also the conditions that guarantee u # 0 (constraint quali-
fication). Most of the existing results are moreover valid in Banach spaces,
however certain precautions are to be observed. Here we deal exclusively
with R" context.

Certain drawback of the existing theory, having in mind the later
application, is the definition of partial generalized gradients [6]. To do
this, let f: RB® x R™—R! be locally Lipschitz. For each 2 ¢ B" denote the
generalized gradient of the function f(z, ) by 9,f(z, %), and in a similar
way also for d.f(x, ¥). Such a definition of partial generalized gradients
seems to be quite obvious and reasonable. However, there is no relation-
ship between the sets of (z, y) and @.f(x, ¥) X 0,f(=z, ¥), a8 there are simple
examples showing that neither of these sets is contained in the other.

This is also the main reason that after giving formal necessary con-
ditions for the general case, a more special class of discrete control problems
is studied in detail. Namely, the system in question will be assumed
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“additive” in state and control variables, which overcomes the.indicated
difficulty and the resulting necessary optimality conditions assumes a more
familiar form of [1], [2], [6], [10].

3. Discrete optimal control problem

Let us consider a discrete dynamical system described by the relations
(K denotes the prescribed number of stages, ¢ € R® —the state, and =
€ B™ —the control)

(9) Tpt1 = ful®, %), k=0,1,...,K-1,
(10) [:“]EM,,CR“XR", k=0,1,...,K-1,
%
(11) Zgedgy c R"
The aim is to minimize the functional
K-1
(12) J =g(ag)+ D) hu(@sy ).
ka0

As above, it is assumed that all functions are locally Lipschitz and all
sets are nonempty and closed. Here f,: R"xR™»R* h,: R" xR™->R!
and g: R"—>R'.

It is easy to see that the above problem (9)—(12) represents a mathe-
matical programming problem in the space of the dimension mK +n (K +1),
i.e., we have to work with the variable z= (z,, o,,..., Tg, %oy U1s-. -y Ug_,)T-
The special structure of this mathematical programming problem makes
it possible to decompose it with respect to the discrete time wvariable k.
To derive the theorem stated below one has to realize that if a function f
does not depend on a certain variable, the corresponding component of
all vectors belonging to of is zero. Moreover, if § = B"and 2 € @, the normal
cone N(Q; @) is also the normal cone of the set Q X R™ in R* xR™ at (, ¥),
y € BR™. Then relations (7)(8) are applied together with properties (2)—(3)
to the overall mathematical programming problem indicated above. The
obvious details of this procedure are omitted.

THEOREM 1. If &,, @, ..., &g and fi,, 6,, ..., hg_, 98 a solution of the
discrete optimal control problem (9)—~(12) and if intT (M,; (%, &) # @,
k=0,1,..., K—1, then there exists a number u < 0 and vectors A, c R",

=1,..., K, not all zero, such that

A ) . a
Oyl g1 {Pss u,,)h[ok]-{-N(Mk; (@ '“k)) #0, k=0,1,..,K-1,

with 4, = 0, and
p0e9(Zg) DAg + N (Ag; g) # O,



NEOESSARY OONDITIONS FOR DISORETE CONTROL PROBLEMS 175

where, as usual,
Hy i\ (2, ) = phy(2, ")+Alzc'+l x(z,u), k=0,1,...,K-1.

One can observe an evident analogy of the obtained necessary condi-
tions with those of [1], [2], [6], [10]). However, because of the indicated
property of partial generalized gradients o, and J,, one cannot simply
decompose the “adjoint” condition in the theorem as desirable to obtain
separate relations for #and #. So the given composed form of the generalized
gradient J,, must be maintained in this general case. Therefore also the
general implicit constraints of the “mixed” type (10) were assumed to
allow more general formulation. The fairly general form of the stated ne-
cessary conditions, although interesting from a theoretical point of view,

gseems not to possess much practical impact and a more concrete form is
desirable.

4. Special class of problems

One way to overcome the encountered difficulty is to impose some addi-
tional assumptions on the studied control problem. This will evidently
narrow the class of covered problems, but, on the other hand, it will
enable to refine the above results in the intended way. First, one can
simply assume the so-called subdifferential regularity [15] of functions
Sis by, and g. Then one has, e.g., that 0, ,f.(v, ) = 9 fi(z, u) X 0, fi (@, @),
and this fact makes the required decomposition possible. Still under this
rather stringent assumption the class of treated problems is of practical
importance including nonsmooth and nonconvex problems having the
max type objective function.

Other possibility is to assume the “additive” structure of f, and &,.
The dimensions of functions introduced further are the same as in problem

(9)-(12). In such case the necessary gradient inclusion indicated above
is preserved. Thus

(13) Bpyr = fulop) +fe(w), k=0,1,... ,K~1,
(14) wkeAkCR“’ k =0,1,...,K’
(15) ukEUkCRm, k =O,1,-.-,K'—1-

The aim is to minimize the functional

K-1

(16) J = g(og)+ D) (ko) +hi(uy)).

k=0

Again it is assumed that all functions are locally Lipschitz and all sets
nonempty and closed. In this case Theorem 1 takes the following form.
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THEOREM 2. If %y, &y, ..., 5 and i, @y, ..., tig_, i3 & solution of the
discrete oplimal control problem (13)—(16) with intT(A,; ;) # G and
intT(Uy,; ) #9, k=0,1,..., K—1, then there exists a number u<<0
and vectors A, e R", k =1, ..., K, not all zero, such that

(a) the vectors A, satisfy the relations

az(ph},-l-lf_,_lfé) () A+ N (Ay; 7)) B, b= 0,1,..., K_—;li
with 4, =0 and

#9.9(zg) NAg +N (Ag; 3g) # B,
(b) the optimal control sequence satisfies the relations
0. (b + Ay f3) () NN (Uy; ) #0, k=01,..,K-1.

One can see that the promised analogy with classical problems stu-
died in [1], [2], {6], [10] is more apparent, because the adjoint system (a)
and the optimality conditions (b) are separated.

5. An alternative approach

In this section let us briefly explore the possible alternative definition
of partial generalized gradients, which is especially suitable for our de-
composition purpose. This approach is described in more detail in [8]
and the subsequent theory will appear in [9]. To overcome the indicated
difficulty connected with the earlier definition of partial generalized
gradients, several attempts can be found in the existing results. Let us
mention the idea of [14] which inspired the results given in [8] and is
briefly described in the sequel. Let us only recall the basic definition.

DEFINITION 2. Let f: R®" xR™->R' be locally Lipschitz. As partial
generalized gradients of f with respect to the first, resp. the second, variable
at (r, y) we define the sets

d.f(z,y) = co {lim ,f(@,, 9| (20, 33, 9),
Tesp.
8,f(w, ) = co{lim V,f(z;, )| (2, ¥z, )},

with f differentiable at (x,, y;)} for each 1.
It follows directly from this definition that

(17) (@, y) < (@, y) x 8,f(3, 9).
In fact it can be shown [9] that.
(18) 8.1 (@, 9) = pr.[of (2, Y],
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where pr_, denotes the projection on the z-axis, and analogously,

(19) 8,f (@, y) = pr,[of (z, )]

It would be possible tc’> derive the analogical theorems to those resul-
ting from the original definition of the generalized gradient [6]. Here let
us only recall that there is a direct analogy with (2)~(4). Namely, for
¢eR' and f, g: R* xR™—>R! locally Lipschitz, one obtains

(20) olef) (@, y) = 0dif(z,y), 4 =ua,9,
(1) %(f+9) (@, 9) © é,f(@, 9)+ big(z,9), ¢ =a,v,

(22) f has a local extremum at (z,y)=0 eé,-f(w,y), T =o,9.
Moreover, as it was to be expected, in the general case,
(23) af(@,9) < éf(z,y), i=a,y.

Now we are in a position to formulate necessary optimality condi-
tions for the general case of a discrete control problem described as follows:

(24) Bppr =Ju(@pyU)y, k=0,1,...,K-1,
(25) wkeAkCR“, k =0,1,..-,K,
(26) w,eUp,<R®, k=0,1,...,,K-1,
. K-1
(27) J = glag)+ D hylay, uy).
k=0

Let us immediately formulate the final result. Again, H, ,(x, %) will
have the same meaning as in Theorem 1. All functions are defined as
in (9)—(12) and all sets are assumed to be nonempty and closed.

THEOREM 3. If &, &y, ..., Zx and &y, %,, ..., #g_, 18 a solution of the
discrete optimal control problem (24)—(27) with intT(d,;%,) 9 and
intT(Uy; %,) #9, k =0,1,..., K—1, then there exists a number u <0
and vectors A, eR" k =1, ..., K, not all zero, such that

(a) the vectors A; satisfy the relations

O H 1By By) N+ N(Ay; 8) 9, k=0,1,.., K1,
with. Ay =0 and
pd,9(@g) Mg+ N (Ag; ¥g) # 9,
(b) the optimal comirol sequence satisfies the relations
OyHyyy By, ) AN (Ups i) # 0, Kk =0,1,...,K—1.

To avoid more complicated notation, no explicit constraints given
as a system of equalities and/or inequalities were taken into account
in the above formulation. Owing to (8), such constraints can be always

12 — Banach Center t. 14
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included in the same way as described in [1], [2], [6], [10] for continuously
differentiable cases. Sometimes the aim is also to have maximum prin-
ciple formulation of necessary conditions. This tool, powerful when dealing
with continuous time systems, seems not to be of such importance in the
discrete case. The main reason is the need of additional convexity assump-
tion with only a relatively small gain for the solution of practical problems.
Some indications in this respect in the connection with locally Lipschitz
formulation of discrete control problems were given in [8]. As was recently
pointed out to the author by Prof. Rolewicz, similar attempt was done
independently in [16], where primarily the maximum principle formula-
tion was investigated.

6. Conclusions

In this contribution the possibility of application of new results in the
field of nonsmooth analysis to problems of discrete optimal control was
studied in detail. Certain difficulties were pointed out when dealing with
the general case together with some indications and suggestions how to
overcome them. In this way a set of necessary conditions for general
discrete control problems was derived assuming only the locally Lipschitz
continuity of the studied problem. Some subsequent cases were’ treated
separately to enlighten some aspects of this approach.
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