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0. Introduction

There has been a recent surge of interest in the projective representations of
symmetric groups and their associated combinatorial and algebraic structure.
The study of these representations began with Schur, who published degree
and character formulas in a paper written in 1911 [S]. Unlike the ordinary,
linear representations of symmetric groups, there was no subsequent develop-
ment of machinery to construct, manipulate and study these representations.
Indeed, it was not until the 1960’s that a series of papers by Morris began to
address these problems (see [Mol-3] and the references cited there).

One of the impediments which prevented this development was the lack, at
least initially, of a suitable combinatorial structure analogous to Young
tableaux. This difficulty has since been overcome by the advent of shifted
tableaux. These tableaux first appeared in a 1952 paper by Thrall [T], although
it is unclear (but conceivable) that Thrall knew of their representation-theoretic
significance. There have since been many advances in the study of projective
representations of §,, including the construction of: a projective analogue of
the Murnaghan—Nakayama character recurrence [Mo2]; a version of the
Robinson-Schensted-Knuth correspondence for shifted tableaux [W], [Sa];
a Frobenius-type characteristic map [J], [St]; explicit bases for the irreducible
representations [ N]; a projective analogue of induction from Young subgroups
[J], [HH], [St], and a corresponding analogue of the Littlewood—Richardson
rule [St].

The purpose of this paper is twofold. Primarily, it is to survey the
interconnections between projective (or spin) characters of S,, shifted tableaux,
and the theory of symmetric functions. This survey occupies Sections 1-4. For
proofs of most of the results, the reader will be referred to the literature. The
remainder of this paper is devoted to providing new proofs of some known
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results in order to illustrate the use of combinatorial methods. Specifically, in
§ 5 we provide a new proof of the Morris character recurrence. The novelty of
this proof lies in its use of shifted tableaux where previous proofs have
employed the machinery of Hall-Littlewood functions. In § 6, we give a purely
combinatorial proof that Schur’s so-called @-functions are symmetric. This [act
is self-evident in Schur’s definition, but not so evident if one defines them as
tableaux generating functions. The analogous problem for Schur’s S-functions
was solved by Bender and Knuth [BK].

Conventions

All representations considered here will use the complex field.

The notation {, »; is used for the standard Hermitian inner pro-
duct on the complex vector space spanned by the characters of the (finite)
group G.

Let P dencte the set of partitions; 1.e., nonnegative integer sequences
A={4;, =24, =...). The length [(4) is the number of nonzero parts, and |4
denotes the sum of the parts. We write pn S A if u, <4, 4, <45, .... If
|A| = n, z, denotes the size of the S,-centralizer of any permutation of
cycle-type 4, as in [Ma].

Let OP denote the set of partitions whose (positive) parts are all odd, and
let DP denote the set of all partitions whose (positive) parts are distinct. If X is
any of the sets OP, DP or P, we write X, to denote the subset of partitions of
n (i.e., |A| = n), and we write X* or X~ for the subset consisting of those 4 for
which |4|—1I(4) is even or odd, respectively.

1. Spin characters

A projective representation of a group G on a vector space V is a homomorph-
ism G — PGL(V), or equivalently, a map P: G —» GL (V) such that

Px)P(y)=¢,,P(xy) (x,yeG)

for suitable (nonzero) scalars c, ,. For the symmetric group, the associated
Coxeter presentation shows that a representation S, — PGL (V) amounts to
a collection of linear transformations a4, ..., g,_; € GL(V) (representing the
adjacent transpositions) such that 67, (0,0;,,)%, and (g;0,)* (for |j—k| > 2) are
all scalars. The possible scalars that arise in this fashion are limited. Of course,
one possibility is that the scalars are trivial; this occurs in any ordinary, linear
representation of S,. According to a result of Schur [S], there is only one other
possibility (occurring only when n > 4); namely,

(L) af=-1 (000 =~1 |j-Kk=>2 (5;0;,,)°=~L

All other possibilities can be reduced to this case or the trivial case by a change
of scale. See [J], [St] for details.
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It is convenient to regard o, ..., 6,_, as elements of an abstract group,
and to take (1.1) as a set of defining relations. More precisely, for n = 1 let us
define S, to be the group of order 2-n! generated by o,, ..., 6,_, (and —1),
subject to the relations (1.1), along with the obvious relations (—1)2 = 1,
(—=Do; =0;(—1) which force —1 to be a cgntral involution. By Schur’s
Lemma, an irreducible linear representation of S, must represent — 1 by either
of the scalars +1 or —1. A representation of the former type is a linear
representation of S,, whereas one of the latter type corresponds to a projective
representation of S, as in (1.1). In general, we will refer to any representation of
S in which the group element —1 is represented by the scalar —1 as a spin
representation of S .

A fundamental construction of spin representations can be obtained from
the linear representations of Clifford algebras. Let C, denote the (complex)

Clifford algebra of dimension 2" generated by &,,..., &,, subject to the
relations

(1.2) E=—-1; &é4=-4¢&  (K#).

Given any. linear representation C,_, —» End(V), we may regard
& -rer €, €GL(V) and construct a spin representation of S, via the
assignments

+ 1 [i—1 :
0;= Jz—jﬁj—'—?_j_fj—i I<j<n.

The relations (1.1) follow directly from (1.2). Since the images of
64+ ..., 06,_, In C,_, generate the full Clifford algebra, it follows that any
spin representation of §, constructed from an irreducible representation
C,_,— End (V) will also be irreducible. In case n = 2k+ 1, one knows that
C,_, is simple and we have C,_, = M (2%, the matrix algebra of order 2*
Thus S,,,, has an irreducible spin representation of dimension 2* In case
n =2k, one knows C,_, = M(2*" )@ M (2*" "), so §,, has two irreducible
spin representations of dimension 2*~!, These representations of $,,., and
S,, are known as the basic spin representations. See [Mol], [J], [St] for
further details.

To describe the characters of spin representations it is convenient to take
advantage of the structure of the conjugacy classes of §. For each partition
u of n, choose an element oueS',, whose S, -image 1s of cycle-type u. Eventually
we will be very particular about the choice of ¢, but for the moment we merely
note that since {+ 1} is the kernel of the epimorphism §, — §,, it follows that
every o8, is conjugate to either o, or —a, for some p.

THEOREM 1.1 (Schur). The elements 6, and —o, are not conjugate in S, iff
either (1) the parts of u are all odd (i.e., ue OP,), or (2) the parts of u are distinct
and n—1(y) is odd (i.e., peDP ).
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CoroLLARY 1.2. The elements {c,: peP,}u{—0,: neOP, UDP,} form
a system of representatives of the distinct conjugacy classes of S,.

Proofs may be found in {J], [S], [St].

If @ is the character of a spin representation of §, then ¢(—0) = — (o)
for all ¢ §,. Consequently, ¢ (¢) vanishes on classes in which ¢ and —¢ are
conjugate, and hence, ¢ is completely determined by the traces ¢(g,) for
ueOP,uDP,.

Let ¢ denote the sign character of §, and let A, = kere denote the
subgroup of §, that doubly covers the alternating group A,. It is convenient to
divide the irreducible spin characters of §, into two classes: those which remain
irreducible as A -characters, and those which split into two irreducible
A -characters. By the standard techniques of Clifford Theory, the latter consist
of those characters ¢ with ¢ = e¢, and are said to be self-associate. The former
characters occur in pairs ¢, with ¢ _ =e@,, and are said to be associate
characters.

As further application of Theorem 1.1, we have

CororLrary 1.3 (cf. [St, § 4], [J, § 3]). The number of irreducible
self-associate (resp., pairs of associate) spin characters of S, is |DP}| (resp.,
IDP, ).

Proof. The space of S, -class functions is of the form Z, @ Z,, where Z, and
Z, denote the subspaces spanned by ordinary and spin characters, respectively.
Moreover, we have Z, = Z;7 @ Z,, where Z,7 and Z,  denote the subspaces of
Z, spanned by class functions supported on the even and odd-signed classes of
S., respectively. By Theorem 1.1, we have dimZ}] ={OP, and
dim Z,; = |DP,|.

If ¢ is a self-associate spin character, then ¢ € Z,, whereas if ¢, is a pair
of associate spin characters, then ¢, —¢@_€Z, and ¢, +¢_€Z,. Hence,
dimZ_ is the number of associate pairs, and

dim Z} —dim Z] = |OP,|—|DP; | = |DP}|

is the number of self-associate spin characters, using the well-known fact that
|OP,| = |[DP,}. m

We remark that since any pair of associate spin characters differ only by
a linear character (namely &), the corresponding representations are tsomorphic
in the projective category. Corollary 1.3 therefore shows that the irreducible
projective representations of S, are in one-to-one correspondence with par-
titions of n with distinct parts.

To explicitly describe particular spin characters, we need to make specific
choices for the representatives a#eg'"; subsequent formulae would otherwise
only be well-defined up to sign. We therefore define

C,=T7,...7,,
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where n; =0,,,6,45...044,,— 1 (@=py+ ... +p;_;) for 1 <j<I=1(y) For
example, if u = (5, 3, 1), then ¢, = 6, 6,0,06,0640, and the image of 5, in S, is
the permutation (12345) (678) (9).

With these choices in mind, let us describe the characters of the basic spin
representations of $,. We use the notations ¢" (n = 2k +1) or ¢% (n = 2k) for
these characters, although the subscript + will be dropped whenever the choice
of signs is irrelevant. By a straightforward trace calculation, one finds

(1.3) ¢"(0,) =210 U (4 OP,), ?

and in case n = 2k, u = (2k), one finds

0¥ (o) = £#/k.

In all other cases, ¢"(s,) = 0. In particular, ¢***! is self-associate and ¢% is
a pair of associates. See [Mol], [J], [S], or [St] for details.

Next we consider an analogue of the outer tensor product for spin
characters. The construction we describe below appears in [St], and in an
equivalent form in [HH].

Let $,.,_y, denote the subgroup of §, generated by {5;: j # k} (a double
cover of the Young subgroup S, xS,_,), and let g,: §, = GL(V,) and o,:
S, _, = GL(V,) be spin representations, regarding §,_, as the subgroup
generated by {5;: k < j < n}. It will be convenient to assume below that ¢, and
o, are irreducible, although this is not strictly necessary. The spin product
0, ® o, is a spin representation of Sin-x defined as follows:

Cast 1. If neither g, nor g, is self-associate, the spin product ¢, ® o,
represents the generators o; (j # k) on GL{C*’® V,; ® V,) as follows:

1 0
[0_1]®el(a,.)®1v2 (1<j<h

77310 1
[1 O]®1V1®92(0;‘) (k<j<n).
Note that g, ® g, is self-associate.

Cask 2. Assume only one of g, or g, is self-associate; say g,. In that case,
Q; = e®g,, so there must exist Se GL(V,) such that $* =1 and

(1.4) Se, (o) = —e.(6)S (1 <j<kj.

If g, is irreducible, Schur’s Lemma implies that +S is unique. There are two

possible spin products (g, &® 0,);, both defined on GL(V, ® V), arising from
the choice of +8§ or —8§:

0 0)®1,, (<j<h
(1-3) "fH{iséez(a,-) k <j<n).
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In this case, it can be verified that the representations (¢, ® ¢,), form an
associate pair [St]. As above, we will omit the subscript + whenever the choice
of sign is irrelevant.

Case 3. If both ¢, and g, are self-associate, let S e GL (V) be the involution
as in (1.4). In this case, we define the spin product ¢, ® ¢, on GL(V, ® V,)
exactly as in (1.5), but one finds that the same spin representation is produced,
regardless of the choice of sign (up to isomorphism). Furthermore, it is easy to
check that g, ® g, is self-associate in this case.

Strictly speaking, the spin product is a multi-valued operation (cf. Case 2);
modulo this qualification it is commutative (up to isomorphism). There is also
a natural way to define multiple products ¢, ® ... ® g, so that ® is associative
[St]. Finally, we mention the following analogue of a well-known property of
outer tensor products:

THeorEM 1.4 ([HH], [St]). If ¢, and g, are irreducible, then so is ¢, ® 0.
Conversely, every irreducible spin representation of S, ,_,, is of this form.

2. Symmetric functions

Let A = @,,,A" denote the graded algebra of symmetric functions in the
variables x,, x,, ... with integer coefficients [Ma]. If F is a field of characteris-
tic 0, let Ay = A ®, F denote the corresponding (graded) F-algebra. There are
five fundamental bases for A (or A,) indexed by partitions; the ones we will
require here are: the monomial basis m,, the power-sum basis p,;, and the
Schur function basis s;. For definitions, see [Ma].

Let Qp = @,., QF denote the graded subalgebra of A, generated by 1,
P> P3> Ps, ..., and let @ = A Q, denote the integer-coefficient (graded)
subring. Note that {p,: pueOP} is a basis of Qf. In particular,
dim, Q5 = |OP,| = dim. Z, (cf. the proof of Cor. 1.3). Define an inner product
[,] on Q¢ by setting

2.1 p,.p,1=2,27""5,, (4, veOP).

The inner product spaces Q¢ and Z, may be connected by means of
a pseudo-isometry ch’: Z, —» Q¢ defined as follows:

22) h(f)= ¥, ~29f(a)p,
ueQP,, zu

We refer to ch’ as the spin characteristic. Note that ch’ is not injective; we have
ker(ch’) = Z,, so that ch’(f) =0 iff f| 4, = 0. This apparent loss of infor-
mation is not catastrophic since the character table of § is very sparse on the
odd-signed conjugacy classes (see Theorem 4.1(b)).

For any feZ,, let f, denote the S, -class function for which f,(¢) = f(0)
(ceA) and f,(a) =0 (0 ¢ A,). Although the spin characteristic is not quite
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an isometry, a direct application of (2.1) and (2.2) implies

(2.3) [eh'f, ch'g] = {fo, gos. = 2/, P,

for any f, geZ,. In particular, we do have [ch'f, ch’'g] = {{, g3, whenever fg
vanishes outside of A4,; e.g, whenever f or geZ,.
By specializing identity (4.1) of [Ma, III] to the case t = — 1, we obtain

2.4 I s Loy (), ().

i ]_xiyj 1eOP 2y

L+xy; _

This identity encodes the structure of the inner product [, ], as we shall see in
the sequel.
Another set of generators for ©, can be obtained from the symmetric

functions g, defined by the generating function (cf. [Ma, IIL.3] with t = — 1)
- L owr
By specializing (2.4) to the case y, =y, =...=0, y, =1, we sece that
(2.5) G= ) l2"“’.%,
neOP, 2

from which it follows that g,€ 2". A simple induction can then be used to
establish that q,, ¢5, 45, ... are algebraically independent generators (with 1) of
Q,. Furthermore, we note that (1.3) and (2.5) imply

%q,. (n = 2k)

(2.6) ch' " = |
—q, (n=2k+1).
NG
For any partition 2, let g, = q, q,,... Since the coefficient of m,(y) in
T+x,y; " n
[[——=(X ¢y (X 9.(x)¥%)...
i l'xi}’j nz0 Rz 0
is clearly g,(x), it follows that
[+Xx;y;
(2.7) [ =Y a.0m, ).
ij 1 —X:Y; 2
By comparing this identity with (2.4), we find that for any fe Q,,
1 .
f=% [f, *2""’1),,}7,, =21 adm,
neOP I A

In other words, we have proved
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ProposiTiON 2.1. If feQ, then [f, q,] is the coefficient of m, in f.

Using the spin product of § 1, we can define a graded multiplicative
structure on &, ,Z, that approximates (via ch’) the multiplication in Q.
" Specifically, given irreducible spin characters ¢, €Z;, ¢, Z,_,, the induced
character(s) (¢, ® ¢,)1S, provide a (multi-valued) bilinear operation of the
form

2y, ®Zy > Z,.
Considering the spin characteristic of this operation, we find
Tueorem 2.2 ([St, § 50). If ¢, and ¢, are irreducible spin characters of S,
and S;_,, then
2ch’ ¢, ch o, if ¢,, ¢, are not self-associate,
ch'@,ch’ ¢, otherwise.

o (0 & 92)15)) = {

3. Shifted tableaux

For each partition A with distinct parts there is an associated shifted diagram
defined via

=, )eZ% i<j< A+i—1, 1 <i<I(A).

We regard the elements of D) as a collection of boxes in the plane with
matrix-style coordinates.

Let P’ denote the ordered alphabet {I'<1<2 <2<3 <...}. The
letters 1/, 2', 3', ... are said to be marked. We use the notation |g| to refer to the
unmarked version of any aeP’; eg, [2| =2 = 2.

A shifted tableau of shape A is an assignment T: D) — P’ such that:

Rl TG )<TGE+1,j), TG H<TGEj+1).
(R2) At most one k appears in each column (k=1,2,3,..).
(R3) At most one k' appears in each row (k' =1,2, 3, ..).

An example is given in Fig. 1.

11 1 2 2 4

2 2 2 ¥
4 4 5
5

Fig. |

Note that if |T(i, j)] = |T(i+ 1, j)| then (R1) and (R2) will force T(i, j) to be
marked; if |T(@i, j— 1) =|T(, j)| then (R1) and (R3) will force T(i,j) to be
unmarked. In either of these cases, we say that (i, j) is forced in T. Otherwise, if
TG, j— ) <|TG@, ) < |T@{+1,)) (where defined), then T(i, j) can be marked
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or unmarked, regardless of the markings of the entries near (i, j). In this case,
we say that (i, j) is free in T, and let fr (T) denote the number of free entries in T.
In Fig. 1, the (1, 6)-entry and the (3, 5)-entry, as well as the entries on the main
diagonal, are free.

A shifted tableau T is said to have content y = (y,, 75, - .. ), where y, denotes
the number of boxes (i, )e D; with |T(i,j) = k. We will write x" = x"
= x}' x§*.... Theexample in Fig. I has content (3, 5, 0, 3, 3). For each 1€ DP, let
Q,(x) denote the content-generating function for tableaux of shape 1; ie.,
3.1 x) = xT
3.1) ACENPI
summed over shifted tableaux T.

Let P denote the ordered alphabet {1 <2 <3 <...}. An assignment T:
D), — P of unmarked letters is said to be feasible if it is possible to create
a shifted tableau by marking some of the entries of T. We note that T is feasible
iff T satisfies rule (R1) as well as

(R4) T, )< T@+1,j+1);

ie., T must have increasing diagonals. Since the free entries can be marked
independently and arbitrarily, it follows that 2T shifted tableaux can be
obtained by marking a feasible T. Hence, (3.1) can also be written in the form
(3.2) Q:(x)= ) 2MOxT

T:D,—P
summed over feasible T.

Since the main diagonal of a feasible T is always free, it follows that
fr(T) = 1(A). Therefore,

P,(x):=27"%Q,(x)

has integer coefficients and may be interpreted as the generating function for
shifted tableaux with unmarked main diagonals.

The generating functions @, (x) coincide with the Hall-Littlewood sym-
metric functions @, (x; t) when ¢t is specialized to —1, although to prove this
coincidence is nontrivial (compare (3.2) above with identity (5.11) of [Ma, III]).
We also remark that the @, (x)’s coincide with certain symmetric polynomials
defined by Schur (also denoted Q) as the pfaffians of certain skew-symmetric
matrices [S] (see also [J]).

The fact that Q, is a specialization of a Hall-Littlewood function has
many consequences. In particular, Q, must be a symmetric function(?), and so
we have the expansion

Ql = z K’).pl m#!
u

(!) We give a purely combinatorial proof of this fact in § 6.
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where K, denotes the number of shifted tableaux of shape 4 and content pu.
A further consequence is the identity [Ma, 111.4]

(3.3) [[—= Y P.x0Q,(),

ij XiY;  ieDP
from which we obtain

ProrositioN 3.1 (cf. [St, § 6]). (a) {Q,: AeDP,} is a basis of .
(b) [P,la Qu] = 5).;.1'
(C) q;t = Z ”J..u Pl‘

AeDP

Proof. Comparing (2.7) and (3.3), we find
Y a,m )= % P,(x)Q,(»),

neP,, AeDP,
which yields (c) after the coefficient of y* is extracted. Since {q,: p€ OP | spans
Q% and |OP,| = |DP,|, it follows that (¢) may be inverted over Q, thus
expressing P, or Q, as a linear combination of g,’s. This proves (a). One may
prove (b) [rom (3.3) by the same technique used to prove {(4.6) in [Ma, 1]. m

We remark that (3.3) has been given a purely combinatorial proof by
Worley [W] and Sagan [Sa], starting from the definition in (3.1).

Since the P,’s form a Z-basis of Q [St, § 6], we may define integers, 2 via
the expansion

PP, =) fiP,.
AeDP
There is an explicit combinatorial interpretation of these coefficients analogous
to the Littlewood-Richardson rule for the multiplication of Schur functions.
To explain this interpretation, we need to introduce skew shifted tableaux and
a shifted version of the lattice permutation property (cf. the classical LR rule in
[Ma]).

A skew shifted diagram is an array of boxes of the form D),,:= D), — D, for
any A, ue DP with 1 = u. A shifted tableau of shape 4/u is defined to be an
assignment T: D), — P’ satisflying the usual rules (R1-3). Let
(3.4) Qi = Z xT

T:D,/,—P
denote the associated generating function, and set Q,,, = 0 if 2 2 u. By [Ma,
[11.5], one knows that

(3'5) [Ql[.u’ Pv] = [Q}J Pu Pv] =fH);”
so the coefficients f,} also appear in the expansion

Q,l/p = Z quv Qw

In particular, note that f;} = f% and f} =0 unless u,v< A
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Let w=w,...w, be any word over the alphabet P". Let w" =w ... w,
denote the reverse of w, and let w = w, ... W, denote the the word obtained by
inverting the marks of w, so that 2 =2 and 2’ = 2. Let n,(w, j) denote the
number of occurrence of the letter i (not i) among w,...w;, with the
convention n,(w, 0) = 0. The word of a shifted tableau T is the sequence w(T)
obtained by reading the successive rows of T from left to right, starting with the
bottom row. For example, the word of the first tableau in Fig. 2 is
3123'1*2'211. (The notation 1* serves a later purpose — it indicates that either
1 or 1" is allowed.)

The extended word of T is the sequence defined by e(T) = w"w, where
w = w(T). The tableau T is said to satisfy the shifted lattice property if the
extended word e = ¢, ...e,, satisfies the following condition for all i > 1 and
0<j<2n

€y Fi, T 0<j<n

SLP) nfe,j)=n_ (e, j) impli
(SLP)  n(e,jy=n;_,(e,j) implies {ej+l¢z',(i—1)' (n <j < 2n),

For example, each of the tableaux in Fig. 2 satisfy (SLP), independently of the
markes chosen for the *s.

THEOREM 3.2 [St, § 8]. The coefficient [, is the number of shifted tableaux
T of shape Ai/u and content v such that (1) T satisfies (SLP) and (2} the leftmost
i of \W(T) is unmarked in w(T) (1 <i<I(v).

For example, consider 2 =(7, 5, 3, 1), u=(5, 2), v= (4, 3, 2). One finds
that there are six tableaux satisfying the above properties (see Fig. 2), so we
conclude that f, = 6.

11 1 1 1 1

1* 2 2 1 2 2 1 1 2
1 2 % 1 2 3% 2 2 3*
3 3 3
Fig. 2

The representation-theoretic significance of this result will be discussed in
the next section.

4. The irreducible spin characters

The Q-functions play a fundamental role in Schur’s description of the
irreducible spin characters of S,. Recall (Cor. 1.3) that these characters are
indexed by Ae DP,. Let ¢* (Ae DP,’) denote the self-associate spin characters,
and let @4 (1€ DP, ) denote the pairs of associate spin characters. As usual, the
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subscript + will be dropped whenever the choice is irrelevant. Let us aiso

introduce the notation

V2 i 1A=1() s odd,
2ZU i A —1(}) is even.

Tueorem 4.1 (Schur). (a) For any AieDP,, we have ¢,ch’'¢?
=270 ;5 e,
oz g _ U iy
(4.1) —2 Qi= ) —2¥2p*o,)p,.
€3 HeOP, 2
The above expansion determines the characters on the even-signed conjugacy
classes. For the odd-signed classes, the situation is much simpler.

(b) If A, ueDP,, then ¢4 (c,) =0 unless A = p. In that case, if’ | = (1),

then '
A _ (n—-1+1)/2 1 H
0% (o) = i EAI...A,.

Sketch of proof. Take the above formulas as definitions of certain § -class
functions ¢* There are three basic steps in Schur’s proof; we discuss these
below, and briefly indicate how they can be proved with recently developed
combinatorial techniques. For details of the latter, see [St]; for a treatment
more faithful to Schur’s original techniques, see [J].

Step 1. Show that {@*: AeDP,/} U {p%: AeDP,} forms an orthonormal
basis of Z,,. i

Via the spin characteristic, this is equivalent to the fact that [P, Q.]=24,,
(Prop. 3.1(b)). -

STEP 2. Construct spin characters n* (resp., n) indexed by Ac DP;} (resp.,
DP,’) whose expansion with respect to ¢* is of the form
(4.2) =o'+ ) c, 0"

n>a
for suitable integers c,;, and a suitable partial order > on DP,.

This can be solved by taking #* to be the § -character induced from
successive spin products of the basic spin representations of S, , §.. ... By (2.6)
and Theorem 2.2, it follows that

‘oA l —lAN2
ch'n* = 612 q;-
Via the spin characteristic, the ¢*-expansion of #»* is related to the
P -expansion of g, (cf. Prop. 3.1(c)). In this context, to prove (4.2) amounts to
showing that [27'® K] is a triangular integer matrix with a unit diagonal.

The expansion (4.2) can be inverted over Z, thereby proving that ¢* is

a Z-linear combination of characters. Since ¢* is of unit length (Step 1), it

follows that either ¢* or —¢* is an irreducible spin character.
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Step 3. Show that ¢*(1) > 0.
From the expansion (4.1), we have

1 1
o' (1) = ;2"'"‘“”2 [Q: pil = 6—2""”"“”2 [2: g1,
A A

since g, = 2p,. Proposition 2.1 therefore implies

1
oH(1)= —27TRK, 1> 0. m
A

Let g* = 27" K’ ; denote the number of unmarked shifted tableaux of
shape 4 and content 1”. A consequence of the above calculation is

CoROLLARY 4.2. dego* = 2L0~H2N2] 44

Since Q, is essentially the spin characteristic of ¢*, Theorem 2.2 shows
that, aside from powers of 2, 0, Q, is the spin characteristic of (¢* ® ¢")185,.
Therefore, the shifted Littlewood-Richardson rule (Theorem 3.2) describes the
decomposition of (¢* ® ¢")18§, into irreducible characters. In terms of the
coefficients f, introduced in § 3, one finds

Tueorem 4.3 [St, § 8]. The multiplicity of ¢* in (¢* ® @*)18, is
ey Lyl 20wtz fA - ypless AeDP, and A= puuv. In that case, the
multiplicity is O or 1, depending on the choice of @ or @*.

5. A recurrence for spin characters

Although the irreducible spin characters ¢* are determined by Theorem 4.1, it
is difficult to use (4.1) to calculate ¢* (¢,) explicitly for e OP. However, there is
a recurrence for the evaluation of these characters due originally to Morris
[Mo2], which is quite similar to the well-known Murnaghan-Nakayama rule
for ordinary characters [Ma, Ex. 1.7.5]. Although Morris’ rule has been
reformulated several times (e.g. [H], [MY]), all of the proofs have relied heavily
on the machinery of Hall-Littlewood functions. Since the rule is essentially
combinatorial in nature, it is somewhat surprising that shifted tableaux have
not, heretofore, played a role in the proof.

As promised in the introduction, it is our purpose here to provide yet
another reformulation of the Morris rule, and to give a new proof which
emphasizes combinatoral tableaux methods. Nowhere in the proof will it be
necessary to borrow any of the resuits from the theory of Hall-Littlewood
functions. We use (3.1) as our definition of the Q-function, and the properties
we subsequently employ can be derived directly from this definition. (Proofs of
these properties which substantiate this claim can be found in [St]).

To describe the Morris rule, we first introduce strip tableaux.
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The j-th diagonal of a skew diagram D}, is the collection of boxes (1, j),
(2,j+1),(3,j+2), ... in Dj,. The first diagonal (which may be empty) is called
the main diagonal.

A skew diagram D, is said to be a strip if it is rookwise connected and
each diagonal has at most one box. The height h of a strip is the number of
rows it occupies. For example, the strip in the middle of Fig. 5 is of height 4.
A double strip is a skew diagram formed by the union of two strips which both
start on the main diagonal. Note that a double strip can be cut into two
nonempty connected pieces — one piece (call it «) consisting of the diagonals of
length two, the other piece (call it f) consisting of the strip formed by the
diagonals of length one. The depth of a double strip is defined to be |a|/2+ A (f)
(h(p) = height of B). For example, the double strip on the right in Fig. 4(b) is of
depth 5.

A (shifted) strip tableau of shape A/u and content y = (y,, ..., y,) is defined
to be a nested sequence of shifted diagrams

D,=DpCSDyc...cDy=D,

with |4 —|A' 7! = 3, (1 < i < [) such that each intermediate diagram D% ;-1 is
either a strip or a double strip. We define the weight of a strip of height & to be
(—1)""1, and we define the weight of a double strip of depth d to be 2(—1)" 1.
The weight of a strip tableau S, denoted wt(S), is the product of the weights of
the component strips and double strips.

THEOREM 5.1. For any ye OP, we have

(O Py] = ZWt (S),
S

summed over all strip tableaux S of shape Ai/p and content 7.

We remark that (4.1) implies

1 -
9H(e) = =200, p ],
A
so this rule does provide a recurrence for spin characters. For example,
consider A = (4, 3, 2, 1), y = (1, 3, 3, 3). There are three strip tableaux of shape
A and content y. See Fig. 3. Their weights are each —2, so we conclude that
@*3*! (03331) = [Q4321> P4 p3] = —6.

1 2 1 2
3 3

W w N
LN S ]
oW
NS VA S ]
RS VS I\
Lo R

Fig. 3
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Proof. Since the P,’s and Q,’s are dual bases (Prop. 3.1), it follows that for
any (odd, positive) integer r,
Per. = z [prP,u’ Q}.]P}.‘

AeDP

By iterating this expansion successively for r =y,, ..., 7,, we find
[py P“’ Q’l] - Z [p‘il Plo’ in.‘] < [pw P}.“ 1y Qi']a
(a0

0

where u = 1% 4 = i. However, since the P,’s span Q,, (3.5) implies

[fP,u Q}.] = [Q;./;uf]

for any feQ,, and therefore,
(5.1) [Qap> Py] = Z (Quipao, Py 1. [Qavae-1, P, 1

(A7}
Since Q,,, = 0 unless A 2 g, it follows that the only nonzero contributions to
[Q.,. p,] in this expansion occur when A° = 2! =... < 2 and [A|— |41 =y,
(1 <i < ). Thus, we need only to evaluate [Q, ., p,] lor all skew diagrams 4/u
of size r (r odd).

LemMMA 5.2. [Q;,,, P,] =0 unless i/u is rookwise connected.

Proof. If A/p is disconnected, then the shifted diagram D), can be
separated into two subdiagrams « and § whose rows and columns do not
overlap. In that case it is easy to see that @, , = 0, Q,. Since Q, and Q, are of
degree < r, their p -expansions cannot involve p,, so the p -expansion of 9, Q,
cannot involve p,. =m

If fe A is any symmetric function, use the notation f(x, y) to indicate the
two-variable specialization of f (ie, x; = x; X, = y; X3, X4, ... = 0). The fol-
lowing result shows that [Q, . p,] depends only on @, (x, y).

LEMMA 5.3. If feQ¥, then [f, p] =3&f(x, —1),—,.

Proof. By linearity, it is enough to check f=p, (yeOP)). In case f = p,,
we have f(x,y)=x"4+)", and it is trivial to verify that [f, p]=r/2
= £f(1, —1)/2. Otherwise, observe that if ge©Q has no constant term, then
g(1, —1) =0 (consider g = p.). Therefore if f= gh, where g, he Q have no
constant terms, then Jf/0x = goh/0x+ hdg/dx clearly vanishes at (x, y) =
(1, —1). In particular, it follows that £p. (1, —1)=0if y #(r). =

Lemma 5.4. [Q,,,, p,] =0 unless i/u is a strip or a double strip.

Proof. The previous lemma shows that [Q,,, p,] =0 unless Q,,(x, y)
# 0; i.e., there must exist shifted tableaux of shape 4/u with entries chosen from
{1, 1, 2, 2}. This forces the diagonals of i/u to have length at most two. Since
Lemma 5.2 shows that 1/u must be connected, it remains only to verify that if,
say, the jth diagonal of 4/u has length one and the (j+ 1)th has length two, then
[Qa/m p,1=0.
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ym

o _\_ B _\_

Fig. 4(b)

Assuming of A/u to be such a diagram, let « be the subdiagram formed by
the first j diagonals, and let  be the remaining subdiagram. See Fig. 4(a). Note
that 8 is not a legal skew diagram (it fails to be diagonally convex), but it
becomes legal if it is translated to the main diagonal. See Fig. 4(b). Observe
thatif T: D), — {1, 2} is a feasible assignment of 1’s and 2’s (as in § 3), then the
first diagonal of B is necessarily ',, and thus does not affect the content of T in
a. However, one of these two entries will be free and the other will be forced,
depending on T|,, whereas both are free in Tl|;. In summary,

QX ¥) =30, (x, Qs(x, y).

Hence, by Lemma 5.3 (cf. the consequences of f= gh in the proof), we have
(@i P.] =0 ®

LEmMMA 5.5. [Q,,, P, 1 =(—1""1 if A/u is a strip of height h.

Proof. Proceed by induction on h. If h = 1, then Q,,, = g, and the result
follows from (2.5) or Prop. 2.1. Otherwise, suppose there are k < r boxes in the
first (highest) nonempty row of A/u. Let a denote the substrip obtained by
deleting this row, and let § denote the strip obtained by adding k boxes to the
first row of a. We observe that

(3.2) @ Qo = Qi t+ Qﬂ

(see Fig. 5), since there is a natural bijection between the shifted tableaux of
shape o @ (k) (disjoint union of diagrams) and those of shape A/u and
f—simply compare the top rightmost entry a of « with the leftmost entry b of
(k). If a > b (or a = b and both are marked), create a tableau of shape A/u. If
a<b (or a=>b and both are unmarked), create a tableau of shape p.
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L‘ﬁ ) LL\ B[ 1] Iﬁ_‘ —
. N |

L L -

g.Q, = Q;.,.'u + Q[l
Fig. 5

We have [¢, Q,. p,] = 0, since p, cannot be involved in the p_-expansion of
g, or Q, (both arc of degree less than r), so (5.2) implies [Q,,,. p,] = —[Q,, p,].
The result now follows by induction since f is a strip of height A—1. m

LemMa 5.6. [Q;,,, p,) =2(=1)'"1 if i/u is a double strip of depth d.

Proof. Let o denote the subdiagram obtamed by deleting the main
diagonal of A/u, and translating the result back to the main diagonal. If 4/u has
only one diagonal of length two, then a is a strip: otherwise, o is a double strip.
In the former case note that x has only one (free) box on the main diagonal,
whereas /4/u has two. We therefore have

2xyQ,(x.y) il a is a strip,

Qo (X5 ¥) 2{ xyQ,(x,y) if « is a double strip.

Note that if g(I, —1)=0 and f(x, y)= xyg(x, y), then £f(l, —1)=
—&g(1, —1), so Lemma 5.3 implies

-200,, p,--] if a is a strip,

(D> P ={ —[Q,. p, -] if @ is a double strip.

The result now follows from Lemma 5.5 and induction on the depth. =
Using the description of [Q,, p,] contained in Lemmas 5.4-5.6 and the
recurrence (5.1), the proof of Theorem 5.1 is now complete. m

6. An involution for shifted tableaux

Since the Q-functions are specializations of Hall-Littlewood functions, one
knows immediately that they are symmetric functions. In particular (cf. (3.1, 4)),
this implies that K, ., the number of shifted tableaus of shape 4/ and content
¥ = (},, Y2, --- ), 18 invariant under permutations of the y;’s. To deduce such
a simple combinatorial fact in this way unfortunately requires considerable
machinery; i.e., [Ma, IIT]. Since the symmetry of Q-functions is fundamental in
this theory, it is therefore natural to look for a purely combinatorial
explanation of this result, one that requires no machinery per se.(?) Our
purpose in this section is to provide such an explanation; namely,

(*) A combinatorial explanation also appears in Cor. 6.2(a) of [St], but it requires the
machinery of [Sa] or [W}.

29 — Banach Center t. 26, cz. 2
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THeOREM 6.1. For any shifted shape A/p, there is a natural content-reversing
involution T+ T on the set of shifted tableaux of the form T: D}, — {1',1, 2/, 2}.

By content-reversing, we mean to say that if T has content (a, b), then
T should have content (b, a).

Given such an involution, it i1s a simple matter to explain the symmetry of
Q-functions. For any shifted tableau T of shape v, let T; denote the subtableau
formed by the entries {i, i, (i+1), i+ 1}. By applying the above involution to
T (with the identification i+» 1, i+ 1 & 2), we may deduce that @ (x,, x,, ...)1s
invariant when x; and x,,, are interchanged, and hence Q, is a symmetric
function.

Before describing the involution, we first need to analyze the structure of
shifted tableaux with restricted entries. In particular, consider the set R, (4/u) of
shifted tableaux of the form T: D), — {1, 2}. Observe that rule (R1-3) of
§ 3 imply that the boxes occupied by the letter i in any shifted tableau must
form a broken row; ie., a skew diagram with at most one box in any column.
Hence, there is a one-to-one correspondence between R, (4/u) and the set of
partitions ve DP (u < v < 4) such that v/u and A/v are broken rows.

In the following, it will be necessary to first consider those skew diagrams
A/ with at most one box on the main diagonal. We call such diagrams
detached since they can be translated away from the maln diagonal without
creating an illegitimate skew-diagram. In this context, lit is convenient to
introduce the following result due to Bender and Knuth [BK]:

LEMMA 6.2. There is a natural content-reversing involution ¢x on R, (4/u),
assuming A/u is detached.

Proof. There is nothing to prove unless R, (4/u) s nonempty; i.e.,, we may
assume that the columns of 4/u have length at most two. Note that in any
tableau TeR,(i/u) a column of length two must be of the form 3. The
remainder of 4/u can be broken into disconnected rows of boxes whose entries
are indeterminate. (This fails if /i is not detached.) Let r; denote the number of
such “indeterminate” boxes in the ith row of A/u. The tableau T may be
specified by choosing the number n, (0 < n; < r;) of these boxes to be assigned
the letter 1; the remaining r, —n; boxes are to be assigned the letter 2. Singe the
specifications (n;) may be chosen independently and arbitrarily, it follows that
¢g: (n)—(r,—n,) defines a content-reversing involution on R, (4/u). =

11 )
1112 2 « 1 1 2 2 2
2 = 2 2

Fig. 6

1 1
1 2 2
An example of the involution ¢, appears in Fig. 6. We remark that the

above lemma fails if A/u is not detached. For example, ! 1 is the only shifted
tableau in R, (21/0). We also remark that this lemma is the unshifted analogue
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of Theotem 6.1; it provides a purely combinatorial explanation of the fact
that the Schur functions s, ,, as tableaux generating functions, are symmetric
[BK].

Let C,(A/u) denote the set of shifted tableaux T: D), —{1’, 2'}. By
transposing ¢, we obtain

CoRoOLLARY 6.3. There is a natural content-reversing involution ¢. on
C,(A/un), assuming ifu is detached.

Let RC(i/u) denote the set of shifted tableaux of the form T:
D), — {1, 2'}. Similarly, let CR{(i/u) denote the set of shifted tableaux T:
u— {2, 1} satisfying rules (R1-3), but with respect to the nonstandard
ordering 2’ < 1. There is a one-to-one correspondence between the tableaux in
RC(A/p) (resp., CR(4/1)) and partitions ve DP (1 S v < A) such that v/u is
a broken row (resp., column) and Ai/u is a broken column (resp., row).

LEMMA 64, There is a natural content-preserving bijection
RC(A/u) — CR(A/u), assuming A/p is detached.

Proof. If A/u is detached, both RC(4/u) and CR (4/u) are empty unless the
diagonals of i/u are of length at most one. By considering the connected
components of A/u if necessary, we may therefore assume that A/u is a strip (as
in § 5).

Linearly order the boxes of 4/u from southwest to northeast, and label the

boxes b,, ..., b, in this order. If T is a tableau in RC(4/u), then we must have
1 if row(b) = row(b;, ,),
T(b) =
(b) {2’ if col(b;) = col(b, ., ,).

Since A/u 1s assumed to be a strip, this completely determines T except for the
choice of T(b,), which is free to be 1 or 2. Similarly, if S is a tableau in CR (4/y),
then

1 if row(b) = row(d;,,)

S} = {2’ if col(b;) = col(b,, ),

and the choice of S(b,) is free. Therefore, for each T e RC(A/u), we may define
Y TeCR(4/u) by setting Y T(b,,,) = T(b,) (1 <i < n)and yT(b,) = T(b,), and
thus obtain a suitable bijection. See Fig. 7. m

1 2

1 1 2 271 1
2 — 2
2 ]
1 2 1 1
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Proof of Theorem 6.1. First we assume that A/u is detached. Let T be
a shifted tabieau of shape 4/u with entries U, 1, 2, 2. Apply the bijection ¢ to
the subtableau occupied by 1 and 2'; this yields a shifted tableau relative to the
nonstandard order 1’ < 2" < 1 < 2. Apply the involutions ¢ and ¢, to the
subtableaux of T occupied by 1, 2" and 1, 2, respectively. This reverses the
content. Finally, apply ¢~ ' 10 tie subtableau {of ¢ ¢5 ¢ T) occupied by 2 and
1 to obtain the shifted tableau 7. Lemmas 6.2 and 6.4 show that T— T is
a suitable content-reversing involution. An example appears in Fig. 8.

2 2 1 1
1’12_* 1’]2_) 2’]2_* 122
12 v 21 dc.r 1" 2 w1 "2
1" 2" 2 1”2 2 21 12
Fig. 8

Now consider the possibility that i/u is not detached. To avoid trivialities,
we may assume that the diagonals of 4/u are of length at most two, and that the
kth diagonal is the first of length one (k > 1).

Observe that the entries assigned to these first k diagonals (except for the
main diagonal) will never be free in any shifted tableau T: D}, — !1', 1, 2, 2}.
Therefore, let S be the shifted tableau of detached shape obtained by deleting
the first k— 1 diagonals of T. Since the single entry a in the firsi nonempty
diagonal of § is now free, let us change the mark of a if necessary, so that it is
identical to one of the (free) entries on the main diagonal of T. The map T+ §
is two-10-one, and so the two tableaux obtained by inverting § with respect to
this map can be used to define a two-to-two involution TS -S> 7. m
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