Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Gelfand representation of Banach modules

Seria

Rozprawy Matematyczne tom/nr w serii: 203 wydano: 1982

Zawartość

Warianty tytułu

Abstrakty

EN

Preface
Let A be a commutative Banach algebra with maximal ideal space ∆ and let ^: A → C₀(∆) be the Gelfand representation of A. If M is a Banach module over A, then a bounded linear map φ: M → M₀, will be called a representation of M of Gelfund type if M₀ is a Banach module over C₀(∆) and φ is ^-linear in the sense that φ(ax) = âφ(x) for all a ∈ A and x ∈ M. Two such representations have been studied previously. In [50] and [51] Robbins describes such a representation in which M₀, is taken to be a space of continuous complex-valued functions. Varela and Hofmann have considered the special case in which A is a commutative C*-algebra with identity and in that case they describe a very different type of representation in which M₀ = Γ(π),the space of continuous sections of a bundle of Banach spaces π : E → ∆. The present paper generalizes considerably the sectional representation studied by Varela and Hofmann and shows its "equivalence" to the representation studied by Robbins. For a very large class of Banach modules (M, A), including essential modules over Banach algebras with bounded approximate identities, it is shown that there is a bundle of Banach spaces π : E → ∆ and a representation ^: M → Γ₀(π) which is not only of Gelfand type, but is universal with respect to all sectional representations of Gelfand type. This representation, which is unique up to isomorphism, is called the Gelfand representation of the module. Its basic properties are developed in the second section of the paper. Flanking this section are a preliminary section concerning bundles and a section devoted to examples. The final section explores functorially the relationships between Banach modules, bundles of Banach spaces, and their morphisms.

CONTENTS
Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1. Bundles of Banach spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2. Representations of Banach modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4. Functorial properties of the Gelfand representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Appendix. A correspondence between sections and complex-valued functions . . . . . . . . . . . . .42
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

Miejsce publikacji

Warszawa

Copyright

Seria

Rozprawy Matematyczne tom/nr w serii: 203

Liczba stron

47

Liczba rozdzia³ów

Opis fizyczny

Dissertationes Mathematicae, Tom CCIII

Daty

wydano
1982

Twórcy

  • Department of Mathematics, Duke University, Durham, U.S.A.
  • Department of Mathematics, Trinity College, Hartford, U.S.A

Bibliografia

  • [1] F. F. Bonsall and J. Duncan, Complete normed algebras, New York. Springer Verlag, 1973, Ergebnisse 80.
  • [2] J. Cigler, Zur dualität von Funktoren, die durch Funktionenräume definiert sind, Monatsh. Math. 82 (1976), p. 117-123.
  • [3] C. V. Comisky, Multipliers of Banach modules, Dissertation, University of Oregon, Eugene, Oregon, 1970.
  • [4] C. V. Comisky, Multipliers of Banach modules, Nederl. Akad. Wetensch. Proc. Ser. A, 74 (1971), p. 32-38.
  • [5] J. G. Craw, Axiomatic cohomology for Banach modules, Proc. Amer. Math. Soc. 38 (1973), p. 68-74.
  • [6] J. Dauns and K. H. Hofmann, Representations of rings by sections, Mem. Amer. Math. of Soc. 83 (1968), p. 180.
  • [7] C. L. De Vito, K. S. Wang and E. C. Waymire, On compact amppings between L¹-modules and almost periodic functions, University of Arizona, 1975.
  • [8] J. Domar, Some results on narrow spectral synthesis, Math. Scand. 20 (1967). p. 5-18.
  • [9] C. Dunkl, Modules over commutative Banach algebras, Monatsh. für Math. 74 (1970), p. 6-14.
  • [10] C. Dunkl and D. E. Ramire, Multipliers on modules over the Fourier algebra, Trans. Amer. Math. Soc. 172 (1972), p. 357-364.
  • [11] H. G . Feichtinger, Multipliers of Banach spaces functions on groups, Math. Z. 152 (1977). p. 47-58.
  • [12] A. W. M. Graven, Banach modules over Banach algebras, Dissertation. Mathematisch Instituut der Katolieke Universiteit Nijmegen, the Netherlands. 1974.
  • [13] A. W. M. Graven, Tensor products and multipliers of L¹(G)-modules, Nederl. Akad. Wetensch. Proc. Ser. a, 78 (1976), p. 313-325.
  • [14] W. A. Greene, Ambrose modules, Mem. Amer. Math. Soc. 148 (1974), p. 109-133.
  • [15] G. R. Giellis, A characterization of Hilbert modules, Proc. Amer. Math. Soc. 36 (1972), p. 440-442.
  • [16] G. R. Giellis, Trace class for a Hilbert module, Proc. Amer. Math. Soc. 29 (1971), p. 63-68.
  • [17] S. L. Gulick, T. S. Liu and A. C. M. van Rooij, Group algebra modules, I, Canad. J. Math. 19 (1967), p. 133-150.
  • [18] S. L. Gulick, T. S. Liu and A. C. M. van Rooij, Group algebra modules, II, Canad. J. Math. 19 (1967), p. 151-173.
  • [19] S. L. Gulick, T. S. Liu and A. C. M. van Rooij, Group algebra modules, III, Trans. Amer. Math. Soc. 152 (1970), p. 561-579.
  • [20] S. L. Gulick, T. S. Liu and A. C. M. van Rooij, Group algebra modules, IV, Trans. Amer. Math. Soc. 152 (1970), p. 581-596.
  • [21] H. Halpern, Irreducible module homomorphisms of a von Neumann algebra into its center, Trans. Amer. Math. Soc. 140 (1969). p. 183-193.
  • [22] H. Halpern, Module homomorphisms of a von Neumann algebra into its center, Trans. Amer. Math. Soc. 140 (1969). p. 195-221.
  • [23] A. Ja. Helemskii, A locally compact abelian group with trivial two-dimensional Banach cohomology is compact, Dokl. Akad. Nauk SSSR 2003 (1972), p. 1004-1007.
  • [24] A. Ja. Helemskii, The global dimension of a functional Banach algebra is different from one, Funkcional Anal. i Prilozen. 6 (1972), p. 95-96.
  • [25] E. Hewitt and K. A. Ross, Abstract harmonic analysis, II, New York, Springer Verlag, 1970.
  • [26] K. H. Hofmann, Bundles of Banach spaces, Sheaves of Banach spaces, C(B)-modules, Lectures at the Technische Hochschule, Darmstadt 1974.
  • [27] K. H. Hofmann, Bundles and sheaves are equivalent in the category of Banach spaces (to appear).
  • [28] K. H. Hofmann, Representations of algebras by continuous sections, Bull. Amer. Math. Soc. 78 (1972), p. 291-373.
  • [29] K. H. Hofmann, Sheaves and bundles of Banach spaces (to appear).
  • [30] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
  • [31] I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), p. 339-358.
  • [32] J. W. Kitchen, Jr., Normed modules and almost periodicity, Monatsh. für Math. 70 (1966), p. 233-243.
  • [33] J. W. Kitchen and D. A. Robbins, Spectral synthesis for a class of Banach modules, Notices Amer. Math. Soc. 23 (1976). A 149.
  • [34] H. E. Krogstad, Multipliers on homogeneous Banach spaces on compact groups, Ark. Math. 12 (1974), p. 203-212.
  • [35] J. G. de Lamadrid, Topological modules, Banach algebras, tensor products, algebras of kernels, Trans. Amer. Math. Soc. 126 (1967), p. 361-419.
  • [36] T. S. Liu, A. C. M. van Rooij and J. K. Wang, Group representations in Banach spaces; orbits and almost periodicity, Studies and essays presented to Yu-Why Chen on his sixtieth birthday (1970), p. 243-254.
  • [37] L. H. Loomis, An introduction to abstract harmonic analysis, New York, D. van Nostrand, 1953.
  • [38] L. Maté, On representations of module homomorphisms, Studia Sci. Math. Hungar. 8 (1973), p. 187-192.
  • [39] J. Munoz Diaz, Characterization of differentiable algebras and spectral synthesis for modules over such algebras, Collect. Math. 23 (1972), p. 17-83.
  • [40] W. L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182 (1973). p. 443-468.
  • [41] M. A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Functional Analysis 1 (1967), p. 443-491.
  • [42] M. A. Rieffel, On the continuity of certaing intertwining operators, centralizers and positive linear functionals, Proc. Amer. Math. Soc. 20 (1969), p. 455-457.
  • [43] M. A. Rieffel, Multipliers and tensor products of $L^p$ spaces of locally compact groups, Studia Math. 33 (1969). p. 71-82.
  • [44] M. A. Rieffel, On extensions of locally compact groups, Amer. J. Math. 113 (1964), p. 40-63.
  • [45] M. A. Rieffel, Induced representations of C*-algebras, Advances in Math. 13 (1974), p. 176-257.
  • [46] M. A. Rieffel, Morita equivalence for C*-algebras and W*-algebras, J. Pure Appl. Algebra 5 (1974), p. 51-96.
  • [47] M. A. Rieffel, Unitary representations of groups extensions: an algebraic approach to the theory of Mackey and Blattner, Advances in Math. (to appear).
  • [48] M. A. Rieffel and A. von Daele, The commutation theorem for tensor products of von Neumunn algebras, Bull. London Math. Soc. 7 (1975), p. 257-260.
  • [49] R. Rigelhof, Tensor products of locally convex modules and applications to the multiplier problem, Trans. Amer. Math. Soc. 164 (1972), p. 295-307.
  • [50] D. A. Robbins, Tensor products and representations of Banach modules, Dissertation, Duke University, Durham, N.C., 1972.
  • [51] D. A. Robbins, Toward a generalization of the Gelfand transform, Nieuw Arch. Wisk. (3) 22 (1974), p. 138-142.
  • [52] J. G. Romo, Spectral synthesis in Banach modules, Dissertation, Oklahoma State University, Stillwater, Oklahoma, 1976.
  • [53] P. Saworotnow, Representations of a topological group in a Hilbert module, Duke Math. J. 37 (1970), p. 145-150.
  • [54] J. F. Smith, Structure of Hilbert modules, J. London Math. Soc. 148 (1974). p. 97-108.
  • [55] A. Takahashi, Fields of Hilbert modules, Dissertation, Tulane University, New Orleans, Louisiana, 1971.
  • [56] J. Varela, Duality of C*-algebras, Mem. Amer. Math. Soc. 148 (1974), p. 97-108.
  • [57] J. Varela, Sectional representations of Banach modules, Math. Z. 139 (1974), p. 55-61.
  • [58] K. H. Hofmann and K. Keimel, Bundles and sheaves of Banach spaces, Banach C(X)-modules, Lecture Notes in Math. 753 (Berlin: Springer-Verlag) 1979, p. 415-441.
  • [59] J. W. Kitchen and D. A. Robbins, Tensor products of Banach bundles, Pacific J . Math. 94 (1981), p. 151-169.
  • [60] A. Takahashi, Hilbert modules and their representation, Rev. Colombiana Mat. 13 (1979), p. 1-38.
  • [61] A. Takahashi, A duality between Hilbert modules and fields of Hilbert spaces, Rev. Colombiana Mat. 13 (1979), p. 93-120.
  • [62] M. J. Dupre and R. M. Gillette, Banach bundles, Banach modules, and automorphisms of C*-algebras, J. Operator Theory (to appear).
  • [63] E. Makai, Continuous fields of Banach spaces, Colloq. Math. Soc. Janos Bolyai 23 (1978), p. 815-825.
  • [64] A. W. M. Graven, Injective and projective Banach modules, Nederl. Akad. Wetensch. Indag. Math. 41 (1979), p. 253-272.
  • [65] M. Hamana, Injective envelopes of Banach modules, Tohoku Math. J. 30 (1978), p. 439-453.
  • [66] G. Gierz, Representation of spaces of compact operators and applications to the approximation property, Arch. Math. (Basel), 30 (1978). p. 622-628.
  • [67] J. Cigler, V. Losert and P. Michor, Banach modules and functors on categories of Banach spaces, Lecture Notes in Pure and Applied Mathematics 48 (New York: Marcel Dekker), 1979.
  • [68] J. W. Kitchen and D. A. Robbins, Sectional representation of Banach modules, Pacific J. Math. (to appear).

Języki publikacji

EN

Uwagi

AMS (MO5) subject classifications. Primary, 46H15, 46H25, 55H65; Secondary, 22D15, 43A15, 43A60, 46E15, 46J20, 46M15.

Identyfikator YADDA

bwmeta1.element.zamlynska-6e8d8bc0-c20b-4576-86be-02ad45032fbd

Identyfikatory

ISBN
83-01-02147-0
ISSN
0012-3862

Kolekcja

DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.