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We shall state two unsolved problems on balanced block designs, with their
brief history of research, which may be interesting also from a combinatorial
point of view. The basic designs dealt with here are variance-balanced block
designs, in which every elementary treatment contrast is estimated with the
same variance. The definition of this design along with a property of
resolvability is provided in each section.

1. Symmetric variance-balanced block designs

Consider v treatments arranged in b blocks with the jth block being of size k;
(G=1,..., b)in a block design with the incidence matrix N = ((n;;)) such that
the ith treatment occurs r; times (i= 1, ..., v) and the ith treatment occurs in
the jth block n;; times, where n;; can take any of the values 0, 1, ..., p—1. Such
a design is called a p-ary block design. If p = 2, the design is said to be binary.
Whenr, =...=r,(k;, =... = k), the design is said to be equireplicate (proper).

A block design is said to be variance-balgnced if every elementary contrast
of treatments is estimated with the same variance (cf. Rao (1958)). Furthermore,
by using the C-matrix of a block design, a p-ary variance-balanced block (VBB)
design with parameters v (> 2), b (>0), r, (>0 and &k, (>0) (i=1,...,p;
j=1, ..., b) can be characterized (cf. Kageyama (1974)) by an incidence matrix
N satisfying

(C=) R—NK "IN =¢{l,—(1/0)J,},

where ¢ = (n—Y5-,{(1/k)Yi-1nf})/(v—1) is the only nonzero eigenvalue
of C, R is a diagonal matrix with diagonal elements r,,...,r, ie, R
= diag{r,, ..., r,}, K = diag{k,, ..., k,}, I, is the identity matrix of order v, J,
is a v x v matrix with positive unit elements everywhere, A’ is the transpose of
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the matrix A4, and n = Z:-Llr, = ZL 1k;. In particular, for a binary VBB
design, ¢ = (n—b)/(v—1).

The literature of block designs contains many articles exclusively related
to VBB designs. Kageyama and Tsuji (1980) have shown that for a binary VBB
design, barring orthogonal designs, the Fisher inequality b > v holds. Saturated
designs (i.e., with b = v) may be important in some statistical and/or com-
binatorial sense. It is known (Rao (1966)) that an equireplicate and binary VBB
design with b = v is a symmetric balanced incomplete block (BIB) design. Here
a BIB design is usually defined by the v x b incidence matrix N = ((n;;}} such
that (i) n;; = 0 or 1 for all i, j; (ii) ) 5=, n;; = r for all i; iii) } ¥=, n;; = k for all j;
and (iv) Y- ngney=Afor all i,V (i#¢ =1, ..., v). Furthermore, it is also
known (cf. Kageyama (1974)) that a proper and binary VBB design is a BIB
design. Thus, the existence of a VBB design with b =p having unequal
replication numbers r; and unequal block sizes k; should be investigated as the
next problem. Since such a “non-binary”design exists (Kageyama (1984a)), the
existence problem should be considered only for “binary” designs.

The rank of C (= R—NK !N’) is at most v—1. We consider the case
where the rank of C is exactly v—1. In this case, the design is said to be
connected. We shall deal only with connected designs throughout this paper.
Though in general ¢ <r, for all i and 1 <k; <v for all j, to exclude the
triviality of our problem, we shall consider the present existence problem under

o <r; for all i and 1 < k; < v for all j.
Now, our problem is stated as follows.

PROBLEM 1. Does there exist a nontrivial block design with parameters
v = b (symmetric), r; (r; # r;. for some i, i) and k; (1 < k; < v; k; 5 k; for some j,
j) satisfying

C= Q{Iv_(l/v)"v}

and o <r,fori=1,...,vand j=1,..., b, where ¢ =(n—v)/(v—1)?

This problem is still unsolved until now since 1979. But there are some
partially solved results, from which we may arrive at a conjecture on the
nonexistence of such a VBB design.

It is known (Kageyama (1984a)) that each of the following is a sufficient
condition for the nonexistence:

(1) r;—e =1 for all i.

(2 r,—e<1 for all i

(3) v|jn° (Hedayat (1981)).
4 v—1in—1.

(5) v is a prime.

(6) v—1 is a prime.
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(7) Letv—1 = p*for a prime p and an integer o > 2. Then k,t p* for all j.
(8) Kkylv for all j.

For other conditions, refer to Kageyama (1982, 1984a).

We can also characterize some structure of the incidence matrix of the
VBB design, as Kageyama (1984a) shows. Through such observations, some
restrictions on parameters r; and k; are made as follows:

3k

~ Sv_zp j=1,--.,v;
4<r,<v-2, i=1,...,

in particular,
4 < minr; < v—4.

These restrictions are very useful to judge whether or not there exists a VBB
design for a given v. In fact, through such an idea it can be shown that there
does not exist a VBB design for v < 14.

All the approaches to derive the above-mentioned results are to take one
of the following procedures:

(i) determinant,
(i1) trace,
(iii) elementwise comparison

for (some modification of) the relation
(C=) R—-NK7'N =o(l,—(1/v)J).

In conclusion, the author believes that the VBB design considered does
not exist in general.

2. 1-Resolvable variance-balanced block designs

A block design is said to be (u,, ..., g)resolvable if the blocks can be
separated into ¢t (= 2) sets of m; (= 1) blocks each such that the set consisting of
m; blocks contains every treatment exactly u, (= 1) times (i=1,...,1t) (cf.
Kageyama (1976)). Furthermore, when u, =... = u, (= y, 5ay), it is said to be
u-resolvable for p>= 1. A pu-resolvable block design is said to be affine
p-resolvable if any pair of blocks belonging to the same set contain q,
treatments in common, whereas any pair of blocks belonging to different sets
contain g, treatments in common. For a (u,, ..., 4,)-resolvable block design, it
is clear that the design is equireplicate.

The importance of variance-balance and resolvability in the context of
experimental planning is well known; the former yields optimal designs apart
from ensuring simplicity in the analysis and the latter is helpful, among other
respects, in the recovery of interblock information. Also practical situations
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sometimes demand designs with varying block sizes (Pearce (1964)) or
resolvable designs with unequal replication numbers between sets of blocks; for
a practical example, see Kageyama (1976). These considerations indicate the
importance of (y,, ..., y)-resolvable VBB designs with possibly varying block
sizes and having u,, ..., 4, possibly not all equal.

The literature of block designs contains many articles exclusively related
to VBB designs with resolvability. It is well known (cf. Kageyama (1973),
Raghavarao (1962, 1971)) that for a p-resolvable VBB design with parameters
v, b=7Yi-1m;, r=pt k;, the inequality b > v+t —1 holds. Hughes and Piper
(1976) showed that for a (u,, ..., y)resolvable BIB design, b= v+t-—1
holds and that a (y,, ..., & )-resolvable BIB design with b = v+4t—1 is affine
u-resolvable. Generalizing these results, Kageyama (1984b) established that
for a (u,,..., p)resolvable VBB design with parameters v, b=)%_,m,
r= Z}=1 pand k;(j =1, ..., b), the inequality b > v+t —1 holds. As a charac-
terization of the saturated case of the above result. it is further shown
that in a (u,, ..., y)-resolvable VBB design with b=v+1t—1, except when
py =...=p, =1, block sizes of blocks belonging to the same set are always
equal. Whether the above holds for the case u, =... =g, =1 as well, is an
open problem. That is,

PROBLEM 2. Does there exist an incomplete block 1-resolvable V BB design
with b = v+r—1, having unequal block sizes within a set?

Remark. When yu, = ... =y, = 1, the design is 1-resolvable. For a 1-resol-
vable design t = r. Furthermore, it is clear that a 1-resolvable VBB design with
b = v+r—1 is binary and even if there are some complete blocks, the design
obtained by deleting these complete blocks will again be a 1-resolvable VBB
design with the same property. Therefore, without loss of generality, attention
will be restricted to incomplete block designs, so that each set involves at least
two blocks, and the above problem will be considered.

This problem makes Mukerjee and Kageyama (1985) consider various
characterizations of (4, ..., 4,)-resolvable VBB designs satisfying b = v+t —1.
Regarding Problem 2, Mukerjee and Kageyama (1985) stated two equivalent
problems in the context of fractional factorial plans as follows.

PROBLEM 2-1. Does there exist a saturated proportional frequency plan for
main effects with unequal replication numbers for the levels of at least one factor?

PROBLEM 2-2. Does there exist a saturated orthogonal main effect plan with
unequal replication numbers for the levels of at least one factor?

It should be clarified that “orthogonality” in the last problem is in the
sense of Addelman (1963); note that there is another definition of orthogonality
(Yamamoto, Shirakura and Kuwada (1975)), which is not being followed here.
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Trivially, if v is a prime, then k;k,/v cannot be an integer, since incomplete
block designs are being considered, and hence nonexistence follows. Also, the
existing methods of construction of proportional frequency plans involve the
technique of collapsing of levels (Addelman (1963)) and cannot lead to a plan as
stated in Problem 2-1. Therefore, in order to find an example, if it exists,

satisfying the conditions of Problem 2-1 or equivalently the other problems,
one should look for a method for the construction of proportional frequency

plans without applying the collapsing technique of Addelman. However, from
various experience on combinatorics and statistics, our conjecture is that there

does not exist a VBB design envisaged in Problem 2, or, equivalently,
a fractional factorial plan as in Problems 2-1 and 2-2.

Usually, combinatorial problems on discrete designs can be tackled by use
of number-theoretic approach and/or combinatorial approach including
group- or coding-theoretic approach. But sometimes the problems are very
deep, even though their representation is simple. It seems that the problems
presented here are just such cases.
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