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Introduction

The early achievements in the field of harmonic analysis on symmetric
spaces were connected with the study of various algebras of functions
canonically attached to the space, the simplest and perhaps the most
important example being the algebra of continuous, compactly support-
ed, K-invariant functions on the symmetric space G/K. Among the most
spectacular results obtained that way we mention various equivalent
characterizations of spherical functions, the establishment of the abstract
Plancherel formula for G/K, the determination of the relation between
spherical functions and spherical representations (cf. papers of Gelfand
[3], Godement [6] and early papers of Havish-Chandra).

I{ had turned out pretty quickly, however, that those broad functional-
theoretic methods are not capable to deal with more subtle problems,
like e.g., the determination of the explicit form of the measure appearing
in the Plancherel formula, determination of the dual space of @, etc.,
and that a lot more of the structure theory of the group @ has to be brought
in, in order to deal successfully with those problems.

Due mostly to the heroic labors of Harish-Chandra, whose work domi-
nates the field (list of his publications, as given in. Warner [28] com-
prises more than thirty papers, written over the period 1949 —1973!),
what has once been just one branch of harmonic analysis has now be-
come a vast subject of its own interest, specific methods, aims, and last
but not least, a source of inspiration for other parts of mathematics.

One of the first problems in the harmonic analysis on symmetric
spaces which gained its full solution was the-problem of determination
of spherical functions, i.e., K-invariant eigenfunctions of G-invariant
differential operators on a symmetric space G/K. It was done by Harish-
Chandra who established now famous formula which gives parametriza-
tion of the set of spherical functions in terms of the structure of the group
G. However, the corresponding problem for spherical representations
has not yet been satisfactorily solved. Although we know enough represen-
tations for the Plancherel formula on G/K we still do not know all spheri-
cal representations of @, even unitary, or putting it another way, we do
not know what 1, in the parametrization of spherical functions given
by the formula (II.2) of Harish-Chandra, corresponds to positive def-
inite spherical functions. We remark in passing that even for classical
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groups the so-called Gelfand-Naimark list of representations is in-
complete, as the work of Kunze & Stein and Stein himself show (see a re-
view paper of E. M. Stein, Analytic continuation of group representations
[267]). In cases of groups of split rank 1 and also complex groups, this class
of representations has been determined by Kostant [18], Parthasarathy,
Ranga Rao & Varadarajan [22] who, however, used purely algebraic
methods which rely on the determination of representations of the umi-
versal enveloping algebra.

In many of the earlier publications the induction procedure was
used as a device to produce a sufficient supply of spherical (or even arbit-
rary) representations of G. In particular, Harish-Chandra subquotient
theorem shows that inducing construction together with the usual forma-
tion of sub-and quotient representations is sufficient to obtain all, up
to Naimark equivalence, representations of semi-simple Lie groups. This
work, and especially Chapter V, shows that in the case of spherical (or
as it is sometimes said, class one) representations situation is more favor-
able. Namely, we were able to prove, with mild restrictions on correspond-
ing spherical functions (which are due to the weakness of the method
rather than to some intrinsic complications of the theory), that spherical
representations are Naimark equivalent to an irreducible subrepresentation
of the representation induced (nonunitarily) by the character of the minimal
parabolic subgroup MAN, with character determined uniquely by
spherical function via the Harish-Chandra formula. This we consider
to be a strengthening of the above-mentioned subquotient theorem of
Harish-Chandra. For unitary representations is even better than that —
we show that every such representation is unitary equivalent to the
unitary extension of the represéntation induced (in the sense of Bruhat)
by the mentioned character of MAN. We also obtain some information
on the scalar product used to define the Hilbert space structure — it
is shown to be given by conical distribution. This on the one hand shows
yet another example of the role played by conical distributions in the
representation theory and on the other, makes a link with the work of
Knapp & Stein on the complementary series.

The organization of the paper is the following. In Chapter I we recall
basic notions from various fields (representation theory, measure & dis-
tribution theory, structure theory of semi-simple Lie groups, etc.), we
shall need later on. Chapter IT is devoted to the brief formulation of the
main properties of spherical functions and representations. It contains
only one seemingly new result, namely Proposition IL.5.

In Chapter ITI we introduce a certain series of reperesentations in-
duced by characters of the subgroup MAN. What concerns that series of
representations we essentially followed Helgason’s paper [16], whereas
in the treatment of Fourier and dual Radon transforms we prefered to
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give an alternate treatment emphasizing more the representation-tlieo-
retic side of matters. This resulted in establishing that the restriction of the
dual Radon transform to an cigenspace of D(Z) is essentially the dual
of the IFourier transformation, what enabled us to avoid an intermediate
use of the Radon transform. Accordingly we preferred to discuss some
properties of those eigenspaces (see the the notion of a simple A € af)
in terms of the Fourier transform. This part owes much to discussions
with A. Wawrzyniczyk.

In Chapter IV we recall some points of Helgason's theory of coni-
.cal digtributions and develop the theory of conical representations. It
should be made clear, however, that we have found the notion of conical
representation, as given by Helgason, unsatisfactory and so we have
stuck to the modification thereof proposed in the joint work of A, Waw-
rzyliczyk and the author [27]. In comparison to that paeper their study
is pushed a little further on and some new results are added, especially
an example showing that a conical representation need not be spherical
contrary to the finite-dimensional case.

In that chapter we consider also the so-called intertwining operators
for principal series, their study, however, limited to the case when inte-
gcals defining them are absolutely convergent. This will suffice for the
study of spherical representations in Chapter V, where we first prove
our version of subquotient theorem and then the unitary equivalence
theorem, showing how spherical representations are constructed using
conical distributions.

* *

It is my pleasant duty to acknowledge here the influence of Professor
Krzysztof Maurin, from whom I learned all I know from mathematics,
and whose interest and unconventional words of encouragement were
always of great help for me.

The other kind of debt I owe to Doctor Antoni Wawrzynczyk, whose
share in this work accumulated over years of collaboration can hardly
be overappreciated, and who through numerous discussions succeeded
in casting more light on this difficult subject.

I am also much indebted to Professors Adam Piskorek and Ryszard
Raczka for their cooperation and help during preparation of this work.

I would like to express my obligation to Professor Sigurdur Helgason,
whose lectures at CIME (Montecatini)in 1970 introduced me to this fascinat-
ing subject and whose work, Duality for symmetric spaces with applica-
tions to group represeniations, served as a starting point for this research.



Chapter I

Preliminaries and notations

1. Manifolds —generalities. Let M be a differentiable manifold —
we shall use Schwartz notation for spaces of functions attached to
M and corresponding distribution spaces, ie., ¥,(M) for the space
of compactly supported continuous functions, &(M) for the space
of infinitely differentiable functions, 2 () for the space of compactly
supported and infinitely differentiable functions — all spaces taken
with their customary topologies. 2' (M), & (M) will stand for spaces
of distributions and compactly supported distributions respectively.

If y is a distribution on M and = a diffeomorphism of M onto itself,
then we shall denote by y* the distribution defined by

v = {for, ),

and for a differential operator D on M we denote by D' the operator
defined by

D'(f) = (D(for))or™".

We say that y resp. D is invariant under v if y°, " resp. is equal to y,
D resp.

2. Representations. Let ¥ be a locally convex, Hausdorff, complete,
topological vector space and @ a locally compact group. A homomorphism
G <g - n(g) of @ into Aut(V) is called representation (continuous represen-
tation) of G on V if the map @ x V3(g, ») - n(g)v ¢V is jointly continuous.
In the most important cases when V is barrelled (for example when V
is Fréchet or Montel space), the joint continuity is implied by an appar-
ently weaker condition of the separate continuity.

The requirement of joint continuity allows us to extend the given
representation to a representation (i.e., an homomorphism) of the con-
volution algebra of measures with compact supports on @ by means of
the formula

M (@) 24— m(p): w(pw)o = [ n(gwdp.
(2]
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Although the homomorphism @3¢ — x(g7") does not, generally,
fulfil the continuity requirement with respect to the strong dual topology
on V', this is the case when V is semi-reflexive. Then G>g — m(g~!)
is a continuous representation of G' on V' equipped with its strong dual
topology, which shall be denoted by =’ and said to be the conira-
gredient representation.

Two representations =, v on V, W resp. are said to be equivalent if
there exists a linear bicontinuous bijection T': V — W such that

Tw(g) = t(g)T for all g.

An operator satisfying the above equality (not necessarily con-
tinuous or bijective) is said to be an intertwining operator.

We shall also use several weaker forms of equivalences — so-
called weak and Naimark equivalences. Two representations (x, V), (r,W)
are said to be weakly equivalent if their spaces contain dense invariant
subspaces, say V, and T, resp., such that there exists a linear, bijective
but not necessarily continuous operator I: V, - W, intertwining for
restrictions of # and 7 to those subspaces.

The Naimark equivalence is obtained from the preceding definition
by requiring additionally T' to be closed.

A unitary representation is a representation on a Hilbert space by
unitary operators.

A representation is called (fopologically) irreducible if the represen-
tation space does not contain any proper invariant (and closed resp.)
subspace.

Let Iy be a prehilbert space with i(-, :) as its prehilbert product,
and suppose we are given a representation &> g — m,(g) by operators
preserving the form A. Let F be the Hilbert space completion of #,; then
mo(g) can be extended to unitary operators on F in the unique way. The
representation obtained in such a way from =, is called the unitary exten-
sion of .

Let a Lie group @ act to the left on a manifold M ; this action, car-
ried over to various funection or distribution spaces attached to M, e.g.,
& (M), 2(M), ete., defines continuous representations on them which
will be called, indifferently, left regular representations of @ and will be
denoted by g — L,, with L, defined by

Lyf(m) = flg~'m), fe &(M),
whereas for a distribution v,

< ng> =Ly fs -
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We close this section with the discussion of differentiability properties
of representations. Let (, V) be a representation of a Lie group G. A vee-
tor ve V is said to be a differentiable vector of n'if G»g —a(gw eV
is a differentiable function (of C*™ class). The set of differentiable vectors
for z is m-stable and dense subspace of V denoted by V. A restriction
of = to V,, is denoted by =z, and is called a differentiable representation in-
duced by . The subspace spanned by vectors of the form = (f)v with f ¢ 2(@)
is called the Gdrding space of = and is readily shown to be dense, invariant,
and contained in V.

It is possible to define a representation of the convolution algebra
&'(@) by closed operators on V, so that their domains will contain V..
In particular, the universal enveloping algebra %(g), viewed as thealgebra
of distributions supported at the origin e @, is represented by closed
operators in such a way that, for X g, ®(X) is defined as

x(X)w = lim t“‘(n (exp (1X))v -—1)),
—0

with domain D, x, consisting of vectors for which the limit actually exists.
Tor vectors of the form = (f)v with f ¢« 2(@),

n(X) n(flo = a(Xf)v, X <Ug).

Let now V be a Banach space. We shall equip 7, with such a to-
pology that all the maps =(X), for X U(g), will be continuous (the
construction we owe to Goodman [7]). The topology is defined by the
family of semi-norms p, : let X,, ..., X; be a basis of g; then

en(v) = 2 e (X; Xy, oo Xi)oll, nelN.
I<iy<d
It can be shown that V,, is complete in that topology, hence a Fréchet
fpace.

3. Induced representations. Let @& be a locally compact group and
I its closed subgroup. Given a representation I'> y —L(y) of I on I' we
shall call the representation of G by left translations in the space 2%
consisting of infinitely differentiable functions on @ verifying

(a) p(supp f) is compact: p: G — G/I" natural projection,

(b) f(gy) = e (») L(y™") f(g) for all ye I, ye &,
a differentiable representation induced by L.
Here p is a C® function satisfying
_ Ar(y)
Ag(y)

and 9 is equipped with the topology of a strict inductive limit of 2%
where o < @ is compact and 27 is the subspace of 9 consisting of functions

o(gy) 0(9), ge€G, yel’
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with supports contained in wI' and with the relative topology inherited
from &(@, I").
Bruhat [2] has shown that the map f: 2(@, F)-> 2%, given by

(BfHg) = f o () L(»)f (gy) dy,

is a continuous open surjection, hence 2" is isomorphic to the quotient
space of 2(@, F).

In the case of a unitary inducing representation Z there is a natural
prehilbert structuwre on 2%, defined via the form

9" 2> (fh) ~ [ o7 (2)(f(2)] h(=) du(aD),
@|r

where x is a quasi-invariant measure on G/I" determined by g. The unitary
extension of this representation is given by left translations, acting in
the space s~ of Haar measurable functions on @, verifying (b) above,
and with the integral ., ,J; o~ (@)(f(z) | f(®))dp(xI"), which gives the norm,

finite. This representation is said to be unitarily induced by L.

However, frequently enough another situation occurs — that of
non-unitary inducing representation but with a postive definite, hermitian
form on 2%, left invariant by the representation. In this case the unitary
extension of induced representation is called unitary induced representation.
The Bruhat-Schwartz Irernel theorem asserts that such a form is always
defined by a vector distribution on @.

f4. Elements of structure theory of semi-simple Lie groups. In what
followa @ will denote a semi-simple connected Lie group with the finite
center and g its Lie algebra. We shall deal exclusively with the case
of non-compact g. Denote by ¢ =f+p a Cartan decomposition of
g and by 6 the corresponding Cartan involution, i.e., an involutive auto-
morphism of g such that f and p are its 1 and — 1 eigenspaces respectively.
¥ B(-,-) is the Killing form of g, then the form (X, Y) -~ —B(X, 0Y)
is positive definite and so determines a euclidean structure on g. Let a
be a maximal abelian subspace of p; then ad(H), H ¢ a, are self-adjoint
with respect to the above scalar product and so they are simultaneously
diagonalized. Theng = @ g°whereg® = {X eg:ad(H)X = af (H)X} and

ae ZU{0}
Y is the set of non-vanishing identically simultaneous eigenvalues «

called (restricted) roots of g with respect to a. In general, we have
dimg* =m* > 1.

Hyperplanes (e, 0) = {Hea: a(H) = 0} partition a into open connect-
ed and convex parts called Weyl chambers. If we denote hy A —H,
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the isomorphism of o, the dual of a, with a itself given by the
enclidean structure on a by the formula A(H) = B(H,, H) for all Heuq,
then there is a dual partitioning of a’ into Weyl chambers. Let a* ca be
any Weyl chamber — call a root positive if it is positive on a¥. This in-
troduces an order into the set of roots and if X', is the set of positive roots,
then X = X, u(—2Z,). We put g = % ) m"a.

aeXl
Let n = @ ¢°; then n is nilpotent subalgebra of g and the Iwasawa
aelX
theorem states a direct sum decomposition of g,
g =f+a+n

and a diffeomorphism
E xAXN>(kya,n) = kan «@,

with K, 4, N, — analytic subgroups of ¢ with Lie algebras ¥, q, n, re-
spectively. Also K is a maximal compact subgroup of G. For g ¢G we
shall put g = k(g)expH (¢)n(g) with k(g) e K, H(g) ca, n(g) e N de-
termined uniquely in virtue of the Iwasawa decomposition.

The dimension of a is called the split rank of G and is equal to the
rank of the associated symmetric space G /XK.

Let M and M’ be the centralizer and normalizer, respectively, of 4
in K. Since both have the same Lie algebra — the centralizer of a in
f — and are compact, their quotient 3’'/M, called the Weyl group, is
finite. The Weyl group W acts on o via the adjoint representation and
on a' by duality, i.e., if w = m,M, then

w(H) = Adg(m,)H, wA(H) = A{w '(H)).

It can be shown that the action of W on the set of Weyl chambers in ¢
is simply transitive and also that it sends roots into roots.

5. Homogeneous spaces of semi-simple Lie groups. Together with
a symmetric space attached to a semi-simple G which has a representation
as the quotient G/X with K maximal compact subgroup of @, we shall
deal with its dual space, namely, the space of horocycles G¢/MN. (We
shall leave aside the geometrical interpretation of the space of horocycles
since we shall not need it.)

In view of the Iwasawa decompogition it is not surprising that we
have a diffeomorphism of K/M xA with G/MN given by (kM, a)—
kaMN, and indeed this was proved by Helgason in [13]. This allows us
to regard G/MN as a trivial fiber bundle over K /M with a fiber A and
with the action of @ given by

9(kM, a) = (k(gk) M, exp(H(gk))a).

This point of wiew will be convenient in determination of G-invariant
differential operators on G/MN.
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There is yet another space of constant use in the sequel — the maxi-
mal boundary space of G /K which is equal to G/MAN. From the Iwasawa
decomposition it follows that G/MAN is naturally diffeomorphic with
K/M and the action of @, carried over to K/M, is given by g(kM)
= k(gk) L.

6. Measures on G and its homogeneous spaces. The bi-invariant
measure on @ is denoted by dg. Using the Iwasawa decomposifion one
finds that with suitable normalization of mmeasures

[flgag = [ fkan)e™®*sak da dn,
&

ExAxN

here dk is normalized so that the total measure of K is 1.
With M as above, I' = M AN is a closed -subgroup of @ and its left
Haar measure and modular function are given as

[fnay = [ fiman)dm da dn,
r

MxAxN

f flra™)dy = f f(y)a(ya) = e72eos f f(y)dy, for & = man.

Let U, H be locally compact groups, H = U and assume they both
are unimodular; then U/H has a U-invariant measure d(wH), given by

(I.1) [fmyaw= [(f flah)ar) d(eH)
U

vl o

If H is compact and of total measure 1, then one.can identify
%,(U/H) with the subspace of %,(U) consisting of right H-invariant
functions, and with this identification we have

(1.2) ff(m)dm— [ faH) d(eH), fe%(U/H).

U/H

In general, there is no @-invariant measure on the coset space U/H,
there are present, however (provided U is countable at infinity), quasi-
invariant measures.

A measure z on U/H is said to be quasi-invariant if for all z e U p
and its @-translate are mutually equivalent, i.e., have the same null sets.

Quasi-invariant measures are most ea,sﬂy constructed by means
of so-called g-functions.

A Borel positive function ¢ on U, bounded below and above on com-
pact subsets and verifying for all I ¢ H

dyh)
o(ah) = S vola);  we T,
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is called o-function. Such function gives rise to a quasi-invariant meas-
ure dyu, as follows

(L3) [f@) e@ s = [ap,(eH) [ flah)dh; fe%, (D).
U UiR H
Such e-functions always exist — when U is a Lie group, then o may
be chosen of C% class.

Returning to a semi-simple & we see that there exist G-invariant
measures on G/K and G/MN, given by formula (I.1). On G/MAN, how-
ever, there is no G-invariant measure — a quasi-invariant we shall be
using constantly is given, in the identification of G¢/MAN with K/M, by

the K-invariant measure d(kM), and the corresponding p-function is

7. Invariant differential operators on homogeneous spaces. It is
well kmown that the algebra of @-invariant differential operators on @
is canonically isomorphic to the universal enveloping.algebra %(g) of g.
The algebras of G-invariant operators on G¢/K and G/MN admit a simple
and complete description in terms of invariant operators on A — the
abelian part of the Iwasawa decomposition of @.

The proof of the following result may be found in Helgason’s trea-
tise [12] (part a) and [13] (part b).

THEOREM I.1.

(a) (Harish-Chandra) The algebra D(G/K) of all G-invariant differen-
tial operators on G /K is canonically isomorphic with I(4) — the algebra
of Weyl group invariant differential operators on A with constant coef-
ficients,

(b) (Helgason). The algebra D(G|MN) of Q-imvariant differential
operators on G|MN is canonically isomorphio with D(A) — the algebra
of differential operators on A with constant coefficients.

In order to get some idea of the above isomorphisms note that D(@/K)
may be viewed as an algebra of left @, right K-invariant operators
on @, and hence identified with the centralizer %'(g) of ¥ in (g). For
every p «¥(g) there exists a unique p®¢ (a) such that p — p%e n A(g) + A(q)f
and M'(g)ep — p® is a homomorphism of algebras. This is essentially,
up to an automorphism of %(a) which renders p® to be W-invariant, the
isomorphism of (a). .

As for (D), recall that the action of G on G/ MN~ K|/M x 4 is
fiber preserving and induces translations on each fiber. So we define for
every U eD(A), Dy e D(G/MN) by means of

(Duf) (k2 0) = (Uftaa)(@);  (flen)(@) = f(B2L, a).

This is the isomorphism of (b).



Chapter II

Spherical representations and spherical functions
General results

In many respects the behaviour of the representations of @ depends
on, the behaviour of its restriction to the maximal compact subgroup K.
In particular, the problem of multiplicities of irreducible representations
of K in restrictions to K of irreducible representations of @ is of decisive
importance in many cases. The following theorem is basic in that direction.

TucorEM II.1 (Harish-Chandra). ZLet @ be a connecled semi-simple
Lie group with the finite center and K ils maximal compact subgroup. Let
further (m, V) be a topologically irreducible representation of @ in V such
that the center of W(g) — 3(g) — acts on Vo by mulliplication by
scalars (such representations are called quasi-simple). Then there exists a pos-
itive integer N such that

m([8]: = |g) < N dim([6])?
for every § e K. (Here m([8]: = |g) 18 the multiplicity of (8] in = |g.)
In fact, an integer N can be taken 1 — this was shown by Harish-

Chandra in the case of representations in Banach space, and recently
more generally by J. Lepovsky. Therefore the space of K-fixed vectors
is at most 1-dimensional. We are thus led to the

DEeFINITION II.1. An irreducible representation (=, V) is called
spherical (or of class one) if the restriction of z to K contains a trivial rep-
resentation of K. )

Let X be the set of equivalence classes of irreducible representations

of K. For any [6] ¢« X consider the maximal subspace V(d) of V such
that 7z |z is & multiple of [8] on V(é). In view of the preceding theorem,
V(d) is finite-dimensional and uniquely determined. Also if y, is the
character of 6 and d(9) is the dimension of 8, then the projection of V
onto V(4) is given as

P, = 2(d(8) 75) = d(8) [ 1a(k)m (k) k.
K
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Let now V be semi-reflexive and V' be the topological dual of V;
then the transpose of P, is a projection of V' onto V'(6), as may be ea-
sily seen. i

Let us note that K-finite vectors in V, that is, vectors which K-trans-
lates lie in a finite-dimensional subspace of V, are infinitely differentiable.
Hence a K-fixed vector is a common eigenvector for A'(g) — the centra-
lizer of f in UA(g), or what is the same, the subalgebra of UA(g) stable un-
der Ad(XK).

Let for an X «%'(g), (X) be the corresponding eigenvalue; then
A(g)> X - p(X) e C is a character of A(g) (i.e., homomorphism of AYg)
into C).

Consider now the function

(IL.1) Gs>9—~ <n(g—1) Voy V%) = ¢(4),

where vy, v° are K-fixed vectors in 7, V' resp., such that (v, »°) =1.
(Such vectors always exist.) If we let act A(g) on &(G) by left invariant
differential operators, then it is easy to see that for every X e A*(g) we have

(Xg)(g) = <m(g™") m (Ad(9)X) vy, 2% = p(Ad(9)X)e(g),

hence ¢ is an eigenfunction for an algebra D,(G) of left invariant dif-
ferential operators on @, commuting with right translations by ele-
ments of K. This motivates the following

DerFINITION II.2. A function ¢ ¢ £(@), bi-invariant under K, satis-
fying p(¢) = 1 and a common eigenfunction for an algebra Dy (@), is said
to De a (zonal) spherical funciion.

There are several equivalent characterizations of zonal spherical func-
tions — we collect them in one theorem.

THEOREM II.2. The following conditions are equivalent:
(1) @ 8 a zonal spherical function;
(ii) @ is continuous function on @ not identically equal to 0, and satis-
fying
gmm%=mmm.mm@yﬂ;

(iii) ¢ 18 a continuous function, bi-invariant under K, such thai

f— [f(@)p(a)da
(2]

is @ homomorphism of the comvolution algebra of all continuous compacily
supported and K-bi-invariant functions on G

(iv) @is a continuous function, bi-invariant under I, such that

Frp =1p; Af) C for all f e €o(ENG/E).
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The following theorem gives a description of zonal spherical func-
tions in terms of the dual space to a — the abelian part in the Iwasawa
decomposition of g, g =f+a4n.

TueoREM II.3 (Harish-Chandra). Every =zonal spherical funclion
is given by the formula

(IL.2) plg) = [ et-omER gy,
K

with A e ag determined uniquely modulo the Weyl group. Conversely, for
every A formula (IL.2) gives a spherical function.

We have seen above how to construet spherical functions, given
a spherical representation. An obvious question arises whether there is
only one spherical function corresponding that way to a representa-
tion, and also whether the representation can be recovered from the
funection.

As to the first question, the answer is essentially positive, assuming
only the representation space semi-reflexive. In fact, let (%, 1) he spherical
and V semi-reflexive; then the contragredient representation is con-
tinuous and irreducible. Then Theorem II.1 gives essential unicity of a
K-fixed vectorin ¥’ and this implies in turn the uniqueness of the spherical
function.

~ As to the second question, there is a satisfactory answer in the case
of unitary representations, whereasin the general case due, partly at least,
to the lack of an appropriate notion of the equivalence of representations,
one cannot hope to obtain the same representation from the spherical
funection.

We quote here theorem, pertinent to the unitary case.

TueoreM IL.4. Let (U,H) be a unitary spherical representation,
e eH a K-fized vector of unit norm, and

Gsg—>(g) =(UgN e, ¢

a corresponding spherical function. Then ¢ 8 positive definile and the
correspondence (U, H) — @ gives 1ise to & bijection of the set of equivalence
classes of spherical representations upon the set of positive definite spher-
tcal functions.

To provide a better insight into the content of the theorem, we recall
here the construction of a representation from a given positive definite
function.

Let %,(@) be equipped with the prehitbert structure, given by the
positive hermitian form

€o(6) x Go(@) > (f, 1) > [ [9aly) f(@)h(y) dzdy = (f, k),

[N e B‘U
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with @ o positive definite spherical function. This form is left invariant,
hence a unitary extension of the left regular representation in €,(G) may
be formed, giving a spherical representation (cf. for example, K. Maurin,
General eigenfunction expansions and unitary representations of topological
groups, pp. 233 ff.).

Remark. The same, within equivalence of course, representation
can be obtained by taking the space €, (G/K), or even 2(@/I{), and defining
the prehilbert structure by the formula

(fy W)~>(fs W) = [Frp(a)i(2)de

4

(with the usual identification of functions on G/K with IK-invariant

functions on @).

Remark. There is a theorem, due to Helgason, giving within the
weak equivalence, all spherical representations of @& in terms of spherical
functions. A representation is constructed from a spherical function ¢
by taking the smallest closed subspace in #(@/K), containing all G-trans-
lates of @. It is shown that this representation is spherical, quasi-simple
and ¢ is related to it by formula (II.1) (ef. [15]).

Recall now that a vector ee V is said to be eyclio for the representation
(%, V), if the set of G-translates of e'—{m(g)e: ge@} is total in V.

We shall now prove

ProrosITION IL.5. Let (n, V) be a representation of G in a semi-reflexive
space V and let the subspace of K-fized vectors in V be one-dimensional.
(TWe do not assume irreducibility of =.) If there is a K-fized vector in V',
cyclic for the contragredient representation, then G acts irreducibly in the
closure of {m(g)ve: vy K-fiwed, geG}.

Proof. Let 2%« V' be cyclic and invariant under K. By semi-reflexivity
that means that for every veV the function @»sg—>(n(g)v, »°) does not
vanish identically.

Assume on the contrary that there is a closed invariant subspace
We Vi Vi ={n(g)v,: geG} and let 0 # welV. Then there exists ge@
such that {z(g)w, v°) # 0. If P, ix'the projection onto the space of K-fixed
veetors in V, then (Pyzm(g)w, v°) = (m(g9)w, Pyv®> = (n(g)w, v°> 3 0.
So we see that Pyz(g)w # 0 and is K-invariant, hence proportional to v,.
Therefore W = V,.



Chapter III

Some representations in function spaces

In this section we collect some information on function theory on
certain homogeneous spaces of ¢. Some results of this chapter are, explicitly
or implicitly, contained in Helgason’s paper [15], where, however, a fune-
tion-theoretic point.of view prevailed the representation-theoretic content.
When put in their natural context of various realizations of the same
representation of @ many of isomorphisms established by Helgason
become more natural. In particular, ths Fourier transform appears cither
as o multiplier picture of the Bruhat map #* or as a result of the action
of 2(@/K) at the K-fixed vector in the multiplier realization of the induced
representation n* (cf. Proposition IIL.7 and Lemma III.8)., We have
omitted the proofs of those facts due to Helgason, where our point of
view does not lead to any simplification of an argument.

We begin Ly defining a certain series of representations called, in
[15], & principal spherical series (however, in view of Definition II.1,
not all representations of that series are spherical since some fail to be
irreducible).

DeFINITION IIL1. Let (=%, #*) be the Banach space representation
induced by the character I'>man—e™™'°5% of I' = MAN, The space %™
consists of measurable on @ functions. which verify

(ILL.1) flgman) = e¥-01*82f(g)

almost everywhere (with respect to the Haar measure) for all mane I',
and such that

f If(k)} dk < oo.
i

The last expression serves as a norm in 2% and #* acts in #* via
left translations, non-unitarily however, except when Leap is real (i.e.,
the inducing representation is unitary).

It is known that the space of differentiable vectors in 2™ is exactly
the space of differentiable induced representation 2* consisting of smooth
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functions in J#* (cf. [27]). The Fréchet topology of the space of differen-
tiable vectors is exactly the usual topology of uniform convergence of

all orders of restrictions to KA.
Tor the time being we let (2")" denote the topological dual to 2%

In this case the Bruhat map g*: 2(@)—>2* takes the form

By = f f(gman) e~ A1k Gy dq an,.
AN

Functions from #* (2* resp.) may be regarded as functions on G/ MY,
due to their right MN-invariance. On the other hand, they are unambi-
guously determined by their restrictions to K/M.

LEMMA IIT1., Let 7; be the multiplier representation on B = I[N
defined by

(ra(g)f) (R2D) = =T R (g~ (kM)

for feS*(K | M). Then the restriction of functions is an isometric isomorphism
of #* onto £ (K | M), intertwining for n* and v, and mapping 2* onto & (K |M).

Recall that the algebra D(G/MN) of left invariant differential oper-
ators on G/MN can be identified with the algebra of translationally
invariant differential operators on 4, hence every complex linear form u
on a determines a homomorphism, say y,, of D(G/MN) into C, and con-
versely, every such homomorphism can he obtained that way from the
unique ueag.

Fairly simple computations show that @* consists of common eigen-
functions of the algebra D(G/MN), that is,

(IT1.2) Df = yu_o(D)f, for all DeD(G/MN).

We may then define 2; as the space of all distributions, which are
solutions to (III. 2), and check that we have 2* « #™* = 2;.

The following characterization of 2; was given in [15].

Proposrrion I11. 2 (Helgason). Let for each acd, o(a): @/ MN -G/ MN
be o diffeomorphism defined by o(a) (JMN) = gaMN. (This 48 a correct
definition since A normalizes MN.) Then a distribution ¥e2' (G/MN)
belongs to @, if and only if

(IIL.3) we@) _ p-(id+ologa

Identifying G/MN with K/M x A by (kM, a)—~kaMN, we see that
if Yed), then e?+olosey g 5 distribution on K/M x A invariant under
the action of 4 given by a(kM,b) = (kM, ab).

By a theorem of Bruhat every such distribution @ is given by a distri-
bution Se &'(K/M) as follows

o(fy= [(J f(kM, a)aa) a8 (k)

KM A4



II1. Some representations in function spaces 21

hence

(IIL.4) w(f) = [ ( [ fkadi) e("‘+°"°=ada) a8 (k1),
KiM A
and the correspondence ¥—8§ is unique.

Conversely, for every distribution Se &' (K /M), (IIL.4) defines a dis-
tribution from 2j, as one easily computes using (IIL3).

So we have arrived at

ProrosiTioN III. 3 (Helgason).

1. The mapping S—Y¥, given by the formula (II1.4) above, is a linear
bijection of &' (K[M) onto 9, intertwining for the contragredient represen-
tation 1o v_, and the matural action of G on D, by translations.

2. The pairing between 2* and 2_,, given by

@, ¥> = plgpy 8 = [ p(BMN) a8 (kM),
KM
is G-invariant and gives an isomorphism of D_, onto (D).
Proof. To complete 1, we are left with the intertwining property.
Compute

(Lg Y)(p) = ¥(L,_19)

= f (fgo(k(gk)epo(gk)a,)e(”*'-’)l""“da) as (kI1)
KM A
= [ emromon (gl (gk)a)e+'5da) 43 (kM)
KM A
This shows that the distribution corresponding to L, ¥ is (1_3(9))’8, as
asserted.

TFor 2, it suffices to prove the invariance of (:,*), the rest following
from the non-degeneracy of the pairing between &(K /M) and & (K/M).
However, it is enough to show (I,p, L,¥) = <{p, ¥> for ¥ represented
by a function on K /M, since for other ¥ it will follow by an approxi-
mation. In this case we compute

Lypy LYy = [ olg™ (k) -PB0 0 (1 _,())'S (kM)A (R IL).
KiM

But (r_,(9))'8 =1_;(g)8 for every function § on K/M, so the right-
hand side equals to

f ¢(g-—l. (kM)) e(il—(')H(ﬂ_ 1k)6—(il+ QH(o~ 1K) S(g—l (k.M)) d(k]l{)

KN

= [ olg~ (kI0)) 8(g™* (kM) e~ E@ g (1 I1)

E/M

= [ p(kI)8 (kM) A(kM) = <p, >,
KM
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since e~ 2@ M jg just the Radon-Nikodym derivative of the g-translated
measure d(kJl) on K/ (cf. (1. 3)).

In all what follows we shall identify, via the pairing above, 2; with
the (topological) dual of 2% With these spaces identified we have the
natural description of 2; (we owe this fact to Dr. Wawrzynezyk).

ProrosirioN IIL4. There evists a natural isomorphism of 2 with
the closed subspace of distributions on G which satisfy

(IIL 5) B (Bpanf) = e HHACED(f).

The isomorphism is realized by the transpose to the Bruhat map = D(F)—-2~2,
Proof. Since ~*is surjective, continuous and open, hence its transpose

is injective and continuous for the strong dual topology. It is easy to
see that if We2), then @ = (B~")'¥ satisfies property (IIL5). In fact,

d)(Rmauf) = <ﬂ_1(Rmanf)7 !F> = <G(——1‘A+e)logaﬂ—lf, gj>
— 6(-i1+n)lnga¢(f)’

To prove the converse it suffices to show that if @e2'(@) verifies
(I11.5), then it vanishes on ker 8% hereby defining a distribution from 2;
(i.e., a funetional on 27 = 2(G)/ker~*). We reason by approximation
as above, Assuming ¢ represented by a locally integrable function g,
we have

&(f) = [flole(@dy = [ f(kan)p(kan)e**=* dkdadn.
a

KAN
But for this function, (IIL.5) means that

. @(gman) = e-0NBeg gy,
e¢nce

O(f)= [ flkan)p(k)erOsqr dadn,
RN

and by the .fa,ctoriza,t-ion of the measure on X (cf. Chapter I), we have
o(f) = [ B (kM)p(kI)a (kD).
BM

Since this depends only on the restriction of f~*f to K /M, the assertion
follows. Now, as these two operations are inverse to each other, the proof
is complete.

We also note for future use the following two corollaries.

CoroLLARY IIL 5. (n~%, o %) is contragredient 1o (a*, o).
CoroLLARY III. 6. There is a canonical, G-invariant, sesquilinear
Sform between H* and A7, given as

A xA>(f, W)—>(fy by = [ f(k)h(k) ak.
K
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Establishing Plancherel formula for the left regular representation
of G on the symmefric space G/K Helgason introduced the notion of
Fourier transform which generalizes that of spherical Fourier transform
of Harish—Chandra.

DeFINITION IIL.2. For a Aeag define the Fourier transform as a map
F*: 9(G/K)— &(K /M) by the formula

(IIL6)  (F*f)(kM) = f(A, kM) = [ f(gK)e 0B g (gx).,
WK

Ay discussed at length in [14], functions gK»e(“—e)H(a“lk) are analogs
for symmetric spaces of exponential functions in R", and hence serve
a8 building bricks for introducing the generalized Fourier transform:.
From our point of view, it is important to note that these functions
are common eigenfunctions of all left invariant differential operators
on G/K.

There is an intimate connection between the Bruhat map g*
and the Fourier transform F*. We owe the following observation to Dr. Waw-
rzynezyk.

ProrosITION IIL.7. Consider as usual 2(G/K) as the subspace of
2(@), consisting of right invariant, with respect to K functions, and let g
be the Bruhat map f*: 2(@)—>2". Then for all feD(G|K) we have

(B'1)(g) = (F'f)(k(g) M) e~ ED,

(As in Chapter I, we have put ¢ = k(g) exp H(g)n according to the Iwasawa
decomposition.)

Proof. We shall prove (*f)(k) = (F"'f)(kM), the rest being clear.
First note that by virtue of H(g~'k) = H((k 'g)™"), and the invariance
of the measure d(gK), we have

F kM) = [ f(gX)e-Om0T g (gK)
GIK

= [ flkgE)e#=om0™) g(gR) = F*(L;'f) (e 1),
(2134

so it suffices to compute (F*f)(eM).
To do this, we recall that G/X is diffeomorphic with AN and the
integral over G/K goes over to the integral on AN as follows

[f(9E) gE = [ f(anK) dnda
AN

GIK

(with an appropriate normalization of measures).
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Further, since H(g—l) = —H(g) for ge AN c G, we have

(F'f)(eM) = [f(gK)eH~"0 a(gX)
t/K

= f flanX)e-"+olosegy, dq

= (ﬁaf) (e),

what was to be proved.
Now we note the following observation.

Lemya ITI.8. Let t, be the multiplier representation in & (K /M) with
multiplier (cf. Lemma ITI.1)

U(g, k]‘.{) = e(i;'—o)H(g—lk)’
that is,
(valg) R) (kM) = o(g, RM)h(g™ (kDD),  hed (K /M),

and let D(@)> f->,(f) denote the ewtension of T, to the representation of the
convolution algebra 2D(G) in &(K|M). Then with ¥, denoting the function
equal to 1 on oll of K[/M, .

o(f) ¥ = Ff,  for all fe2(G/K).

Proof. A straightforward compayison of formulae yields the desired
result:

(7a) Wo) (k) = [ f(g)et?-0m0" Mgy
@

= [f(gR)d#-ORCTH(g).
K

This lemma will allow us to define the concept of the restricted dual
Radon transform without invoking the concept of Radon transformation.

DeriNiTION IIT.3. The map &' (K/M)—&(G/K), dual to Fourier
transform F*: 2(G|K)—~ & (K|M), will be called the restricted dual Radon
transform, and will be denoted by R_;. (The use of ‘“—" will become
clear later on.)

That R_, maps &'(K/M) into #(G/K) and not into 2'(G/K), as
was expected a priori, is the consequence of an explicit formula for E_,
which we are now going to derive. Since it is the same formula Helgason
gets from his function-theoretic definition of dual Radon transform,
the identity of the two notions will be shown at the same time.

Let fe2(G/K) and Se &' (K/M). Then

KBy 8y =<u:(f ey 8> = [ flg)<nilg)po, 8 dg.
Q
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Now g—->{7,(g) e, ) is infinitely differentiable function, since the multi-
plier representation is differentiable representation of @, and actually
a right K-invariant function, so it belongs to &(G/K). At the same time
we have
(IIL7)  (B.8)(9K) = <ui(g) ¥y, 8) = [ e#-0H0" g 8(ka),

K|t
which is exactly the formula of Proposition 4.6, p. 93 of [15], applied
to 8 representing Pe2.,.

CororLAaRrRY IIL9. R_, intertwines conlragredient lo t_, acting on
&' (K |M) with the left regular representation of G acting on &(G/K).

This is seen by duality, since F* intertwines the left regular represen-
tation with ;.

OoROLLARY ITL10. R_, is injective if and only if the set F*2(G|K)
is dense in &(K|M).

In [15], Helgason introduced the following definition.

DerINTTION ITL.4. Aeay is said to be simple if R, is injective.

CorOLLARY ITL11. 1A is simple if and only if {F~*f: feD(G|K)} is
dense in &(K|M).

From the formula for E; above, we have

CoroLLARY IIL.12 (Helgason). 4 is simple if and only if ¥, is cyclic
for ©_, acting on &(K|M).

The notion of simplicity of elements of ap turns out to be crucial
for Helgason’s study of conical distributions. Since those are of great
importance for the following, we quote here his result giving a sufficient
condition for A to be simple.

PropositioN IIL13 (Helgason). Aeag is simple if for all positive
rootls a

(III.8) Re(B(i2, a)) > 0.

The set of A satisfying condition (III.8) will be denoted by C.

‘We shall omit the proof since it is rather involved.

We close this chapter with a discussion of one more subject of a purely
technical nature, namely, the convolution of distributions on K/M. To
define a suitable notion of convolution we shall malke an essential use
of the compactness of K.

As usually, for any two distributions 8, §;¢ &'(X), we define their
convolution via

(I1L.9) 8.48y(f) = [ [f(Riks) a8 (ky) A8, (ks)
K K
for all fe & (K).
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It is a classical fact that &'(K /M) is naturally isomorphic to the
closed subspace of & (K), consisting of right M-invariant distributions.

Let § be the image of § under that isomorphism. For regular (i.e., defined
by functions) distributions, § = 8o 7, where n: K—HK /M is the canonical
projection.

It is easy to see from (III. 9) that if 8, is right M-mva;rnnt then

8,*8, is such for any S,, so given any 8,, S, & (K /M), Sl:n;S'2 is det-
ermined Dy o unique distribution from ¢&(K/M), which we denote by
8;x8,.
More formally, let us put for an fe &(XK), fa (kD) = [ f(%m) dm,
- - prs
then § is defined by S(f) = S(fy) for Sed (L/DM), whereas 8,X48,
is determined Dby

8 X8y(f) = 8yx 8y(fom), fe&(K|M),

It will come out at hands later to have an explicit formula for §; x §,,
where 8, is a left M-invariant.

LemmA IIL 14 (Helgason). Let S,, S,e& (K[/M) and 8, be left
M-invariant. Then

8:x8:(f) = [ [ fllyko MD@S,(ky M) A8, (k).
K{Ar KfaL

Proof.
8% 8y(f) = Byx 8a(fom) = [ [Fom(kiky) dS, (ky) dSy(Ey).
K K

Let

g(k) = f fom(lthy). dSa(ka) = [ f(lhy 3) dS,(%y ).
.4} 4

Then owing to M-invariance of S,, ¢ is right M-invariant, what implies
gy (kM) = g(k) and so we have
8y % S,(f f g (k) a8, (k) = [ gar(laD) a8, (k3)

K/M

= [ [ f(kk, M) @Sy(ky I) a8, (k)

KM KiM

= [ [ f(kaky M) a8,y(k, M) aS,(k, M),
KM KM

the last step by Fubini’s theorem for distributions.



Chapter IV

Conical representations and conical distributions

Conical representations were introduced by Helgason n the course
of a study of harmonic analysis on horocycle spaces. They are supposed
to be counterparts of spherical representations, their theory, however,
contrary to the abundant theory of the latter, is hardly begun. There
is one definitive result, due to Helgason, stating that a finite-dimensional
representation is conical if and only if it is spherical. This phenomenon
.is not, however, pertinent to the infinite-dimensional case — an example
of a conical and not spherical representation will be given at the end of
the chapter.

Helgason has defined conical representations as one possessing an
MN-invariant vector — this is unsatisfactory because, as the work of
Sherman [25] shows, such definition excludes unitary representations.

In the joint work of A. Wawrzylczyk and the author [27] another
definition was proposed and some properties of so defined representations
were investigated. We shall now recall main points of that work and
push the theory a little further on.

Let, as always, @ be a connected semi-simple Lie group with finite
center.

DerFINITION IV.1. Let (=, V) be an irreducible representation of @
on the Banach space V. If there exist a form we(V,) and a character y
of I' = MAN, trivial on M, such that for zeV

{m(man)z, 0y = y(man){w, o), all manel’,

then (x, V) is said to be conical, w — a conical form.

Remarks. 1) Every such character, which we shall sometimes call
conical character is determined by a linear complex form u on a by the
formula y(man) = "8V = y, (man).

2) For finite-dimensional representations Helgason’s definition and
our are equivalent.

We shall now prove an improvement of a result from [27].
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TuEoREM IV.1. Let (7, V) be a conical representation and y its conical
oharacter. Define Aeag by

x(man) = gl—itralese — o ., (man).
Then the formula
V2@~ ([G2g—{m (g™ ") 3, w))
defines an operator
Ty: Vo7,

which gives a Naimark equivalence of (%, V) to a subrepresentation of (n?, o),

Proof. It is clear that the function @» g—>(n(g~")2, ®) is an element
of 2*for ze V. To prove that T: V,,—%* has a closed extension T' observe
that, if Vo, > {#,} With |z, —z> 0 and T'y@, —=>h in #”, then for all fe 2 (&)
from the continuity of maps = (f): V-V, follows that Tyn(f) 2, —=>#'(f)h
simultaneously with. Tz (f)®, ;=5> 0. So 7*(f)h = 0 and by arbitrariness of
fe2D(GF) we see b = 0.

Intertwining property of T, is clear, so it remains to prove injectivity
of T. But this is equivalent to injectivity of T, (to see this, let xekerT;
then #(f)ze V ,NkerT for all fe2(#), so T, is not injective — the other
way it is clear). As T, maps continuously ¥, into 2* and (=, V) is
irreducible T, has to be injective (cf. [2), [23]).

This theorem enables us to give a sufficient condition for the sphericity
of a conical representation.

ProrosITION IV.2. Let (7, V) be a conical representation with x i,
as its conical character. Then if A is simple, (=, V) is spherical.

Proof. Recall that 2 is simple if and only if the K-fixed vector y,
in 2., is eyclic. Since 9’ , is the dual to 2%, the transpose to T, maps
2., into (V). We claim that T4y, # 0. In fact, if Ty, = 0, then for
all e Vo, Ty, pop = 0, in particular, T:z=*(g)' y, = 0 for all ge@. But T
is continuous, hence it vanishes on a dense set only if it vanishes every-
where, and this is impossible since T, = 0.

So take Vsz for which (T,z, ,> # 0. By K-invariance of y,, if
P, denotes a projection on the set of K-invariant vectors in V, we see
that P,z # 0, what was to be shown.

Now we turn to the resume of the theory of conical distributions,
as given in Helgason’s [15].

DEeFINITION IV.2 (Helgason). A distribution ¥e2'(G/MN) is called
conical if it is a common eigendistribution of D(G/MN) and is (left)
M N-invariant.

Every comamon eigendistribution ¥ of D(G/MN) determines a char-
acter of D(G/MYN), namely D(G/MN)>D->y(D)eC, where y(D) is the
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eigenvalue of D corresponding to ¥, i.e.,
DV = y(D)¥.

We know that those characters are determined uniquely by linear forms
Aeag, and in Chapter ITT we have introduced spaces 2, of eigendistri-
butions of D(G/MN) with the same character y,_, as an eigenvalue.
So every conical distribution lies in one of the spaces 2;, and to determine
all conical distributions it suffices to find all M N-invariants in 2;. Their
importance for the theory of conical representations resides in the fact
that they are also A-eigenvectors, thus are conical forms for » 2.
Following Helgason, we shall now give a construction of a certain
family of conical measures and discuss some properties of those. However,
we shall omit entirely an analytic continuation procedure as we shall
never need it.
- First recall some structure of the connected semi-simple G with
finite center. As in Chapter I, @ = K AN is the Iwasawa decomposition
of @ corresponding to a chosen order of roots, and let X, denote the set
of positive roots in this order. There is a famous result, kmown as the
Bruhat lemma, asgerting that the set of double cosets MANNG/MAN
is in a bijective correspondence with the Weyl group, or what amounts

to the same fact, @ = |J MANm,MAN, where the union is disjoint
weW

and m,, are representatives of weW = M'/M in M.

The elements of the double coset MANm, ,MAN are not uniquely
determined in the form ym,y’ with y, y'el’ = MAN; so we shall have
to modify this a little in order to obtain uniqueness.

Since M’ normalizes M and A, we can obviously write the Bruhat
decomposition as @ = \.J Nm, MAN.

weW
n — the Lie algebra of N is the sum of root spaces corresponding to

positive roots, 1 = @ g% and ¥ = expn. T permnutes root spaces as it
ael
permutes roots, namely

Adg(m,)g" = g™

If we define N, as the closed, analytic subgroup with the Lie

algebra n,= @ g% then it turns out that N decomposes as
ac X  Aul

a product of 1\-72,, and N, i.e. the closed analytic subgroup with

the Lie algebra 11, = ® g¢“. We have N = N,,'N,, = N, N, uni-

ae X Aw(—Z,) .
quely for every me N and the Bruhat decomposition can be written
G = \J N,,m,MAN, what gives unique decomposition of g except for

welF )
the choice of m,, in its class.
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We come now to the construction of conical distributions. However,
using the isomorphism given in Proposition IIL.4, we shall construct
rather distributions on G than distributions on G/MN. Heuristically, in
order to assure the homogenity property (IIL5), which takes the form:

o (Rmanf ) = 8(—ii+o)loga¢ (f )J

it is mecessary to integrate on the right over MAN with the kernel
gt+olose Mg get M N-invariance on the left, we have to integrate over
MN. The question of convergence of such integrals is a priori unclear,
however.

Proceeding more rigorously, consider the following integrals

D, o(f) = f () f (11 0, mam) e D18 qay G g, G,
N MAN

with fe2(@).

It is evident at first that, for the neutral element e of the Weyl group,
N, = {id}, and the corresponding double coset equals MAN, so it is
closed. Then @, , is absolutely convergent and is seen to be simply 4, (B~*f).
We summarize this in the form of

COROLLARY IV.3. For all Acag the space 9, contains a measure 6
concentrated on MAN and verifying

6(L'man 'R'mlﬂlm-f) = e(“—*-e) logae(—iﬂ+9)log‘n]6 (f) .

For other cosets the question is not as simple as that, and we shall
give requirements for 1 in order &,,, to be absolutely convergent.

Let V,, = my'N,m,; then since the Haar measure on N, is carried
over upon the Haar measure on V, by the map N,2>n—-m, ' nm,eV,,
the integral defining @,, can be rewritten as

P, u(f) = f d(v,,) f F (M v man) €18 Goy do g,

P MAN

Decomposing v, into Iwasawa decomposition factors, o, =
k(vy,)exp H (v,)n(v,) and using the invariance of measures, we transform
this expression into

B, ,(f) = f a(v,) f f(muk(v,)m exp H(v,,) an) e g dodn

Vi MAN

= f e~ AHERR g (g ) f T (my, k() man) €+ 01°8%qm da dn .
Vw UAN

The integral over NMAN is always convergent (giving the Bruhat map),
so we are left with

G,(f) = [ e HHOTCD (B=35) (m, To(v,)) d(v,,).
Faw
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Because f*f restricted to K is continuous, this is absolutely convergent
if and only if

[ e~+ontag(qy, )
rw
is absolutely convergent. But this is known to be the case if and only
if A satisfies Re(B(i, a)) > 0 for all aeZ, Aw™'Z_ (compare [5], [15]).
We sum up.
ProposiTIoN IV.4 (Helgason). Assume Aeag satisfies

(IV.1) Re(B(ik, a)) >0 for oll aeZ nw™X_.

Then the formula

(IV.2) D,0(f) = [ (B7f) (myRe(v,)) e~ tH+aRCG(y,)
Vw

defines a conical distribution (in fact, even a measure), belonging to 2, (with
the identification of @) with the space of distributions on G verifying (IILB)).

A measure 8,,, on K[M corresponding to it according to Proposition
I11.3, is defined by

S;0(h) = f e~ AT b (m, T (v,)) M) d(v,,).
r‘u’

Let us determine homogenity properties of thus defined distributions.
The left M N-invariance is most easily seen by observing that the measure
dn on N is factored into product of measures d(n,,)d(n,), wherefrom we
obtain the invariance of d(n»,) under translations by neN. Since the
module of M-translation is 1, we infer M N-invariance.

Now consider A-translations of @,,,,

¢A,w(Laf) = f (ﬂ_lf)(a’-ln'w‘m’w) d("’w)

Nw

= f (ﬂ_‘f) (d_ ' '"'u'a‘a'_ ! 'm’w) d (”m)
Ny,

= f (B~ (8 ' ngyam,m, @ m,) d(n,).
Nw

Since A mnormalizes N,; ¢ 'N,ac N, and similarly for M,
my, am,eA for acA. To finish computations we need a formula for the
module of transformation N,,>n,—a"'n,a. It is computed using N, = exp n,
and the formula for d(m,,) in terms of the Lie algebra and found to be
"%0l%8% where g, = 1/2 21 m°a. Since we have also log(mg'a~'m,)

a>0,w "a<l
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= —w~'loga, we finally obtain
@, w ( La f) — g2twlogn 6(—'z:.l—g)(—w-lloga) q)). ” ( f) — e('i'm+p_:)1t>grz¢/1 » ( f) .

Summarizing, we have
(IV.3) ¢A.w (annf) = e(iwl+o)loga¢z’w (f)-

This formula will allow us to define intertwining operators for principal
spherical series — that is operators mapping 2* into 92** and intertwining
for #* and %,

Those operators are of great importance for the study of represen-
tations of semi-simple Lie groups (we mention here. their connection
with problems of irreducibility of principal series, of analytic continuation,
- of existence and irreducibility of complementary series, etc.), and were
investigated by several authors in different contextes. Their systematic
study was begun by Kunze & Stein in [19], although special cases of
such operators were already considered by Gelfand, Naimark and others
in cases of classical groups, then it was undertaken by Schiffmann and also
by Helgason in context of spherical representations. The last named author
observed their close connection with conical distributions. Applications
to the problem of existence of complementary series were given, among
other results, in the work of Knapp & Stein [16]. From this vast theory
we shall give here the simplest facts which will be needed for our purposes.

Let us observe that, by virtue of (IV.3), the function % given by
G2g—>®, ,(L,_,f) verifies (IIL1), with A replaced by —wA. Since this
function is infinitely differentiable, it belongs to 2%, and as the function &
depends only on f~°f and not f itself (by virtue of (IV. 2)), the map f—-h
defines a map 2" upon 2-**. Because of regularity of @, , this map
has a mnice continuity property.

ProrosITION IV.5 (Schiffmann). Let the map A (A, w): 9~ -9~
be defined by

(A2, w)f)(g) = [ flgn,m,) d(n,)
N w
for i satisfying Re(B(il, a))> 0 for all aeX,rnw_,Z_. Then it can be
extended to the bounded map A A" of the morm less or equal to
[ om0t g (g,).

w
Proof. It suffices to show the boundedness of A(A;w). We have
(IV.4) AWM, w)fIF = [|(A4, w)f)E)? dk
x

=/ ’ [ fkn,m,) d(n,) r dk
K Nw

= f I f F(km, K (v,)) e~ B+alag (y 32k,
' 7,



IV. Conical represcntations and distributions 33

Applying Schwarz inequality to the inner integral we get

| [10m, k)60 am,)|
Vu
< ( f | g=(A+QEEY) Id(vw))!/z( f] f(kmu,k(v,,,))|2|e'(“+°)"('“‘)ld('v.,))m
Vaw Py

Inserting this into (IV.4) and changing the order of integration, we obtain

I A( A, w) f"! < ( f Ic-(ﬁ+o)ﬂ(rw\| d(%))z ||f||2 ,
Pw

what finishes the proof.

Remark. We have defined conical distributions and intertwining
operators for A lying in a certain tube in ag, namely for i satisfying
Re(B (i, a)) >0 for all aeX orw™'X_. In particular, our construction
applies for A belonging to the tube over the fundamental Weyl chamber,
that is the set ¢ = {A: Re(B(i4, a)) > 0 for all aeZ,}.

However, mentioned authors elaborated a method of analytic (with
respect to 1) continuation of integrals of the kind which allows us to
define intertwining operators for all Acag. It rests on the observation
that with an appropriate factor y(A, w), accounting for possible poles,
the function

ag? Ay (1, w) A (2, w)f(g)

is analytically prolongable to an entire function on ag. For details see
[15], [16], [17], [24].

A problem arises whether so defined distributions &, , are all conical
distributions in ;. That this is so was shown by Helgason.

‘We shall state here his theorem only for ie¢C, as this is the case of
our main concern. It is readily seen that for such A condition (IV.1) is
satisfied, hence &,,, are given by formula (IV.2).

Recall that ¢(-) function of Harish-Chandra is given as

o(d) = [ @G, V=7,
r

We now state
TueoreEM IV.6 (Helgason). Assume
(i) A regular (i.e., wh # 4 for w # e),
(i) 2eC = {Aeag: Re(B(ik, a)) > 0 for all acX,},
(iii) e(4d) # 0.
Then every conical distribution in 9, is a linear combination of D, ,,.
For the proof see [15], pp. 96 ff.

3 — Dissertatlones Mathematicae 122
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Let us now return to the study of conical representations, and consider
the case of representations in spaces with an indefinite metric. We recall
that an indefinite metric on a Banach space V is a hermitian continuous
form on V, setting up an isomorphism of V with its topological dual,
and representation in such space is a representation which acts by oper-
ators preserving this form. In such case, the above isomorphism of V
with V' gives an identification of contragredient representation with
the given one. Of course, this class of representations includes unitary
representations as well as representations in Pontryagin spaces. It is
natural and perhaps even compulsory to investigate such representations,
because they arise naturally in the process of an analytic continuation
of representations of principal series (ef. [17]).

In the joint work of A. Wawrzylczyk and the author it was shown
that every conical representation in the space with an indefinite metric
is equivalent (with preservation of norm and metric) to a representation
induced by an appropriate character of I' = MAN with the indefinite
metric given by conical distribution.

We shall now summarize those results and pursue this line a little
further on. Let, as at the beginning of this chapter, (=, V) be a conieal
representation with y_;1., a8 its conical character and w its conical
form. Let also T: V-2 be the operator constructed in Theorem IV.1.
Using the canonical sesquilinear and @-invariant pairing between
and "4

A x A2 (f, h)— [ () h(l)dk = {fIhY,
K

we can define a sesquilinear G-invariant and partially continuous form
between V., and 9% &(v, h) = (Tw|h). Then, according to a theorem
of N. Skovhus Poulsen, there exists an operator, say §, mapping conti-
nuously 27 into V,,, intertwining for the action of @ in respective spaces
and connected with ¢ by the formula &(v, h) = (v, Sk). Since = preserves
an indefinite metric [-, - ], it is naturally equivalent to its contragredient,
and so we can regard S as the map into V, using (v, Sk> = [v, Sk]. Car-
rying over the indefinite metric to 93 via 8, and then lifting resulting
sesquilinear form to 2(@) by means of f%, we obtain existence of a distri-
bution ¥ such that the following holds:

[S8%f, Sfih] = W (h" +f).
It is a trivial matter to verify that ¥ satisfies the following :
(IV. b) V (Lpanf) = et~ elosap )
(IV. 6) W (B,of) = g3+l (1)



IV. Conical representations and distributions 36

Comparing with Proposition IIL4, we see that ¥ belongs to 2’5 and
is a conical distribution.

These are ideas behind the proof of the following theorem from [27].

TaEOREM IV.7. Let (%, V) be a conical representation in the space
with an indefinite metric [, -], and y_;,q @ ils character and conical
Jorm respectively. Then there exist a continuous semi-norm g on 9D* and
conical distribution ¥e9' 3, such that (x, V) is isometrically equivalent to
the Banach space representation, obtained from (23, q) by completion.

Moreover, ¥ defines an indefinite metric on the above extension of

(93, q) by means of the formula
(IV.7) (B*f, B*R) ¥ (B* &),
which corresponds to [+, ] under this isomeiry.

CoroLLARY IV. 8. Ewery unitary conical representation with a conical
character y_g4q 18 Unitary equivalent to the unitary extension of the left

regular representation in D3, with a scalar product defined by a positive
definite conical distribution from 92j.

Let us now look at the situation in the multiplier realization of this
representation.

PrOPOSITION IV. 9. Let WeD(Q) satisfy (IV.5) and (IV.6), and let 8
correspond to it via Proposition II1.3. Denote by f—f, the map 2(G) onto
&(K|M), given by fi(kM) = B*f(k). Then in the notation of Lemma IIL.14,

YR +f) = (h3) X 8(f3) = (B)ax 8(f3)-

Proof. First note that

(W +f)a (kM) = [R(g™)ralg)f,(RI) dg.
G

Now, by the definition of § (see Proposition III, 3),
W xf) = (W *f)sy 8 = [R(g)<alg™) s, S
(24

= [ h(kan){zi(kan)™")fz, 8)€*I°% dkdadn

KAN

= [ h(kan)e+0"8® (o3 (k=")f;, 8) dkdadn
EKAN

= [ (B2 Fi(RRo ), 8> A(RID).
KA
The last equality, by virtue of Lemma IIL.14, gives the desired result.

The above proposition reduces, at least to a certain extent, the study
of conical representations to the problem of harmonic analysis on the
compact space K [M.
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We shall get more information about conical representations assuming
that A determining conieal character, is simple. Note that then —17 is
simple as well.

CorOLLARY IV. 10. Let the hypotheses be as in Theorem IV. 6, and let
(m, V) be a conical representation in the space with an indefinite metrie,
With %114 @8 148 conical character. Then there exist a w W such that wi = 1
and a unigque, up to a scalar multiple, conical distribution @ satisfying
(IV.5) and (IV.6) and defining indefinite metric via (IV.T).

Proof. By (IV.6), @is equalto ) o,P;,, but by virtue of (IV. 3),

weW

all ¢, = 0, except for such weW for which wi = 4.

Remark. This together with Proposition IV. 2 shows that (=, V)
is both spherical and conical, and the indefinite metric is given by a conical
distribution. We shall see later on that a kind of converse is'true, namely
that certain unitary spherical representations are conical and the scalar
product is given by conical distribution. However, not all conical repre-
sentations are spherical as the following example will gshow.

ExXAMPLE. Let G = SU(1, 1) be the greup of conformal transforma-
b

tions of the unit disc in the complex plane. & consists of matrices [; _]
a

with a, be C and [a|®— |b|* = 1. The subgroups of the Iwasawa decom-
position are

e’ 0 cht sht
= ={[0 e‘“’]’ GGR}’ 4 = {[sht cht]’ tER}’

N = [1+z'n — N ne R
" lin 1—in| "€

with their Lie algebras spanned over R Dby

i 0 01 )
k = ] = » = " .
[O _,], b [1 O], " [i _i] resp

@ acts in the complex plane by linear fractional transformations

2—¢(2) —iz-_—'_—b- where _[e?

9% =% xa =15 af

If we identify K /3 with the unit circle 8! via the map K> g—g(1)e 8,
then the representations 7z, of Lemma III.1 are

L8 f>((g)f) (@) = law — ] (%)

a b
where g = [E Ei]’ and we have put 25 = (41— p)(h)e C.
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The space of smooth. vectors for the representation 7, consists of
precisely the smooth functions on 8! and the Dirac’s § supported at the
origin 1e 8* corresponds to the conical distribution @,, of Proposition
IV.3.

Consider the action of the %(g) induced by z; on the space of smooth
; 0 01
vectors. The elements & = [:’) 0], T, = [O ], T_ = [O 0] together with
—1

the unity generate W(g) and their a.ctionlol(l) &(8") is given by
nk) = —2 ‘ddar
(z.) = —se~ 04 ¢ —;—0

By looking at the action of %(g) on the basis consisting of exponentials
f.(8) = ™ we see that

(k) fu = —2ufy,
7A(m+)fn = ( —3+7b)fn+1,
(@) fn = (—8 =) fp1-

Hence in the case where s is a negative integer #(S') contains closed
invariant subspaces %, and #_, spanned by combinations of exponentials
f, with # > —s and n < s resp. One can show that these subspaces are
irreducible under corresponding 7, but the resulting representations
are not unitary with respect to the scalar product inherited from #*(8").
Nevertheless they provide us with the desired example — they are conical,
the conical form being §, and obviously not spherical as they do not con-
tain the K-invariant function f,.



Chapter V
Induced spherical representations

This chapter centers around two theorems, one is *equivalence
theorem for spherical representations” (Theorem V.1) whieh, in the
case of spherical representations, strengthens Harish-Chandra's theorem
which is in the literature called ‘‘subquotient theorem’ (cf. Harish-
Chandra [8], [9]; Warner [28]). The other is Theorem V.11 which gives
realization of unitary spherical representations as representations of the
complementary series in the sense of Knapp & Stein (cf. [16], [17]).

A word about Kostant results from [18] and their relation to ours,
especially Theorem V.1 is in order. Kostant introduces a class of what
he calls ““admissible modules’ of the universal enveloping algebra ¥ (g) —these
are algebraically irreducible representations of A(g) which in addition
contain 1-dimensional subspace anihilating ¥ — the Lie algebra of K.
This is modeled after the case of representations of (g) on the space
of K-finite vectors from the space of spherical representation. Then he
proves that the UA(g)-modules, generated from the K-invariant vector
in o7 are algebraically irreducible if 2 verifies Re(B(i4, a)) = 0 for all
positive roots a, and that one obtains in this way all admissible U(g)-
modules (up to an algebraic equivalence, of course).

We prove here a similar result but for the action of @ rather than
that of A(g) and for A verifying Re(B(ii, a)) > 0 only. The reason is
that we rely on Proposition IIL.11, and it is not known whether its
conclusions persist in the case when 1 is orthogonal to some of the roots.

Observe now that if Aeap and ImA is regular, i.e., none of the roots
is orthogonal to ImJ, then there exists unique welV such that wIml
belongs to the (open) fundamental Weyl chamber defined as {iea’: B(4, a)
>0 for all aeZ,}. With this in mind we state

ZH;ILEOREM V.1. As above, let C = {leag: Re(B(id a)) >0 for all.
Qely,

(1) If AeC, then 9} — the closed subspace of @* spanned by G-trans-
lates of the K-invariant vector y, in D* is irreducible under the action of G.
(ii) If (7, V) is spherical quasi-simple represeniation on a complete
semi-reflexive locally convex space V. with the spherical function @, with
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Imy regular, then (7, V) is Naimark equivalent to 2% for a unique 2eC
which is congruent modulo the Weyl group to u.

Remark. We recall here that, according to the discussion in Chapter
II, there is one and only one spherical function associated with such
representation and p is determined modulo the Weyl group uniquely.

Proof. To prove (i), it suffices to observe that, on the basis of Propo-
sition TIT.13, 1 is simple so ¢, is eyelic for (n_,, 2’ ,), and then apply
Proposition II.5.

(ii) Let u and A be as in the hypotheses. Consider the map
n: D(@IE)>V;  9(f) = =(f)v,,

where v,¢ V is K-fixed. Evidently » intertwines the left regular represen-
tation in 2(G/K) with =. We shall show that if F*f = 0, I is the Fourier
transform, then #(f) = 0. In fact, take an arbitrary he2(G/K), vV’
a K-invariant vector. Then

(V.1) ), = (W) = [ M(gK)f+pi(gK) d(gK),
GIK

80 we have to compute convolution with a spherical function.
Levva V.2 (Helgason). For each fe2(Q/K),

(V.2) Frpslg) = [e @+IBOTNF( g ar) ar.
K

Proof. By virtue of Lemma IIL.1 and Harish-Chandra’s formula
(I1.1), we have

¢al9) = (talg™ ) po, o) = [ elf-oTOb g,
K
S0

Fraa(e) = [FONP W D vo, w) @ = (1007 12(F) o, vo)
o
= [ e#-AH@F () ok L)) d,
K

the last equality resulting from Lemma ITI.8.
Now, the rest is a simple change of variables, using H(gk) =
—H (g7 'k(gk)) and the formula

[ hlg(kd)e=2mw0 gk 3y = [ W(km) d(rar).
KM EjM

Now, going back to the proof of the theorem and using the lemma
above, we turn (V.1) into
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), ' (yvey = [ [ h(gE)e~*rOROTNE, kM) dkd(gK),
G/IK K
what is seen to be equal 0 when F*f = 0. Remembering that the set
{x' (R)v°: heD(G/K)} is dense in V', we infer that 5(f) must be equal 0.
This allows us to define 7: F*{92(G/K))—V by means of the identity
7o F* = 9, and so we have a commutative diagram of mappings

K/
DIGK) d » |
FA

99k
In fact, 7 is injective on the set (9 (@/K)), since if f(4, -)ekers, then

0—<Tf1 h)v®) = {n(f), ' (R)v)
[ h(gK) e~ HAHOTYf () L) Ak d(gK)
oK K
= [ W(=2, BM)f(A, k2L) d(%DD).
RIM
Now 2 is simple so the set {F~*h: he2(G/K)} is dense in £*(X /M), what
implies f(4, +) = 0.
Injectivity of 7 results from the irreducibility of 2% and V, so it
remains to show that = has closed extension.
Assume then ||f, (4, *)|E—=>0 and tf,—~>veV. From

n—00

(tfuy ' (B)0%) = [ h(—2, EM)F(A, k2) d (kM)

K/Aa

one can easily see that the right-hand side tends to 0 and so must the
left, which, due to density of {n’(h)»°}, means v = 0. This shows that =
is a Naimark equivalence, as asserted.

Remark. Oomparing Theorem V.l with Harish-Chandra’s sub-
quotient theorem we see that at the cost of supposing 1 sufficiently regular,
we obtain strengthening of conclusions — namely equivalence to an
irreducible subrepresentation rather than to an irreducible quotient
representation of some subspaces of 2*.

Using this theorem it is easy to obtain two dual classes of models
for spherical representations. Similarly to the case of conical representa-
tions, we shall consider representations in spaces with an indefinite metric
rather than unitary representations for reasons indicated above.

First, by combining Kostant’s Proposition 3 from [18] with some
Harish-Chandra theorem, we obtain the following
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ProrosITioN V.3. Let (m, V) be a spherical representation leaving
invariant an indefinite metric [-,-] on V and let @, be 4ts spherical
function. Then there ewisis an element w of the Weyl group W such that
wA = A

Proof. Throughout the proof we shall use Xostant’s notations
from [18]. Consider the derived action of %(g) on the space of K-finite
vectors from V. By the Harish-Chandra theorem from [8] (see also Warnper,
Theorem #.5.5.4), we see that the resulting (g)-module is admissible
and from the preceding Theorem V.l we immediately obtain that this
module belongs to the class C_;.,. Now indefinite metric induces an
9 (g)-invariant form on the module and thus Proposition 3 of [18] applies
giving the existence of such welV.

We pass now to the construction of these dual models of spherical
representations. Let as above (=, V) be a spherical representation and
[+, ] an invariant indefinite metric. Choose 4 such that it belongs to ¢
and ¢,= ;. (We assume, as in the theorem above, that Imy is regular.)
Then, by means of the 7, v constructed in Theorem V.1, we can carry
over the structure of (mx, V, [+, ]) to 2(G/K) on the one hand, and to
F*(2(G/K)), on the other. By the usual procedure of extending operators
of representation and the indefinite metric to the completion of the spaces
in question, we obtain two representations (x° V%, [-,']?) and (=% V*
[+, 1" isometrically equivalent to the given representation (=, V, [-, ‘]).

COROLLARY V.4 (compare Helgason [15], Wawrzyhczyk [29]). Let
(m, V) be a spherical representation by operators leaving invariant the form
[+,-], and @ = @, ils spherical function with 1<C. Equip 2(G|K) with
the norm and the melric (indefinite) transported by n of Theorem V.1 and
FH9(G|K)) with the norm and indefinite metric transported by z. Denote
their completions by V°® and V* respectively, extended represeniations by
7%, n* and indefinite metries by [+, 1%, [+, 1} resp. Then the Fourier transform
T extends to an isometry of V? onto V4, intertwining for a®° and =" and car-
rying over [+,-1° upon [, 1.

Tt is a simple exercise to derive a formula for indefinite metrics [-,-1°
and [-,- 1. The former case is classic, the latter was obtained by Helgason
in the case of unitary répresentations and A real.

ProrosITION V. 5. Let (n, V, [+, ]) be a spherical representation with
o K-fived vecior v° and the spherical function ¢,. With n: 2(G/K)—>V
defined as n(f) = =n(f)v°eV, we have

[f, B = [0(f), ()] = [ h(w)f . (o) do
@
= [ flu, kM)h(z, kM) d(kM).

K/M
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Proof. The spherical function ¢,(g) is given as ¢,(g) = [ (g~ ") v, v°].
Then [9(f), n(h)] = [=(f)?° = (k)] = fh (z)f*@,(x) dz. To prove the
second equality we shall make an a.ppeal to Lemma V.2. Inserting (V.2)

into the last expression above, we have exactly as in the proof of Theorem
V.1

(), 1] = [ (o) [~ My, Bl dido

= [flu, kar) [ b (@) Ut OHET) gy
E ¢

= [ flu, KM)h(E, I) d(LH).
KA
We have then the following extension of Helgason’s Proposition
5.4, p. 116 from [15].
OOROLLARY V. 6. In addition to the assumptions of Proposition V.5,
let peC. Then for f, heF*(9(Q/K)),

IF, B = [y (1 = [ Flu, K20 Aa, k) d(kD0).
I/

In particular, if (7, V) is a unitary spherical representation, then the form

(V.3) F“(@(G/K))XF"(.@(G/K B (f, h ff(,u, kM)h(y,ch) d(kM)
KM
is o positive definite hermitian form on F*{(9(@/K)), invariant under ,,
and hence defines a unitary spherical representation equivalent with (m, V)
In therest of the chapter we shall confine ourselves to unitary spherical
?‘epresenta,tions and implications for those of Theorem V.1. Particularly
we shall be interested whether the form (V.3) can be extended to the
whole of 2%, hence defining a complementary series representation in
the sense of the following definition of Knapp & Stein.
~_ DeFnution V.I. Let (=, 9") be a differentiable representation
induced by a sonunitary character of MAN, man—e '8¢ (s0 A is not
real). If there exists a continuous hermitian form on 2? invariant under =,
then this representation is said to belong to:
() complementary series if the form is positive definite,
(b) quasi-complementary series if the form is positive semi-definite.
Remark. The definition makes sense and was in fact formulated
for not necessarily 1-dimensional representation of MAN.

On the basis of Proposition IV. 8, we infer that the following holds.
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CoroLLARY V.8. Every unmitary conical representation belongs either
to principal or to gquasi-complementary series.

Turning now to unitary spherical representations, observe first that
if 1eC = {Aeag: Re(B(i4, a)) > 0 for all ae 2.}, then —2e¢C also, hence
for weW, for which wi =71®_z, is defined by formula (IV.2) and is
a distribution — even the measure — from 2’3 which satisfies

gp-i,w (-Rmanf ) = (i3 eNoga ¢-3,w(f )s
dj—ﬁ.,w(Lnuznf) = e(—i&+o)loga¢_1'w(f) .

We have also the following

LeMMA V.9 (Helgason). The dual Radon transform R_3(P_3,)() is
given by the formula

R_3(D_5,,)(g) = ce®- 070~

with a constant ¢ different from 0 if e(2) # 0.
For the proof of the lemma we refer to Helgason's [15], p. 95.
Using this lemma we shall prove

ProrosrrioN V. 10. Let f, he2(G|K). Then

(V.4) O _s,(W*xf) = ¢ [ f(A, KM)(T, kM) d(k21),

K/ar

where ¢ is the constant above.

Proof. We first transport the computations to IC/I by means of
Proposition III.3 and Proposition IV.9,

D_5,(W*xf) = [ (k3) x 8 (kM) f(kIM) d (kD)

KL
(V.5) = [flg) [ &A-0H0TR a8, (k1) dg,
G KM

where we have put 8, (kM) = (iz) x S(kM).
Compute now R_;(8;)(g) = [ gP@-0HE™) g8 (L M). By virtue of
EiM
Lemma III.14 we transform this into

(Ra(80)(g) = [ [ ci-omo™ (i) (kM) (ki) S (e 2)

—A
KA KJM

= [ ()l by [ -0B 0~ k1ke) 4.8 (K, M) d(k, ).
K{M KIM
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By making an appeal to Lemma V.9, with g replaced by krlg, we see
that the inner integral is equal to

T - - i1 =0V (g—1
(0T k) 48 (5, 1) = R_j,,(D_3,,) (k' g) = ea-0Lw™ "),
K/

lence
R_3(8)(g) = ¢ [ (3)(kyD1) =M k0 (e, 7).

D)4
Inserting this into (V.5), we obtain

G _5w(W*ef) =c [flg) [ (ha)(Tey D) e-OR0™ 0§ (R, 1) dy
(& K/M

—o [ fa, kM)RQE, BI) A(RDT),
K/M
as asserted.
Let us note the following corollary of the proof
CororrARY V.11 (Helgason). Let A (4, w) be the intertwining operator
for =, and =, obtained from A (A, w) by passage to the multiplicr representa-
tions. Then

A7, woF% = T,

where weW 18 such that wi = 4.

'We are now in the position to give our main result on unitary spherical
representations.

THEOREM V.12. Let (x, V) be a unitary spherical representation with ¢
as ils corresponding spherical fumction. Let weag be determined by ¢, ac-
cording to the formula of Harish-Chamdra ¢ = p,. Assume Impyu reqular
and let AeC be congruent to u (mod. the Weyl group). Assume also ¢(1) # 0.

Then there exists a conical distribution ¥e2_3, positive definite and
such that the formula

(f5 W)W (h* xf)

defines an invariant semi-definite hermitian form on 9%, and (=, V) is
unitarily equivalent to the unitary extension of (w3, 93, V).

Proof. We have observed in Corollary V.6 that = is unitary equiv-
alent to the unitary extension of 7, acting on F*(2(@/K)), equipped

(g

with the scalar product (-, -)* given by (f, h)* = ]f F4, kMR, kM) d (kD).
KM

Our task now will be to transport this representation to the space 2.
Let f, he2(G/K); then

(A(, w)o Fif, A, w)o Fik)} = (F'f, PR} = o®_s, (W* «f).
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It is seen from the above that (-,-)* transported by 4 (%, w) to FI(E’Z(G/K )
is given by the form &_j,(h*xf) for f, he2(@/K). But since —AeC, 4 is
cyclic, what means that FZ(Q(G/K )) is dense in &(K/M). Applying now
Proposition IV.5, we infer that

(V.6) |D_3, (k" +f)| < const Bl IIf3],

so this form extends by continuity to the form on 2% x @4 or even H1 x H 2.
Evidently this extension is still given as @_3,,(k*»f), but this time for
any f, he2(@).

(V.6) shows also that 7oA (%, w): Fi(92(G/K))->V is a continuous,
densely defined operator, thus extends to the whole of 23,

Further, an appropriate multiple of tod (4, w) gives the required
unitary equivalence of V to the extension of (n%, 93, &_3 ).

Remark. Results of Bruhat on bilinear intertwining forms for
differentiable induced representations show that the representation
defined by a conical distribution &_;, is actually conical, hence com-
pleting our already established relations between spherical and conical
representations.

This paper contains, with several modifications and improvements,
author’s thesis for Doctor of Mathematics degree, written under the
supervision of Professor K. Maurin at the Division of Mathematical
Methods of Physics (University of Warsaw) and presented to the Depart-
ment of Mathematics and Mechanics of the same University.
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