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Department of Mathematics
Middle East Technical University
06531 Ankara, Turkey
E-mail: tosun@kalkan.tetm.tubitak.gov.tr

Published by the Institute of Mathematics, Polish Academy of Sciences

Typeset in TEX at the Institute

Printed and bound by

P R I N T E D I N P O L A N D

c© Copyright by Instytut Matematyczny PAN, Warszawa 1996

ISSN 0012-3862



C O N T E N T S

0. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2. Power series space-valued case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4. F - and DF -subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5. Quasidiagonal isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6. Sufficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7. Linear Topological Invariants (LTI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8. Necessary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9. Spaces s ⊗̂ E′

∞(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10. Spaces s′ ⊗̂ E∞(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Abstract

New linear topological invariants are introduced and utilized to give an isomorphic classifi-
cation of tensor products of the type E∞(a) ⊗̂E′

∞(b), where E∞(a) is a power series space of
infinite type. These invariants are modifications of those suggested earlier by Zahariuta. In par-
ticular, some new results are obtained for spaces of infinitely differentiable functions with values
in a locally convex space X . These spaces coincide, up to isomorphism, with spaces L(s′, X) of
all continuous linear operators into X from the dual space of the space s of rapidly decreasing
sequences. Most of the results given here with proofs were announced in [12].
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0. Introduction

Let C∞
X denote the space of all infinitely differentiable functions defined on the interval

[−1, 1] with values in a given locally convex space X . Usually C∞
X is endowed with

the topology of uniform convergence of functions on the interval [−1, 1] with all their
derivatives in every continous seminorm of X (cf. [14]). We have [14] the isomorphisms

C∞
X ≃ s ⊗̂ X ≃ L(s′, X).

Here and throughout, s is the space of all rapidly decreasing sequences, X ⊗̂ Y is
the complete projective tensor product and L(X, Y ) is the space of continuous linear
operators from X into Y equipped with the topology of uniform convergence on bounded
subsets of X . In particular, X ′ stands for L(X, K), where K is the scalar field.

Our purpose is to characterize the isomorphism C∞
X ≃ C∞

Y in terms of the spaces X
and Y . Valdivia has shown in [23] that if C∞

X is isomorphic to a complemented subspace of
C∞

Y and C∞
Y is in turn isomorphic to a complemented subspace of C∞

X , then C∞
X ≃ C∞

Y .
Using this result a simple application of the decomposition method of Aytuna, Krone
and Terzioğlu [1] gives C∞

X ≃ s whenever X is a complemented subspace of s.
In contrast, it was shown in [32], [34] that even in the simple case of a nuclear finite

type power series space X = E0(a), the structure of C∞
X as a Fréchet space depends on

X in a quite delicate way. This case will be treated in Section 2. Those two diverse
answers indicate that to study the general case, even if we restrict our attention to the
class C∞

X , with X a nuclear Fréchet space, would not be very promising. Therefore we
confine ourselves mainly to some natural classes, such as C∞

X for X a nuclear power series
space or X ≃ E′

∞(a). In the latter case we have

C∞
X ≃ s ⊗̂ E′

∞(a) ≃ L(E∞(a), s),(0.1)

which gives us extra motivation to study this case. Related to this class, we also consider
the class

s′ ⊗̂ E∞(a) ≃ L(s, E∞(a)).(0.2)

In a more general setting we consider the problem of isomorphic classification of the
class of tensor products of the form

E∞(a) ⊗̂ E′
∞(b),(0.3)

which covers both classes (0.1) and (0.2).
To classify the spaces (0.3) we introduce new linear topological invariants based on the

idea suggested by Zahariuta in [31], [32], [34]. This may be roughly summarized as follows:
starting from a given collection of absolutely convex bounded subsets, we construct in
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a particular invariant manner another collection of absolutely convex sets and to this
collection we apply the classical invariants.

This approach yields the invariant characteristics for Köthe spaces, considered earlier
in [26], [28], [29], [30] and initiated by Mitiagin’s results [18], but in a form more convenient
for our purpose.

Here we use as a fundamental one a collection of absolutely convex sets in X ⊗̂ Y ,
which corresponds (in our case) to some basis of equicontinuous sets in L(Y ∗, X). It is
useful to compare this view with previous results [13] on necessary conditions of isomor-
phism of spaces Eα(a) ⊗̂ E′

β(b) which were based on more traditional considerations,
dealing with neighborhoods of zero.

To construct an isomorphism or an isomorphic imbedding for a given pair of spaces
X = E∞(a) ⊗̂ E′

∞(b) and Y = E∞(ã) ⊗̂ E′
∞(̃b), we use here the method suggested

in [29] but in a considerably simplified form (in the spirit of [34] in its revised English
version).

We also refer to the following results closely connected with our present considerations:
[2–11], [15–20], [22], [24], [25].

Acknowledgements. The authors are thankful to Prof. P. Djakov and Prof. M.
Kocatepe for discussions and useful remarks. The third author also thanks METU and
TÜBİTAK for their support.

1. Preliminaries

1.1. Let A = (aiλ)i∈I, λ∈Λ be a Köthe matrix, where I is a countable set (often
I = N), Λ is a directed set and aiλ ≥ 0. We also have aiλ ≤ aiµ if λ ≤ µ and sup{aiλ:
λ ∈ Λ} > 0, i ∈ I. By K(A) we denote the Köthe space generated by A, i.e., the locally
convex space of all sequences x = (ξi) such that for every λ ∈ Λ,

|x|λ =
∑

i∈I

|ξi|aiλ < ∞,(1.1)

equipped with the seminorms (1.1). As usual, (ei) denotes the canonical basis of K(A).
In particular, for a = (ai), by E0(a) and by E∞(a) we denote the power series space of
finite and infinite type, which are Köthe spaces generated by the matrices (exp(−p−1ai))
and (exp(pai)), p ∈ N, respectively (see, for example, [14]).

If A = (aiλ)i∈I, λ∈Λ, B = (bjµ)j∈J, µ∈M are two Köthe matrices, then the tensor
product can be written as

K(A) ⊗̂ K(B) ≃ K(C),

where C = (c(i,j),(λ,µ)), c(i,j),(λ,µ) = aiλbjµ with (i, j) ∈ I × J and (λ, µ) ∈ Λ × M . The

above ismorphism is obtained by identifying the basis sequence (ei⊗ej) of K(A) ⊗̂ K(B)
with the natural basis (eij) of K(C).

1.2. A continuous linear operator T : K(A) → K(B) is said to be quasidiagonal if

T (ei) = tieσ(i), i ∈ I,(1.2)
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where σ : I → J and ti is a scalar. In particular, T is diagonal if I = J and σ is the
identity. If σ : I → J is a bijection and ti ≡ 1, then T is said to be permutative. For Köthe

spaces X = K(A), Y = K(B) we use the notation X
qd≃ Y , X

d≃ Y and X
p≃ Y if there is

an isomorphism T : X → Y which is respectively quasidiagonal, diagonal or permutative.
We use the notation X ∼→ Y if there is an isomorphic imbedding T : X → Y . If T is also

quasidiagonal we write X
qd∼→ Y . In this context we need the following fact, which was

stated in [29] but was considered earlier in [18] in an implicit form.

Proposition 1.1. If K(A)
qd∼→ K(B) and K(B)

qd∼→ K(A), then K(A)
qd≃ K(B).

1.3. We identify the inductive limit

E′
∞(a) = lim ind l1(exp (−pai))

with the Köthe space K(A), A = (aiπ), where

aiπ = exp(−πiai)

and π = (πi) runs along the directed set

Π∞ = {π = (πi) : limπi = ∞}.
The set Π∞ has the natural order λ ≤ µ defined by µi ≤ λi for all i ∈ I. In case E∞(a)
is nuclear, E∗

∞(a) can be naturally identified with E′
∞(a) ([14]).

1.4. For a given sequence a = (ai), ai ≥ 1, we consider the following counting
functions:

ma(τ, t) = |{i : τ < ai ≤ t}|,(1.3)

ma(t) = |{i : ai ≤ t}|,(1.4)

where |A| denotes the cardinality of a finite set A and equals +∞ for an infinite A, and
0 < τ < +∞. We also use the following characteristic of lacunarity:

na(τ, t) =
{

1 if ma(τ, t) > 0,
0 otherwise.

We write ma ≈ mb or na ≈ nb if a constant c > 0 exists such that

ma(t) ≤ mb(ct), ma(t) ≤ mb(ct), t ≥ 1,(1.5)

or, respectively,

na(τ, t) ≤ nb(τ/c, ct), nb(τ, t) ≤ na(τ/c, ct), 1 ≤ τ < t < ∞.(1.6)

For non-decreasing sequences a = (ai), b = (bi) the relation (1.5) is equivalent to the
following condition:

bi/c ≤ ai ≤ cbi, i ∈ N,(1.7)

with the same constant c. If for arbitrary sequences a and b the relation (1.7) holds for
some constant c, we say a and b are weakly equivalent and use the notation ai ≍ bi or
a ≍ b in this case. If (1.6) holds, we say a and b have the same lacunarities or are identical

in lacunarity.
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The following simple result about the characteristic of lacunarity will be useful.

Proposition 1.2. Let a = (ai), b = (bi) be sequences with ai ≥ 1, bi ≥ 1. The

following statements are equivalent :

(i) There is ∆ > 0 such that

na(τ, t) ≤ nb(τ/∆, ∆t), 1 ≤ τ < t < ∞.(1.8)

(ii) For every A > 1 there is B > 0 with

na(t/A, At) ≤ nb(t/B, Bt), t ≥ 1.

(iii) There exists A > 1 and B > 0 with

na(t/A, At) ≤ nb(t/B, Bt), t ≥ 1.

(iv) There exists A > 1 and B > 0 with

na(A2m−1, A2m+1) ≤ nb(B
−1A2m−1, BA2m+1), m ∈ Z.

P r o o f. Since (i)⇒(ii)⇒(iii)⇒(iv) are obvious, we will show that (iv) implies (i). We
choose m, l ∈ Z such that

A2m−1 < τ ≤ A2m+1, A2(m+l)−1 < t ≤ A2(m+l)+1

and use the following chain of inequalities:

na(τ, t) ≤ na(A2m−1, A2(m+l)+1) ≤ sup
ν=0,...,l

na(A2(m+ν)−1, A2(m+ν)+1)

≤ sup
ν=0,...,l

nb(B
−1A2(m+ν)−1, BA2(m+ν)+1)

≤ nb(B
−1A2m−1, BA2(m+l)+1) ≤ nb((BA2)−1τ, (BA2)t).

Thus we get (i) with ∆ = BA2.

2. Power series space-valued case

We will consider in detail the isomorphic classification of the spaces C∞
X when X is

a power series space of infinite or finite type. First, we deal with the infinite type, which
is quite simple.

In fact we shall consider C∞
X where X is a complemented subspace of s. It is not

known if X has a basis, but if it does, then X is a nuclear power series space of infinite
type [1].

Proposition 2.1. If X is a complemented subspace of s, then C∞
X ≃ s.

P r o o f. C∞
X ≃ s ⊗̂ X is a complemented subspace of s ≃ s ⊗̂ s. Further, the

diametral dimensions of C∞
X and s are equal. We conclude by referring to [1].

In contrast to the above, the spaces C∞
X for X = E0(a) have more intricate topological

structure. Here the characteristic of lacunarity distinguishes isomorphic classes.
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Proposition 2.2 [32, 34]. Let E0(a) be nuclear. Then

s ⊗̂ E0(a) ≃ s ⊗̂ E0(b)

if and only if the following two conditions hold :

(1) E0(b) is nuclear ,
(2) na ≈ nb, i.e. a and b are identical in lacunarity.

It is of interest to compare the preceding result with the proposition in [19] on page
309.

3. Main results

Here we state our main results. Most of them will be proved in the sections to come.
However, some will be demonstrated here.

Theorem 3.1. Let E∞(b) and E∞(̃b) be two nuclear power series spaces where b and

b̃ are non-decreasing. Then s ⊗̂ E′
∞(b) ≃ s ⊗̂ E′

∞(̃b) if and only if the sequences b and b̃
are identical in lacunarity.

We say that a sequence b = (bi) is non-lacunary (shift-stable [10]) if b and (i) are
identical in lacunarity. For a non-decreasing sequence b = (bi) this is equivalent to

lim sup
bi+1

bi
< ∞.

Hence the following statement is an immediate consequence of our theorem.

Corollary 3.2. Let b be as in Theorem 3.1. Then

s ⊗̂ E′
∞(b) ≃ s ⊗̂ s′

if and only if b is shift-stable.

As we shall discuss later, classification of the products s′ ⊗̂ E∞(a) depends on a in
a more intricate fashion than in the case we have discussed. However, when the non-
decreasing positive sequences a = (ai), ã = (ãi) satisfy the following stronger condition:

ln i = o(ai), ln i = o(ãi)(3.1)

we have an analog of Theorem 3.1.

Theorem 3.3. Let a and ã satisfy (3.1). Then X = s′ ⊗̂ E∞(a) is isomorphic to

Y = s′ ⊗̂ E∞(ã) if and only if a and ã have the same lacunarities.

For c = (i), the space E∞(c) is isomorphic to the space of entire functions O(C), c
satisfies the condition (3.1) and is shift-stable. Therefore we have

Corollary 3.4. Let a satisfy (3.1) and be shift-stable. Then

s′ ⊗̂ E∞(a) ≃ s′ ⊗̂ E∞(c) ≃ s′ ⊗̂ O(C).

Although (ln i) is shift-stable, obviously it does not satisfy (3.1). In fact s′ ⊗̂ s has
an exceptional position in the class of spaces s′ ⊗̂ E∞(a).
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Theorem 3.5. For the isomorphism s′ ⊗̂ s ≃ s′ ⊗̂ E∞(a), it is necessary and

sufficient that s ≃ E∞(a).

Corollary 3.6. We have L(s, s) ≃ L(s, E∞(a)) if and only if s ≃ E∞(a).

The preceding results will be derived in Sections 9 and 10 from the following more
general and rather technical result, dealing with the isomorphism of spaces E∞(a) ⊗̂
E′

∞(b), which will be proved in sections 6–8.

Theorem 3.7. Let X = E∞(a) ⊗̂ E′
∞(b), Y = E∞(ã) ⊗̂ E′

∞(̃b) and T : Y → X be

an isomorphism. Then ∃∆ ∀ε̃ ∃ε ∀δ ∃δ̃ such that the following inequalities (3.2)–(3.5)
are true:

(3.2)

∣∣∣∣
{

(i, j) : δ ≤ bj

ai + bj
≤ ε, τ ≤ ai + bj ≤ t

}∣∣∣∣

≤
∣∣∣∣
{

(k, l) : δ̃ ≤ b̃l

ãk + b̃l

≤ ε̃,
τ

∆
≤ ãk + b̃l ≤ ∆t

}∣∣∣∣, τ ≥ τ0,

(3.3)

∣∣∣∣
{

(i, j) : δ ≤ bj

ai + bj
, τ ≤ ai + bj ≤ t

}∣∣∣∣

≤
∣∣∣∣
{

(k, l) : δ̃ ≤ b̃l

ãk + b̃l

,
τ

∆
≤ ãk + b̃l ≤ ∆t

}∣∣∣∣, τ ≥ τ0,

(3.4)

∣∣∣∣
{

(i, j) :
bj

ai + bj
≤ ε, τ ≤ ai + bj ≤ t

}∣∣∣∣

≤
∣∣∣∣
{

(k, l) :
b̃l

ãk + b̃l

≤ ε̃,
τ

∆
≤ ãk + b̃l ≤ ∆t

}∣∣∣∣,

(3.5) |{(i, j) : τ ≤ ai + bj ≤ t}| ≤
∣∣∣∣
{

(k, l) :
τ

∆
≤ ãk + b̃l ≤ ∆t

}∣∣∣∣.

Some quantifiers before absent parameters need to be omitted; the constant τ0 de-
pends on all participating parameters.

R e m a r k. If t depends on τ , i.e. t = ϕ(τ), τ ≥ 1, then the restriction τ ≥ τ0 can
be removed everywhere in Theorem 3.7. Indeed, let, for example, the relation (3.3) hold

with t = ϕ(τ) and τ ≥ τ0. Then we choose instead of δ̃ some smaller constant δ̃′ > 0

such that δ̃′∆ϕ(τ0) ≤ 1 and get the inequality (3.3) with δ̃′ instead of δ̃ without any
restriction on τ .

The last theorem has the following partial converse. The notation Y k means Y × . . .
. . . × Y , k times.

Theorem 3.8. Let X, Y be as in Theorem 3.7 and let the conditions (3.2), (3.3) and

(3.4) be valid. Then X
qd∼→ Y 9.

With some restrictions on X, Y we get the following criterion of isomorphism.

Theorem 3.9. Let X , Y be as in Theorem 3.7 and X
qd≃ X2, Y

qd≃ Y 2. Then the

following statements are equivalent :

(i) X ≃ Y ,
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(ii) X
qd≃ Y ,

(iii) the inequalities (3.2), (3.3) are true together with the inequalities which are ob-

tained from these inequalities by interchanging a, b, (i, j) with ã, b̃, (k, l) respectively.

P r o o f. Because (ii)⇒(i) is obvious and (i)⇒(iii) follows from Theorem 3.7, we need

only prove (iii)⇒(ii). Since X
qd≃ X2 implies X

qd≃ X9, we get by Theorem 3.8 that

Y
qd∼→ X9 qd≃ X , i.e. Y

qd∼→ X . By symmetry we get also X
qd∼→ Y . Hence Proposition 1.1

implies X
qd≃ Y .

Corollary 3.10. Let X , Y be the same as in Theorem 3.7 and additionally the

conditions

a2i ≍ ai, ã2i ≍ ãi(3.6)

or the conditions

b2j ≍ bj, b̃2j ≍ b̃j(3.7)

hold. Then X
qd≃ Y (and all the more X ≃ Y ).

P r o o f. Indeed, both (3.6) and (3.7) imply X
qd≃ X2 and Y

qd≃ Y 2, hence we can apply
Theorem 3.9.

Theorem 3.11. Let X = s′ ⊗̂ E∞(a) and Y = s′ ⊗̂ E∞(ã) be nuclear. Then the

following statements are equivalent :

(i) X
qd≃ Y ,

(ii) X ≃ Y ,
(iii) ∃A ∀γ > 0 ∃τ0 such that

ma(τ, t) ≤ ( expγt)mã(τ/A, At), τ0 ≤ τ ≤ t,(3.8)

mã(τ, t) ≤ ( expγt)ma(τ/A, At), τ0 ≤ τ ≤ t,(3.9)

(iv) ∀A ∃B ∀γ ∃τ0 such that

ma(t/A, At) ≤ ( expγt)mã(t/B, Bt), t ≥ τ0,(3.10)

mã(t/A, At) ≤ ( expγt)ma(t/B, Bt), t ≥ τ0,(3.11)

and ∃E > 1 such that

ma(t) ≤ (exp Et)mã(Et),(3.12)

mã(t) ≤ (exp Et)ma(Et), t ≥ 1.(3.13)

4. F - and DF -subspaces

Let X = E∞(a) ⊗̂ E′
∞(b) and M be an infinite subset of N2. By XM we denote the

closed subspace of X which is generated by the basic sequence {ei ⊗ ej : (i, j) ∈ M}. We
now determine when XM is an F -space or a DF -space.
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Lemma 4.1. XM is an F -space if and only if

lim
(i,j)∈M

bj

ai
= 0.(4.1)

XM is a DF -space if and only if there exists δ > 0 with

bj

ai
≥ δ, (i, j) ∈ M.(4.2)

P r o o f. Identifying X with the Köthe space K(A), where

A = {exp(pai − πjbj)}, p ∈ N, π ∈ Π∞,

we see that XM can be considered as the space of all doubly indexed sequences x = (ξi,j),
(i, j) ∈ M , endowed with the locally convex topology defined by the norms

‖x‖p,π =
∑

(i,j)∈M

|ξij | exp(pai − πjbj) < ∞.(4.3)

The inequality

‖x‖p,π ≤
∑

(i,j)∈M

|ξij | exp pai

is obvious. On the other hand, if (4.1) holds, we set

π◦
j = inf

i
{ai/bj : (i, j) ∈ M}.

For π ∈ Π∞ satisfying πj = O(π◦
j ) and p ∈ N we have

∑

(i,j)∈M

|ξij | exp(p − ∆)ai ≤ ‖x‖p,π,

where ∆ = sup{πj/π◦
j }. Hence XM is a Fréchet space if (4.1) holds.

Assume (4.2). Then for p ∈ N and π ∈ Π∞ we have the inequalities

∑

(i,j)∈M

|ξij | exp(−πjbj) ≤ ‖x‖p,π ≤
∑

(i,j)∈M

|ξij | exp(−π̃jbj),

where π̃jbj = πj − p/δ. Hence the topology of XM is defined by the system of norms

‖x‖(◦)
π =

∑

(i,j)∈M

|ξij | exp(−πjbj), π ∈ Π∞.

Thus the space XM can be represented as the inductive limit

lim ind l1M (exp(−qbj)).

Hence X is a DF -space.
Let us consider the converse situation. If XM is an F -space but (4.1) is not true, then

we can find a subsequence M ′ ⊂ M for which (4.2) holds. But then XM ′ is a DF -space
by what we have already proved. This is impossible. In exactly the same manner we can
prove that if XM is a DF -space then (4.2) is true.
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5. Quasidiagonal isomorphism

We consider a criterion for the existence of quasidiagonal isomorphism between spaces
E∞(a) ⊗̂ E′

∞(b).

Proposition 5.1. For E∞(a) ⊗̂ E′
∞(b) to be quasidiagonally isomorphic to E∞(ã) ⊗̂

E′
∞(̃b) it is necessary and sufficient that a bijection σ = (σ1, σ2) : N2 → N2 exists such

that the following conditions hold :

(i) ai + bj ≍ ãk + b̃l, where (k, l) = σ((i, j)).
(ii) For any subsequence M ⊂ N2, we have

lim
(i,j)∈M

bj

ai
= 0 if and only if lim

(k,l)∈σ(M)

b̃l

ãk
= 0.

First we note that it is not necessary to consider diagonal isomorphism at all, because
the existence of a diagonal isomorphism means automatically that the spaces coincide.
By Proposition 1.1 it is enough to show the following:

Proposition 5.2. Let σ : N
2 → N

2 be an injection. Then the operator T : E∞(a) ⊗̂
E′

∞(b) → E∞(ã) ⊗̂ E′
∞(̃b) defined by

T (ei ⊗ ej) = ek ⊗ el, (k, l) = σ((i, j)),(5.1)

is an isomorphic imbedding if and only if the conditions (i) and (ii) of Proposition 5.1
are satisfied.

P r o o f. Suppose that the operator T defined by (5.1) is an isomorphic imbedding.
Since an isomorphism preserves the F - or DF -character of subspaces, the condition (ii) of
Proposition 5.1 is true by Lemma 4.1. To obtain the condition (i), we use the continuity
of T and its inverse. By Grothendieck’s factorization theorem [14], I, p. 16, we choose
natural numbers p1 < r1 < r2 < p2 < q2 < s2 < s1 < q1 and a constant c such that the
following inequalities hold for every (i, j) ∈ N2:

exp(p1ãk − q1b̃l) ≤ c exp(r1ai − s1bj), exp(r2ãk − s2b̃l) ≤ c exp(p2ai − q2bj),

exp(p1ai − q1bj) ≤ c exp(r1ãk − s1b̃l), exp(r2ai − s2bj) ≤ c exp(p2ãk − q2b̃l).

Here and in what follows, (k, l) = σ ((i, j)). From the above we get

(r2 − r1)ãk + (s1 − s2)̃bl ≤ (p2 − p1)ai + (q1 − q2)bj + 2 ln c,

(r2 − r1)ai + (s1 − s2)bj ≤ (p2 − p1)ãk + (q1 − q2)̃bl + 2 ln c,

and so (i) is true.
Conversely, let σ : N

2 → N
2 be an injection, so that the conditions (i) and (ii) are

satisfied. We want to show that the formula (5.1) generates an isomorphic imbedding.
Suppose T generated by σ is not continuous. This means that ∃p ∀r ∃s ∀q ∃(iq, jq) ∈

N2 such that
exp(pãkq

− qb̃lq) ≥ exp(raiq
− sbjq

),(5.2)

where (kq, lq) = σ(iq, jq).
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Further, if

γ = inf
ai + bj

ãk + b̃l

,

let r be chosen so that rγ > p.
Without loss of generality, we may assume the existence of the following limits:

lim
q→∞

b̃lq

ãkq
+ b̃lq

= α, lim
q→∞

bjq

aiq
+ bjq

= β.

Let us take the logarithm of inequality (5.2) and, after dividing by ãk+ b̃l, let q tend to
infinity. Then we get α = 0, since otherwise −∞ ≥ (r(1−β)− sβ)γ, which is impossible.
This means that

lim
b̃lq

ãkq

= 0

and so by condition (ii) we have

lim
bjq

aiq

= 0.

Therefore β = 0 as well. Hence, from (5.2) we have p ≥ rγ, which contradicts the original
choice of r.

6. Sufficiency

6.1. Here Theorem 3.8 will be proved. By Theorem 3.7 we can assume that a constant
∆ and a non-decreasing function ϕ : (0, 1] → (0, 1] exist such that for any τ ≥ 1 and
t = ∆τ the conditions (3.3), (3.4) are valid with ∆, ∀ε̃ ∈ [0, 1], ε = ϕ(ε̃), ∀δ ∈ (0, 1] and

δ̃ = ϕ(δ); ϕ(δ) → 0 if δ → 0. Define the sequence (εk) by ε−1 = ε0 = 1 and εk = ϕ(εk−1),
k ∈ N. Let us represent the set N2 as the union of families of disjoint subsets:

N
2 =

∞⋃

m=0

∞⋃

s=0

Nm,s =

∞⋃

m=0

∞⋃

s=0

Mm,s,

where, for s, m ∈ Z+,

Nm,s =

{
(i, j) ∈ N

2 : εm+1 <
bj

ai + bj
≤ εm; ∆s ≤ ai + bj < ∆s+1

}
,

Mm,s =

{
(k, l) ∈ N

2 : εm+1 <
b̃l

ãk + b̃l

≤ εm; ∆s ≤ ãk + b̃l < ∆s+1

}
.

For the sets

M̃m,s =

2⋃

α=0

2⋃

β=0

Mm−1+α,s−1+β

=

{
(k, l) : εm+2 <

b̃l

ãk + b̃l

≤ εm−1; ∆s−1 ≤ ãk + b̃l < ∆s+2

}
, s, m ∈ Z+,
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the following estimates arise from the conditions (3.3), (3.4) with the above choice of
parameters:

|Nm,s| ≤ |M̃m,s|, s, m ∈ Z+.

It is clear that Y 9 qd≃ E∞(ã)3 ⊗̂ E′
∞(̃b)3

qd≃ E∞(c) ⊗̂ E′
∞(d), where c = (cµ), d = (dν)

and
cµ = ãk,µ; µ = 3k − α, α = 0, 1, 2, k ∈ N,

dν = b̃l,ν ; ν = 3l − β, β = 0, 1, 2, l ∈ N.

By construction the sets

M∗
m,s := {(3k − α, 3l − β) : (k, l) ∈ Mm−1+α,s−1+β, α, β = 0, 1, 2}

are disjoint and
|M∗

m,s| = |M̃m,s| ≥ |Nm,s|, m, s ∈ Z+.

Then by construction,

∆−2 ≤ ∆s

∆s−2
≤ ai + bj

cµ + dν
≤ ∆s+1

∆s−1
= ∆2

and

cµ

cµ + dν
≥ εm+2 = ϕ2(εm) ≥ ϕ2

(
bj

ai + bj

)
,

bj

ai + bj
≥ εm+1 ≥ ϕ2(εm−1) ≥ ϕ2

(
cµ

cµ + dν

)
,

where ϕ2 means the composition with itself. Hence, we have

1

∆2
≤ ai + bj

cµ + dν
≤ ∆2,

cµ

cµ + dν
≥ ϕ2

(
bj

ai + bj

)
,

bj

ai + bj
≥ ϕ2

(
cµ

cµ + dν

)

for each (i, j) ∈ N2 and (µ, ν) = σ((i, j)).
So, the permutation operator T : X → E∞(c) ⊗̂ E′

∞(d), generated by the injection σ:

T (ei ⊗ ej) = eµ ⊗ eν , (µ, ν) = σ((i, j)), (i, j) ∈ N
2,

must be an isomorphic imbedding by Proposition 5.2.
Because of symmetry, using the conditions which can be obtained from the conditions

(3.3), (3.4) by interchanging a, b, (i, j) with ã, b̃, (k, l), we analogously get Y
qd∼→ X9 (under

similar assumptions on the choice of parameters).

6.2. Taking into consideration Theorem 3.7 and the proof of Theorem 3.8, we can
derive the following refinement of Theorem 3.9.

Proposition 6.1. Under the conditions of Theorem 3.9 the following statements are

equivalent :

(i) X ≃ Y .

(ii) X
qd≃ Y .
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(iii) A strongly decreasing sequence εk → 0, ε0 = 1, and a constant ∆ > 0 exist such

that
∣∣∣∣
{

(i, j) ∈ N
2 : εm+1 <

bj

ai + bj
≤ εm; ∆s ≤ ai + bj ≤ ∆s+1

}∣∣∣∣(6.1)

≤
∣∣∣∣
{

(k, l) ∈ N
2 : εm+2 <

b̃l

ãk + b̃l

≤ εm−1; ∆s−1 ≤ ãk + b̃l < ∆s+2

}∣∣∣∣

and

∣∣∣∣
{

(k, l) ∈ N
2 : εm+1 <

b̃l

ãk + b̃l

≤ εm; ∆s ≤ ãk + b̃l < ∆s+1

}∣∣∣∣

≤
∣∣∣∣
{

(i, j) ∈ N
2 : εm+2 <

bj

ai + bj
≤ εm−1; ∆s−1 ≤ ai + bj < ∆s+2

}∣∣∣∣

for every s, m ∈ Z+ (put ε−1 = 1).

6.3. The condition (iii) in Proposition 6.1 is only necessary if we consider spaces X, Y
from Theorem 3.7 without any additional restriction. It is useful to compare Proposition

6.1 with the following criterion of the quasidiagonal isomorphism X
qd≃ Y in the general

case; this fact can be proved similarly to [5] by using the Hall–Koenig Lemma about
representatives.

Proposition 6.2. Let X = E∞(a) ⊗̂ E′
∞(b) and Y = E∞(ã) ⊗̂ E′

∞(̃b). Then the

following statements are equivalent :

(i) X
qd≃ Y .

(ii) A strongly decreasing sequence εk → 0, ε0 = ε−1 = 1, and a constant ∆ > 1 exist

such that
∣∣∣∣

⋃

α∈A

{
(i, j) : εm(α)+1 <

bj

ai + bj
≤ εm(α); ∆s(α) ≤ ai + bj < ∆s(α)+1

}∣∣∣∣

≤
∣∣∣∣

⋃

α∈A

{
(k, l) : εm(α)+2 <

b̃l

ãk + b̃l

≤ εm(α)−1; ∆s(α)−1 ≤ ãk + b̃l < ∆s(α)+2

}∣∣∣∣

for each finite collection {(εm(α), s(α)) : α ∈ A}, with m(α), s(α) ∈ Z+.

7. Linear Topological Invariants (LTI)

7.1. We shall exploit here the idea, suggested in [31], [32], [34], to use some very well
known classical invariant characteristics, but considered for special (“synthetic”) sets,
which should be constructed in some invariant geometric manner from a fixed system of
subsets (for instance, a basis of absolutely convex neighbourhoods of zero or a basis of
bounded absolutely convex sets in a locally convex space X). As a fundamental charac-
teristic we shall use the following simplest function of a pair of absolutely convex subsets
in X :

β(W1, W2) = sup{dimL : W1 ∩ L ⊂ W2},(7.1)
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where L stands for a finite-dimensional subspace of X . The function β(W1, tW2) =
β(t−1W1, W2) is the inverse function (counting function) for the sequence {1/bi(W2, W1)},
where

bi(W2, W1) = sup
L∈Li

sup{α > 0 : αW1 ∩ L ⊂ W2},(7.2)

Li being the collection of all i-dimensional subspaces in X. The numbers in (7.2) are
the so-called Bernstein diameters (we use them instead of more traditional Kolmogorov
diameters di(W2, W1) for our convenience only), and the relation between (7.1) and (7.2)
is described by

β(W1, tW2) =

∣∣∣∣
{

i :
1

bi(W2, W1)
≤ t

}∣∣∣∣.

For a given quadruple of absolutely convex sets Wi, i = 1, 2, 3, 4, the following char-
acteristics can be constructed by using the simplest function ([29, 31, 32]):

β(W1, W2, W3, W4) := β(conv(W1 ∪ W2); W3 ∩ W4)

β(W1, W2, W3) := β(W1, W2, W3, W2)
(7.3)

If we put some parameters in these characteristics, for example, if we consider the
function β(τ−1W1, W2, tW3), we can obtain considerably more information about the
space X than the classical one-parameter characteristics could provide.

The following fact, very useful for construction of invariants, is an immediate conse-
quence of the definitions.

Proposition 7.1. If W1 ⊂ V1, W2 ⊂ V2, W3 ⊃ V3, W4 ⊃ V4, then

β(V1, V2, V3, V4) ≤ β(W1, W2, W3, W4), β(V1, V3) ≤ β(W1, W3).

7.2. Now we describe a way to estimate the general characteristics (7.3) for weighted
l1-balls, generated by a fixed absolute basis in X.

Let X be a locally convex space with an absolute basis {ei}I , I being a countable set,
and let {e′i} be a biorthogonal system in X∗. We use the notation

B(a) = Be(a) :=
{
x ∈ X :

∑

i∈I

|e′i(x)|ai ≤ 1
}
,

for any sequence a = (ai) of positive numbers.

Proposition 7.2. Let a(p) = (aip)i∈I , p = 1, 2, 3, 4. Then

β(Be(a(1)), Be(a(2)), Be(a(3)), Be(a(2))) ≥
∣∣∣∣
{

i :
ai3

ai2
≤ 1;

ai2

ai1
≤ 1

}∣∣∣∣,(7.4)

β(Be(a(1)), Be(a(2)), Be(a(3)), Be(a(4))) ≤
∣∣∣∣
{

i :
ai3

ai2
≤ 2;

ai4

ai1
≤ 2

}∣∣∣∣.(7.5)

P r o o f. (a) First we show that for a pair b(1) = (bi1), b(2) = (bi2),

β(Be(b(1)), Be(b(2))) =

∣∣∣∣
{

i ∈ I :
bi2

bi1
≤ 1

}∣∣∣∣.(7.6)
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We put

|x|q =
∑

i∈I

|e′i(x)|biq , q = 1, 2; N = {i ∈ I : bi2 ≤ bi1}, L0 = span{ei : i ∈ N}.

By definition (7.1),
β(Be(b(1)), Be(b(2))) ≥ dimL0 = |N |.(7.7)

It remains to prove
β(Be(b(1)), Be(b(2))) ≤ |N |.(7.8)

Consider the natural projection P : X → L0, defined by Px =
∑

i∈N e′i(x)ei. Let L be
an arbitrary finite-dimensional subspace in X which satisfies the condition

L ∩ Be(b(1)) ⊂ Be(b(2)).(7.9)

To show (7.8) it is enough to prove that the linear operator T = P |L : L → L0 is an
injection, because this implies immediately that dimL ≤ dimL0 = |N |. Ad absurdum,
suppose that an element z ∈ L exists such that |z|2 = 1 but Pz = 0. Then, from (7.9)
it follows that 1 = |z|2 ≤ |z|1, and from Pz = 0 we have |z|1 =

∑
i∈I\N |e′i(z)|bi1 <∑

i∈I\N |e′i(z)|bi2 = |z|2 = 1, therewith the strong inequality has been realized, because

at least one of the coefficients e′i(z) must be non-zero, since z 6= 0. The discovered
contradiction proves (7.8) and together with (7.7) implies (7.6).

(b) Now we use the following obvious geometric relations:

conv(Be(a(1)) ∪ Be(a(2))) = Be(a(1) ∧ a(2)),(7.10)

Be(a(3) ∨ a(4)) ⊂ Be(a(3)) ∩ Be(a(4)) ⊂ 2Be(a(3) ∨ a(4)),(7.11)

where a(1) ∧ a(2) = (min{ai1, ai2})i∈I , a(3) ∨ a(4) = (max{ai3, ai4})i∈I . Denote by L the
left side of (7.4). Then by Proposition 7.1 and the relation (7.6) we get, applying (7.10),
(7.11), the estimate (7.4) as follows:

L ≥ β(Be(a(1) ∧ a(2)), Be(a(2) ∨ a(3))) =

∣∣∣∣
{

i :
max{ai2, ai3}
min{ai1, ai2}

≤ 1

}∣∣∣∣

=

∣∣∣∣
{

i :
ai2

ai1
≤ 1;

ai2

ai2
≤ 1;

ai3

ai1
≤ 1;

ai3

ai2
≤ 1

}∣∣∣∣ =

∣∣∣∣
{

i :
ai3

ai2
≤ 1;

ai2

ai1
≤ 1

}∣∣∣∣

The last equality is true, because one of the omitted inequalities is trivial, and the other
is a consequence of the two remaining ones.

Denoting by L′ the left side of (7.5) we analogously get the estimate (7.5) as follows:

L′ ≤ β(Be(a(1) ∧ a(2)), 2Be(a(3) ∨ a(4)))

=

∣∣∣∣
{

i :
2−1 max{ai3, ai4}

min{ai1, ai2}
≤ 1

}∣∣∣∣ ≤
∣∣∣∣
{

i :
ai3

ai2
≤ 2;

ai4

ai1
≤ 2

}∣∣∣∣.

7.3. For a pair of sets U0 = Be(a(0)), U1 = Be(a(1)) we define the one-parameter
family of sets

Uα = (U0)
1−α

(U1)
α

:= Be(a(α)), −∞ < α < ∞,

where a(α) = (a
(α)
i ), a

(α)
i = (a

(0)
i )1−α(a

(1)
i )α, i ∈ I.

This construction can be used to compose invariants, due to the following simple
interpolational statements.
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Proposition 7.3. Let T be a linear bounded operator from l1(a(0)) to l1(b(0)) and

from l1(a(1)) to l1(b(1)), with both norms ≤ 1. Then T is a linear bounded opera-

tor from l1(a(α)) to l1(b(α)) with norm ≤ 1; here aα = ((a
(0)
i )1−α(a

(1)
i )α)i∈I , b(α) =

((b
(0)
i )1−α(b

(1)
i )α)i∈I , 0 ≤ α ≤ 1.

Corollary 7.4. Let e = (ei), f = (fj) be two absolute bases in a locally convex space

X and Be(a(α)) ⊂ Bf (b(α)), α = 0, 1. Then Be(a(α)) ⊂ Bf (b(α)), where 0 < α < 1.

7.4. Let us consider two spaces X = E∞(a) ⊗̂ E′
∞(b), Y = E∞(ã) ⊗̂ E′

∞(̃b) and an
isomorphism T : Y → X .

Then we can consider two absolute bases in X : the canonical one ei ⊗ ej , (i, j) ∈ N2,
and the image of the canonical basis of Y : fkl = T (ek ⊗ el), (k, l)∈N2. Hence each x∈X
has two basis expansions:

x =
∑

ξijei ⊗ ej =
∑

ηklfkl.

Consider two systems of sets, defined respectively by those expansions (p, q ∈ N):

Ap,q =
{
x ∈ X :

∑
|ξij | exp(pai − qbj) ≤ 1

}
,(7.12)

Bp,q =
{
x ∈ X :

∑
|ηkl| exp(pãk − qb̃l) ≤ 1

}
,(7.13)

By [14], II, p. 113, we have X = lim projp lim indq l1(exp(pai − qbj)) and X ≃ (X̃)∗,

where X̃ = lim indp lim projq c0(exp(−paj + qbj)), and the analogous representations for
Y hold. Hence by Grothendieck’s factorization theorem ([14], I, p. 16) we derive that the
systems (7.12), (7.13) are equivalent in the following sense:

∀r ∃p ∀q ∃s ∃c : Bp,q ⊂ cAr,s, Ap,q ⊂ cBr,s.

Therefore we can consider some chains of indices (as long as we need, but finite),

r1 < p1 < . . . < rm < pm < qm < sm < . . . < q1 < s1,

such that the following imbeddings are valid:

Apν ,qν
⊂ cνBrν ,sν

, Brν+1,sν+1
⊂ cνApν ,qν

,(7.14)

where the constant cν does not depend on the parameters qµ, sµ with µ < ν, ν = 2, . . . , m.
So we will assume that those indices are taken sufficiently far apart:

min

{
p1

r1
,
r2

p1
, . . . ,

pm

rm
,
qm

pm
,
sm

qm
, . . . ,

s1

q1

}
≥ 2.(7.15)

Those systems of sets are good raw material to construct some new linear topological
invariants, which are natural for the class of spaces considered here. Namely, we apply the
functions (7.3) to the following artificial “synthetic” absolutely convex sets, constructed
with the sets taken from the two fixed collections (7.12), (7.13):

W1 = conv((Ap2,q2
)1/2(Ap7,q7

)1/2 ∪ (exp τ)(Ap7,q7
)),

W2 = W4 = Ap4,q4
,

W3 = (Ap1,q1
)1/2(Ap6,q6

)1/2 ∩ (exp t)(Ap6,q6
),
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V1 = conv

(
1√
c2c7

(Br3s3
)1/2(Br8s8

)1/2 ∪
(

1

c7
exp τ

)
Br8s8

)
,

V2 =
1

2c4
Br5s5

,

V3 =
√

c1c6(Br1s1
)1/2(Br6s6

)1/2 ∩ (c6 exp t)Br6s6
,

V4 = 2c4Br4s4
,

therewith we assume that (7.14) and (7.15) hold.
So, we get two families of functions:

βP (t, τ) := β(W1, W2, W3, W2), P = (p1, q1; . . . ; p7, q7),

β̃R(t, τ) := β(V1, V2, V3, V4), R = (r1, s1; . . . ; r8, r8).

The first carries some information on the space X , as does the second about the space
Y . By Proposition 7.1 we can compare these data:

βP (t, τ) ≤ β̃R(t, τ).(7.16)

In view of symmetry we can arrange the corresponding estimates in the opposite direction:

β̃′
R′(t, τ) ≤ β′

P ′(t, τ),(7.17)

after some analogous preparation of appropriate “synthetic” sets V ′
1 , V ′

2 = V ′
4 , V ′

3 and
W ′

1, W ′
2, W ′

3, W ′
4, constructed from the same material (7.10) and (7.11).

After some calculations, based on Proposition 7.2, we can give necessary conditions
for the isomorphism X ≃ Y in terms of the sequences a, b, ã, b̃. These conditions will be
given in the following section.

8. Necessary conditions

Here we give the proof of Theorem 3.7. We need to estimate the functions βP , β̃R by

some characteristics of the sequences a, b, ã, b̃. Denote by a(ν) = (a
(ν)
ij ), b(ν) = (b

(ν)
kl ) the

weight sequences, corresponding to the sets Apv ,qv
and Brv ,sv

:

a
(ν)
i,j := exp(pνai − qνbj), (i, j) ∈ N

2, ν = 1, . . . , 7,

b
(ν)
k,l := exp(rν ãk − sν b̃l), (k, l) ∈ N

2, ν = 1, . . . , 8.

Then by Proposition 7.2 the following estimates hold:

βP (t, τ) ≥
∣∣∣∣
{

(i, j) :

√
a
(1)
ij a

(6)
ij

a
(4)
ij

≤ 1;

√
a
(2)
ij a

(7)
ij

a
(4)
ij

≥ 1;
a
(6)
ij

a
(4)
ij

≤ exp t;
a
(7)
ij

a
(4)
ij

≥ exp τ

}∣∣∣∣,

β̃R(t, τ) ≤
∣∣∣∣
{

(k, l) :

√
b
(1)
kl b

(6)
kl

b
(5)
kl

≤ c4
√

c1c6;

√
b
(3)
kl b

(8)
kl

b
(4)
kl

≥ 1

c4
√

c2c7
;

b
(6)
kl

b
(5)
kl

≤ c4c6 exp t;
b
(8)
kl

b
(4)
kl

≥ exp τ

c4c7

}∣∣∣∣.

The simple estimates below, following from assumptions (7.15), are useful now, if we
try to work with the concrete form of a(ν), b(ν):
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p1 + p6

2
− p4 ≤ p6;

q1 + q6

2
− q4 ≥ q1

4
;

p2 + p7

2
− p4 ≥ p7

4
;

q2 + q7

2
− q4 ≤ q2;

p6 − p4 ≤ p6 ≤ q4; q4 − q6 ≤ q4; p7 − p4 ≥ p7

2
; q4 − q7 ≥ q4

2
≥ p7

2
;

r6

4
≤ r1 + r6

2
− r5 ≤ r6;

s1

4
≤ s1 + s6

2
− s5 ≤ s1;

r8

4
≤ r3 + r8

2
− r4 ≤ r8;

s3

4
≤ s3 + s8

2
− s4 ≤ s3;

r6

2
≤ r6 − r5 ≤ r6;

r6

2
≤ s5

2
≤ s5 − s6 ≤ s5;

r8

2
≤ r8 − r4 ≤ r8 ≤ s4;

s4

2
≤ s4 − s8 ≤ s4.

With these relations the next estimates will be obtained:

βP (t, τ) ≥
∣∣∣∣
{

(i, j) :

(
p1 + p6

2
− p4

)
ai −

(
q1 + q6

2
− q4

)
bj ≤ 0;

(
p2 + p7

2
− p4

)
ai −

(
q2 + q7

2
− q4

)
bj ≥ 0;

(p6 − p4)ai + (q4 − q6)bj ≤ t; (p7 − p4)ai + (q4 − q7)bj ≥ τ

}∣∣∣∣

≥
∣∣∣∣
{

(i, j) :
4p6

q1
≤ bj

ai + bj
≤ p7

8q2
;

2τ

p7
≤ ai + bj ≤ t

q4

}∣∣∣∣;

β̃R(t, τ) ≤
∣∣∣∣
{

(k, l) :

(
r1 + r6

2
− r5

)
ãk −

(
s1 + s6

2
− s5

)
b̃l ≤ ln c4

√
c1c6;

(
r3 + r8

2
− r4

)
ãk −

(
s3 + s8

2
− s4

)
b̃l ≥ − ln c4

√
c2c7;

(r6 − r5)ãk + (s5 − s6)̃bl ≤ t + ln c4c6;

(r8 − r4)ãk + (s4 − s8)̃bl ≥ τ − ln c4c7

}∣∣∣∣

≤
∣∣∣∣
{

(k, l) :
r6

8s1
≤ b̃l

ãk + b̃l

≤ 8r8

s3
;

τ

4s4
≤ ãk + b̃l ≤

4t

r6

}∣∣∣∣,

where the last inequality is true for τ ≥ τ0, and τ0 depends on all the parameters rν , sν .
Thus we have, after replacing 2τ/p8 by τ and t/q4 by t,

∣∣∣∣
{

(i, j) :
4p6

q1
≤ bj

ai + bj
≤ p7

8q2
; τ ≤ ai + bj ≤ t

}∣∣∣∣

≤
∣∣∣∣
{

(k, l) :
r6

8s1
≤ b̃l

ãk + b̃l

≤ 8r8

s3
;

p7τ

8s4
≤ ãk + b̃l ≤

4q4

r6
t

}∣∣∣∣.

Fixing the parameters p6, p7, p8, r6, r8, q4, s4 and leaving the rest of them free, we get
assertion (3.2) of Theorem 3.7 with

∆ = max{4q4/r6, 8s4/p7},
but asymptotically, i.e., for τ ≥ τ0, where τ0 depends on all the parameters. The relations
(3.3)–(3.5) can be proved similarly, but in a considerably simpler fashion.
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9. Spaces s ⊗̂ E ′∞(b)

P r o o f o f T h e o r e m 3.1. We shall apply Theorem 3.7 and Proposition 6.1 to the
spaces X = E∞(a) ⊗̂ E′

∞(b) and Y = E∞(ã) ⊗̂ E′
∞(̃b) with

ai = ãi = max{1, ln i}, i ∈ N

(note that s≃E∞(a)). Without loss of generality, we can assume the following conditions:

ai ≤ bi, ãi ≤ b̃i, i ∈ N,

or, what is the same,

mb(t) ≤ ma(t), mb̃(t) ≤ mã(t), t ≥ 1.

Note that ma(t) = mã(t) and

et/2 < et − 1 < ma(t) ≤ et, t ≥ 1.(9.1)

Suppose that X ≃ Y . Then, by Theorem 3.7, ∃∆ ∀ε̃ ∃ε ∀δ ∃δ̃ such that the inequality
(3.2) is valid. We denote by I and Ĩ, respectively, the left and right sides of (3.2) with
t = τ∆. It can be assumed that all the parameters are chosen in such a way that ∆ ≥ 5,
δ∆ < ε < ε̃. Then, applying (9.1), the following estimates are true:

I ≥ [ma(τ(∆ − ε)) − ma(τ)][mb(ετ) − mb(δ∆τ)]

≥
[

exp
τ(∆ − ε)

2
− exp τ

]
nb(δ∆τ, ετ) ≥ (exp τ)nb(δ∆τ, ετ);

Ĩ ≤ mã(∆2τ)[mb̃

(
ε̃∆2τ

)
− mb̃(δ̃τ/∆)] ≤ (exp 2∆2τ)nb̃(δ̃τ/∆, ε̃∆2τ).

Therefore,
(exp τ)nb(δ∆τ, ετ) ≤ (exp(2∆2τ))nb̃(δ̃τ/∆, ε̃∆2τ).(9.2)

From this it follows that

nb(δ∆τ, ετ) ≤ nb̃(δ̃τ/∆, ε̃∆2τ), τ ≥ 1;(9.3)

otherwise, for some τ0, the left side of (9.2) would be positive, but the right side would
be equal to zero. Putting t =

√
εδ∆τ , from (9.3) we get

nb(t/A, At) ≤ nb̃(t/B, Bt), t ≥ 1,(9.4)

where

A =

√
ε

δ∆
> 1, B = max

{
ε̃

√
∆3

εδ
,

√
εδ∆3

δ̃

}
.

Because of symmetry we also have the inequality obtained from (3.4) by exchanging b

and b̃. By Proposition 1.1 this means that b and b̃ are identical in lacunarity.
On the other hand, with b and b̃ identical in lacunarity, this means that for arbitrary

A > 1 and some B = B(A) the condition (9.4) holds together with the above-mentioned
symmetric inequality. We choose a constant ∆ and a sequence εm, m ∈ Z+, in such a
way that

∆ ≥ 8, ∆3εm+1 ≤ εm, m ∈ Z+,(9.5)
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and

∆εm ≤ A2εm+1, B ≤ min

{
ε2

m−1

∆εmεm+1
,

εmεm+1

∆3ε2
m+2

}
, m ∈ Z+.(9.6)

Let us now show that, after choosing all the parameters, condition (iii) of Proposition
6.1 is valid. Because of symmetry, only (6.1) needs to be proved.

By I(m, s) and Ĩ(m, s), respectively, we denote the left and right sides of (6.1). The
assumption taken at the beginning of this proof, together with (9.5), ensures the following
inequalities:

I(m, s) ≤ ma(∆s+1)[mb(εm∆s+1) − mb(εm+1∆
s)]

≤ (exp(2∆s+1))nb(εm+1∆
s, εm∆s+1),

Ĩ(m, s) ≥ [mã(∆s+2 − εm+1∆
s−1) − ma(∆s−1)]nb̃(εm+2∆

s+2, εm−1∆
s)

≥ (exp(2∆s+1))nb̃(εm+2∆
s+2, εm−1∆

s).

Taking into account (9.6), from this we get

I(m, s) ≤ Ĩ(m, s), m, s ∈ Z+.

So, by Proposition 6.1, X
qd≃ Y (the more so as X ≃ Y ).

10. Spaces s′ ⊗̂ E∞(a)

10.1. P r o o f o f T h e o r e m 3.11. Since (i)⇒(ii) and (iii)⇒(iv) are obvious, we
need to prove (ii)⇒(iii) and (iv)⇒(i). First we show (ii)⇒(iii). For this purpose we use

Theorem 3.7. Denote by I and Ĩ the left and right sides of (3.2), respectively, and assume
that

ε ≥ 4δ

1 − δ
, ε = ε(ε̃) < ε̃ <

1

2
.

Then

I ≥
∑

τ<ai≤t(1−ε)

[
mb(εai) − mb

(
δ

1 − δ
ai

)]
≥ ma(t(1 − ε)) − ma(τ), τ ≥ τ0 :=

4

ε
,

since

mb(ετ) − mb

(
δ

1 − δ
τ

)
≥ exp

ετ

2
− exp

ετ

4
≥ 1,

if τ ≥ τ0. Further,

Ĩ ≤ (exp ε̃∆t)

[
ma(∆t) − ma

(
1 − ε̃

∆
τ

)]
.

Therefore, from (3.2) it follows that (3.8) is satisfied with γ = ε̃∆/(1 − ε), A = 2∆ and
τ0 defined as above. Because of symmetry (3.9) can be obtained in the same way.

(iv)⇒(i). By Theorem 3.9, and for reasons of symmetry, it is enough to prove the in-
equalities (3.2) and (3.3) with the corresponding quantifiers and τ ≥ t0 for some constant
t0, depending on all parameters.
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First, we deal with (3.2). Let (iv) hold. Take some D > 2. Without loss of generality
it can be assumed that

δ̃ < δ < ε <
ε̃

16D4(r+1)
,(10.1)

where r will be fixed later.
Let us introduce some notation:

bj = max(1, ln j), b̃j = bj , j ∈ N;

N (s) =

{
(i, j) ∈ N

2 : δ <
bj

ai + bj
≤ ε; D2s−1 ≤ ai + bj < D2s+1

}
,

M(s) =

{
(k, l) ∈ N

2 : δ̃ <
b̃l

ãk + b̃l

≤ ε̃; D2s−1 ≤ ãk + b̃l < D2s+1

}
,

I(s) = |N (s)|, J(s) = |M(s)|, s ∈ Z+,

I(s0, s1) =
∣∣∣

s1⋃

s=s0

N (s)
∣∣∣ =

s1∑

s=s0

I(s), J(s0, s1) =
∣∣∣

s1⋃

s=s0

M(s)
∣∣∣ =

s1∑

s=s0

J(s), s0 ≤ s1.

Put A = D2 and choose r ∈ N in such a way that the constant B = B(A) in (iv) satisfies
the condition B ≤ D2r. Then with the assumption (10.1) and the condition (iv),

I(s) ≤ [mb(εD
2s+1) − mb(δD

2s−1)]

[
ma(D2s+1) − ma

(
D2s−1

2

)]

≤ exp εD2s+1[ma(D2(s+1)) − ma(D2(s−1))]

≤ exp 2εD2s+1[mã(D2(s+r)) − ma(D2(s−r))]

for D2s+1 ≥ τ0(ε). On the other hand,

J̃(s) := J(s − r − 1, s + r + 1)

≥ [mb̃(ε̃D
2(s−r−1)) − mb̃(δ̃D

2(s+r+1))]

[
mã

(
D2(s+r+1)

2

)
− mã(D2(s−r−1))

]

≥
[

exp
ε̃D2(s−r−1)

2
− exp(δ̃D2(s+r+1))

]
[mã(D2(s+r)) − mã(D2(s−r))]

≥ exp
ε̃D2(s−r−1)

4
[mã(D2(s+r)) − mã(D2(s−r))]

for D2s ≥ 1/δ̃. Therefore the inequality

I(s) ≤ 1

2(r + 1)
J̃(s), s ≥ S,(10.2)

would be true with an appropriate constant S if the following inequality held:

exp 2εD2s+1 ≤ 1

2(r + 1)
exp

ε̃D2(s−r−1)

4
, s ≥ R,

with some constant R. But the last inequality follows from the assumption (10.1) if
D2R+1 ≥ (ln 2(r + 1))/(2ε), so (10.2) is proved. Hence

I(s0, s1) ≤
1

2(r + 1)

s1∑

s=s0

J̃(s) =
1

2(r + 1)

s1∑

s=s0

2(r+1)∑

α=0

J(s − r − 1 + α)
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≤ 1

2(r + 1)

s1∑

s=s0

J(s0 − r − 1, s0 + r + 1) = J(s0 − r − 1, s0 + r + 1).

Putting t0 = D2S−1, we choose for t0 ≤ τ < t < ∞ two natural numbers s0 and s1 such
that

D2s0−1 ≤ τ < D2s0 , D2s1 ≤ t < D2s1+1.

Then we get (3.2) with ∆ = D2(r+1)+1 and τ ≥ t0. To prove (3.3) we use the conditions
(3.12), (3.13). Denote by I and J the left and right sides of (3.3), respectively. Without

loss of generality, we can assume δ̃ < δ < 1. Put ∆ = 16E. Then

I ≤ mb(t)ma(t) ≤ (exp t)ma(t) ≤ exp((E + 1)t)mã(Et) ≤ (exp 2Et)mã(Et),

J ≥ [mb̃(∆t/2) − mb̃(∆t/8)]mã(∆t/2)

≥ (exp ∆t/8)mã(∆t/2) ≥ (exp 2Et)mã(Et), t ≥ 1.

Thus we get (3.3).

10.2. P r o o f o f T h e o r e m 3.3. Let a and ã be identical in lacunarity, i.e., ∃A > 1
such that

na(t, τ) ≤ nã(τ/A, At), nã(t, τ) ≤ na(τ/A, At), 1 ≤ τ < t < ∞.(10.3)

Then, due to (3.1), we have for each γ > 0,

ma(τ, t) ≤ (exp γt)na(τ, t), τ ≥ τ0 = τ0(γ).

Using (10.3), from this we get

ma(τ, t) ≤ (exp γt)nã(τ/A, At) ≤ (exp γt)mã(τ/A, At), τ ≥ τ0,

i.e., (3.10); by symmetry we also have (3.11). Therefore, by Theorem 3.11 we get X ≃ Y .
On the other hand, let X ≃ Y . Then condition (iii) of Theorem 3.11 holds. Suppose

that the left side of (3.10) is not equal to zero; then the right side of (3.10) is not equal
to zero either, which means that

na(t, τ) ≤ nã(τ/A, At).

Similarly we get nã(t, τ) ≤ na(τ/A, At). So the sequences a and ã are identical in lacu-
narity.
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[20] A. Pe lczyńsk i, On the approximation of S-spaces by finite-dimensional spaces, Bull. Acad.

Polon. Sci. 5 (1957), 879–881.



Classification of E∞(a) ⊗̂ E′∞(b) 27

[21] H. H. Schaefer, Topological Vector Spaces, Grad. Texts in Math. 3, Springer, New York,

1971.
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