Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Lax descent theorems for left exact categories

Seria

Rozprawy Matematyczne tom/nr w serii: 346 wydano: 1995

Zawartość

Warianty tytułu

Abstrakty

EN
CONTENTS
0. Introduction.........................................................................................5
1. Basic notions......................................................................................6
 1.1. Effective descent morphisms..........................................................7
 1.2. Left exact categories......................................................................9
 1.3. Factorisations in Lex.....................................................................11
 1.4. Descent theorem for exact categories..........................................16
2. The exact completion of the left exact categories.............................17
3. A characterisation of the descent category......................................24
4. A characterisation of the effective descent morphisms in Lex..........30
5. Some further results.........................................................................34
6. The false quotient-strongly conservative factorisation in Lex...........36
7. Conservative morphisms in Lex........................................................44
References...........................................................................................51

Miejsce publikacji

Warszawa

Copyright

Seria

Rozprawy Matematyczne tom/nr w serii: 346

Liczba stron

55

Liczba rozdzia³ów

Opis fizyczny

Dissertationes Mathematicae, Tom CCCXLVI

Daty

wydano
1995
otrzymano
1992-05-08
poprawiono
1994-08-28

Twórcy

  • Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland

Bibliografia

  • [EC] M. Barr, Exact categories, in: Lecture Notes in Math. 236, Springer, 1971, 1-120.
  • [BC] M. Barr and C. Wells, Toposes, Triples and Theories, Springer, 1984.
  • [CM] A. Carboni and R. Celia Magno, The free exact category on a left exact one, J. Austral. Math. Soc. Ser. A 33 (1982), 295-301.
  • [C] M. Coste, Localisation dans les catégories des modèles, Thesis, Univ. Paris Nord, 1977.
  • [FK] P. J. Freyd and G. M. Kelly, Categories of continuous functors, I, J. Pure Appl. Algebra 2 (1972), 169-191.
  • [GU] P. Gabriel und F. Ulmer, Lokal präsentierbare Kategorien, Lecture Notes in Math. 221, Springer, 1971.
  • [SGA1] A. Grothendieck, Revêtements Étales et Groupe Fondamental, Lecture Notes in Math. 224, Springer, 1971.
  • [JT] A. Joyal and M. Tierney, An extension of Galois theory of Grothendieck, Mem. Amer. Math. Soc. 309 (1984).
  • [K] G. M. Kelly, Basic Concepts in Enriched Category Theory, London Math. Soc. Lecture Note Ser. 64, Cambridge University Press, 1982.
  • [CWM] S. MacLane, Categories for the Working Mathematician, Springer, 1971.
  • [MM] M. Makkai, Stone duality for first order logic, Adv. in Math. 65 (1987), 97-170.
  • [MM1] M. Makkai, Duality and definability in first order logic, Mem. Amer. Math. Soc. 503 (1993).
  • [CWL] M. Makkai, Ultraproducts and categorical logic, in: Lecture Notes in Math. 1130, Springer, 1985, 222-309.
  • [MP] M. Makkai and R. Paré, Accessible Categories : The Foundations of Categorical Model Theory, Contemp. Math. 104, Amer. Math. Soc., 1989.
  • [MPi] M. Makkai and A. M. Pitts, Some results on locally finitely presentable categories, Trans. Amer. Math. Soc. 299 (1987), 473-495.
  • [MR] M. Makkai and G. E. Reyes, First Order Categorical Logic, Lecture Notes in Math. 611, Springer, Berlin, 1977.
  • [AP] A. M. Pitts, An application of open maps to categorical logic, J. Pure Appl. Algebra 29 (1983), 313-326.
  • [V] H. Vogler, Preservation theorems for limits of structures and global sections of sheaves of structures, Math. Z. 166 (1979), 27-53.
  • [MZ] M. W. Zawadowski, Descent and duality, Ann. Pure Appl. Logic, 71 (1995), 131-185.
  • [MZ1] M. W. Zawadowski, Un théorème de la descente pour les prétopos, Thèse de doctorat, Université de Montréal, 1989.

Języki publikacji

EN

Uwagi

1991 Mathematics Subject Classification: Primary 03G30, 18C10; Secondary 03C40, 18D05.

Identyfikator YADDA

bwmeta1.element.zamlynska-6bb9d2b7-234c-4e9f-8a17-24ecbae7658a

Identyfikatory

ISSN
0012-3862

Kolekcja

DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.