CONTENTS Introduction.................................................................................5 1. Algebras of monotone quantifiers.............................................7 1.1. Family of monotone quantifiers............................................7 1.2. Lattice of monotone quantifiers............................................8 1.3. Other operations in M(κ)......................................................9 2. Algebras of relational quantifiers............................................11 2.1. Basic properties of the family of relational quantifiers........11 2.2. Relations and quantifiers...................................................13 2.3. Lattices of relational quantifiers.........................................15 2.4. Other operations in R(κ)....................................................17 3. Logics with relational quantifiers............................................18 3.1. Structures with relational quantifiers..................................18 3.2. Completeness theorem......................................................19 3.3. Some simple consequences...............................................20 4. Model theory of relational quantifiers.....................................21 4.1. Basic notions......................................................................21 4.2. Substructure relations and preservation therems..............23 4.3. The chain property.............................................................27 4.4. Product operations............................................................29 5. Classes of relations and their logics......................................33 5.1. Logics determined by classes of relations.........................33 5.2. Classes of relations vs. sets of sentences.........................36 5.3. The Galois connection.......................................................38 5.4. The lattice of closed classes..............................................40 5.5. Further properties..............................................................44 5.6. Some open questions........................................................45 References...............................................................................46
Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland
Bibliografia
[1] J. L. Bell and A. B. Slomson, Models and Ultraproducts. An Introduction, North-Holland, 1969.
[2] A. Białynicki-Birula and H. Rasiowa, On constructible falsity in the constructive logic with strong negation, Colloq. Math. 6 (1958), 287-310.
[3] G. A. Broesterhuizen, Structures for a logic with additional generalized quantifier, Colloq. Math. 33 (1975), 1-12.
[4] G. A. Broesterhuizen, A generalized Łoś ultraproduct theorem, Colloq. Math. 33 (1975), 161-173.
[5] C. C. Chang and H. J. Keisler, Model Theory, North-Holland, 1973.
[6] R. Church, Numerical analysis of certain free distributve structures, Duke Math. J. 6 (1940), 732-734.
[7] P. O. Cohn, Universal Algebra, Harper&Row, 1965.
[8] R. Dedekind, Über Zerlegungen von Zahlen durch ihre grössten gemeinsamen Teiler, Ges. Werke 2, Braunschweig, 1931, 103-148.
[9] A. Ehrenfeucht, An application of games to the completeness problem for formalized theories, Fund. Math. 49 (1961), 129-141.
[10] E. G. Fuhrken, Languages with added quantifier "there exist at least $ω_α$", in: The Theory of Models, W. Addison, L. A. Henkin and A. Tarski (eds.), North-Holland, 1965, 121-131.
[11] V. Harizanov, Łoś theorem for ultraproducts of models with monotone quantifiers, J. Symbolic Logic 48 (1983), 1212 (abstract).
[12] H. J. Keisler, Logic with the quantifier "there exist uncountably many", Ann. Math. Logic 1 (1970), 1-93.
[13] A. Krawczyk and M. Krynicki, Ehrenfeucht games for generalized quantifiers, in: Set Theory and Hierarchy Theory, W. Marek, M. Srebrny and A. Zarach (eds.), Lecture Notes in Math. 537, Springer, 1976, 145-152.
[15] M. Krynicki, Quantifiers determined by partial orderings, Z. Math. Logik Grundlag. Math. 36 (1990), 79-86.
[16] M. Krynicki, A note on rough concepts logic, Fund. Inform. 13 (1990), 227-235.
[17] M. Krynicki, Quantifiers determined by classes of binary relations, in: Quantifiers: Logics, Models and Computation II, M. Krynicki, M. Mostowski and L. W. Szczerba (eds.), Kluwer Academic Publ., 1995, 125-138.
[18] M. Krynicki, Relational quantifier binding many variables, in preparation.
[19] M. Krynicki and L. W. Szczerba, Simplicity of formulas, Studia Logica 49 (1990), 119-138.
[20] M. Krynicki and H-P. Tuschik, An axiomatization of the logic with the rough quantifier, J. Symbolic Logic 56 (1991), 608-617.
[21] M. Magidor and J. Malitz, Compact extensions of L(Q) (part 1a), Ann. Math. Logic 11 (1977), 217-261.
[22] J. A. Makowsky and S. Tulipani, Some model theory for monotone quantifiers, Arch. Math. Logik Grundlag. 18 (1977), 115-134.
[23] A. Mostowski, On a generalization of quantifiers, Fund. Math. 44 (1957), 12-36.
[30] H. Rasiowa, An Algebraic Approach to Non-Classical Logics, North-Holland and PWN, 1974.
[31] H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics, PWN, Warszawa, 1970.
[32] H. Rasiowa and A. Skowron, Rough concepts logic, in: Computation Theory, A. Skowron (ed.), Lecture Notes in Comput. Sci. 208, Springer, 1985, 288-297.
[33] H. Rasiowa and A. Skowron, Approximation logic, Math. Res. 31 (1986), 123-139.
[34] J. Sgro, Completeness theorem for topological models, Ann. Math. Logic 11 (1977), 173-193.
[35] J. Sgro, Maximal logics, Proc. Amer. Math. Soc. 63 (1977), 291-298.
[36] T. Skolem, Om konstitutionen av den identiske kalkuls grupper, in: Third Scand. Math. Congr., 1913, 149-163.
[37] T. Skolem, Über gewisse "Verbände" oder "Lattices", Arh. Norske Vid. Akad. Oslo, 1936, 1-16.
[38] L. W. Szczerba, Rough quantifiers, Bull. Polish Acad. Sci. Math. 35 (1987), 251-254.
[39] L. W. Szczerba, Rough quantifiers do not have the Tarski property, Bull. Polish Acad. Sci. Math. 35 (1987), 663-665.
[40] M. Ward, Note on the order of the free distributive lattice, Bull. Amer. Math. Soc. (1946), Abstract 52-5-135.