PARTIAL DIFFERENTIAL EQUATIONS
BANACH CENTER PUBLICATIONS, VOLUME 19
PWN-POLISH SCIENTIFIC PUBLISHERS
WARSAW 1987

SOME DIFFERENTIAL OPERATORS
CONNECTED WITH QUASICONFORMAL DEFORMATIONS ON
MANIFOLDS

A. PIERZCHALSKI

Institute of Mathematics, {6dZ University, LodZ, Poland

Introduction

The theory of quasiconformal mappings and deformations has lately been
fruitfully extended to Riemannian manifolds. Let us e.g. mention papers by
Suominen [19], Lelong-Ferrand [11], Kiernan [10], Goldberg, Ishihara and
Petridis [8], Shibata and Mohri [18] and others. Riemannian manifolds are
one of the most natural spaces in which geometrical properties of mappings
come to light. Especially, both dependence on the metric structure and some
relations of the notions of conformality or quasiconformality to other ones
(e.g. harmonicity) could be exposed. It is well known that conformality and
harmonicity have the common source: holomorphic mappings in the com-
plex plane C*'. Therefore, some relationships between quasiconformality and
harmonicity might be expected also in spaces of higher dimensions or even
on manifolds. For example, Goldberg, Ishihara and Petridis [8] obtained a
generalization of the Schwarz-Ahlfors lemma on a distance decreasing pro-
perty for quasiconformal harmonic mappings of Riemannian manifolds.

In this paper we shall introduce differential operators related to quasi-
conformal deformations of a Riemannian manifold. We derive some their
properties: strong ellipticity (Theorem 1), dependence on the metric structure
(on the Ricci tensor) and a relation to the Laplace-Beltrami operator
(Theorem 2), and obtain some transformation formulas (Theorem 3).

The case of Euclidean spaces

Quasiconformal deformations, an infinitesimal version of quasiconformal

mappings, turned out to be a useful tool for studying several problems of
quasiconformality in R" (n = 2).

[205]
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Before we pass to the case of manifolds, let us shortly recall some
notions and facts from the n-dimensional theory.

A quasiconformal mapping F in R”" satisfies the following n-dimensional
version of the Beltrami equation:

(1) (J7 '""DFy*{(J§ '"DF) = G,

where DF denotes the differential matrix of F, Jp the Jacobian of F, i.e. Jg
= |det DF|, and G is a symmetric matrix field of bounded norm. Without
loss of generality we may assume that det G = 1. The system (1) is nonlinear
and, for n > 2, overdetermined: the number of independent equations is 3 n(n
+1)—1.
For details we refer the reader to the paper of Bojarski and Iwaniec [6].
A linearization of the system (1) leads to the following system:
1 (62‘ 621') 1~ ozZk

i =3 +

2 SZ Foa

nk:la:(ﬁ,-j, iL,j=1,...,n.

The notion of quasiconformal deformation defined to be a field Z such
that the norm of the matrix field (2} is bounded was introduced and
systematically studied by Ahlfors in a series of papers [1}-[5] and in the
papers of Reimann [15], Semenov [17], Sarvas [16] and others.

The differential operator S defined by (2) (called Ahlfors’ operator) from
the space of vector fields (deformations) into the space of symmetric matrix
fields of zero trace is, therefore, connected in a natural way with quasiconfor-
mal deformations. S is interesting in its own right. It was investigated by
several authors (cf. [2], [4], [16]).

S has a conjugate operator S* of the form

0%

* y =
S* Zax,.'

j
It 1s worth noticing that in the case n =3 the equation
S*SZ =V

is the classical equation of the theory of elasticity (cf. [2], [20]).

The case of Riemannian manifolds

Let M be a Riemannian manifold of dimension » with a Riemannian metric
g (g is a symmetric positive definite tensor field of type (0, 2) on M). We
assume that all manifolds and mappings in question are smooth, i.e. of class
C>. Denote by V the Riemannian connection of the metric g and by T,(M)
and T¥(M), pe M, the tangent and cotangent space at p, respectively.
Define the operator S from the space X(M) of all vector fields on M
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into the space M(M) of all symmetric tensor fields of type (0, 2) and of zero
trace (with respect to g) as follows:

2
3) SZ = ,szg—;div Zg, ZeX(M),

where ¥, denotes the Lie derivative in the direction Z and div Z is the
divergence of Z defined by div Z = tr(X — ¥V Z).

Observe that in the special case M = R" and g the Euclidean metric in
R", the tensor field SZ is represented (up to a factor 1) by the matrix field (2).

The operator S is strictly related to quasiconformal deformations: If Z is
an arbitrary deformation (i.e. a vector field on M), then the norm of SZ
measures the quasiconformality of Z. Namely, Z is called a k-quasiconformal
deformation (k = 0) if ||SZ|| <k on M.

One can prove (cf. [13] and [14]) that the norm of S is conformally
invariant and that a k-quasiconformal (complete) deformation generates a
one parameter family F,, teR, of transformations of M whose rank of
quasiconformality can be estimated: F, is an exp(} k?|t|)-quasiconformal
transformation. Furthermore, § is an elliptic operator of rank 1 (in the sense
of the injectivity of its symbol).

S has an adjoint operator S* from M(M) into X(M) which is of a very
concise form: S$* is the divergence operator (cf. [14]). More precisely,

(4) g(S* o, Z) =2div ¢(2), @eMM), ZeX(M).

Recall that the divergence of a (0, 2)-type tensor field ¢ is the 1-form locally
defined by

5 div ¢, = V' .

The operators S and S* are adjoint to each other in the following sense.
If Ze X(M), o M(M) and Z or ¢ has a compact support then

(6) §*o@,Z) = —<9,5Z},
where the scalar products ¢ , > in X(M) and in M(M) are both generated by
the Riemannian metric g.

The third operator related to quasiconformal deformatlons S*S, is
simply the composition of the above two operators S and S*. $* S acts from
the space X(M) into itself and has many interesting properties.

First we derive some inequalities for its symbol ¢ = og.. Let pe M and
let we T(M). The symbol at the point p is, by definition, the mapping
o,(w): T,(M)— T,(M) of the form

) ap(w)v =5*S(f22),, veT, (M),
where f is a function and Z a vector field in a neighbourhood of p such that

(8) fM=0, df(p=w, Z,=v.
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Of course, the definition (7) does not depend on the choice of f and Z.
THEOREM 1. At each point pe M the symbol o of the differential operator
S* S satisfies the inequality

8(n—1)

n

) 4|l [loll* < g (0, (@) v, v) < lieollflell?.

Consequently, S*S is a strongly elliptic operator of the second order.

Proof. Let pe M, ve T,(M), we T (M). Let f be a function and Z a
vector field such that (8) holds. Then one can check (cf. [14]) that

4
(10) S(f2Z) = f*SZ+2df®q(", Z)+2g(Z, ')®df—;df(z)g-

On the other hand, one can check that if ¢ is a tensor field of type (0, 2) and
a a function on M, then

(11 div ap = a div ¢ + ¢(grad a, -),

where grad a is the vector field defined by g(grad a, X) = da(X), X X(M).
By the definition (4) of the adjoint operator S* we have

g{o,(w)v, v) = 2 div(S/? 2)(2),.

Therefore, we have to combine formulas (10) and (11). After calculations in
which we use (8) and the following equalities: grad f2 = 2f grad f
df (grad f), = llwll*, g(Z, Z), = ||lvll* and g(grad f, Z), = w(v), we obtain

| ~2
g(0,(@)v, v) = 4 (nwu2 nvn2+"7w(v)2).

Consequently, since n>2 and w(v)? < ||w||?|[v||?>, we obtain the desired
assertion (9).

Next we are going to decompose S* S into three components to empha-
size both its dependence on the geometry of M (more precisely, on the Ricci
tensor R) and its relationship with the Laplace-Beltrami operator 4. Namely,
we prove the following: '

THEOREM 2. For an arbitrary deformation Z e X(M)

—4
(12) g(S*SZ. ) = 4R(Z, -)—2Aa—2nn b
or, equivalently,
(13) g(S*SZ, ) = — 28do—[(4n—4)/n] déa+4R(Z, ),

where R is the Ricci tensor, A = dd+dd is the Laplace-Beltrami operator and
o is the 1-form dual to Z in the sense a(X) =g(Z, X), X e X(M).
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Proof. The calculation will be done in a local neighbourhood with
coordinates (x', ..., x") on M. In such a neighbourhood we have (by the
definition (3))

¢ 0 2 0 0
SZ: s ——d. Z -~ s =~ 1
i = (£29) (ax,. ax,.) no d (6x,- axj)
Since gzg(X, Y)=Zg(X5 Y)_g(“?ZX, Y)_g(Xa gl Y)’ X) YG.{(M),
using the equality ¥, X =V, X—VyZ we obtain
oZk Z*
Z29i; = Zkgljrilci+a—xigkj+zkgilrllcj+€;ci_giks
= gu Z*, one can check similarly that
§ ,  0Z*
Via =2 gljrki+Txigkj-
Therefore,
gzgij = 17,-0tj+ Vja,-.
Analogously, one can calculate that
divZ = —oa,

where & is the codifferential operator: da = — V'«;. Consequently,
2
SZU = V,-Clj“' Vja,+;5agu
Using the definition (5) of divergence we obtain
. . 2
div SZJ, = V,'dj'f‘ s Vjai+_d(saj.
n
Now, applying the reasoning of [12], pp. 126-127, we derive
) . ) n—?2
div SZ; = 2R;; Z‘—Aaj—Tchaj,

which implies our assertions (12) and (13).

The form of the operator S$*S obtained in (13) suggests that this
operator should have some invariance (or rather quasi-invariance) properties
under conformal transformations. This follows from the invariance properties
obtained for the operators(] = kdd + ld6 (k and ! are some real constants) in
paper [7] to which my attention was called by B. Qrsted. That invariance
holds (cf. [7], Theorem 1.1) if we add to [J a zeroth order differential
operator depending on the Ricci tensor R, which is just the case in our
situation but, on the other hand, we have other coefficients k and /.

14 — Banach Center 1. 19
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A study of invariance properties for $* S should rather be carried out
after extending S* S to 1-forms or even to the whole exterior algebra (in our
case S*S acts on vector fields only). We plan to do this in a subsequent
paper.

Now, we confine ourselves to a special case. Namely, we show how S, S*
and $*S transform under a conformal change of the Riemannian metric g.

THeoreM 3. If g and g are two conformally related Riemannian metrics on
M, ie. if g =ag for a positive function a on M, then

(14) SZ =aSZ,
(15) §* ¢ = (1/a) S* 9 +((n—2)/a?) V,
(16) S*SZ =(1/a)S* SZ +(nfa) W,

where V and W are the vector fields defined by g(V, X) = p(grad(log a), X)
and g(W, X) = SZ(grad (log a), X), X € X(M), respectively.

Proof. Let us denote by ¥ and ¥ the Riemannian connection related to g
and g, respectively. Then for arbitrary vector fields X, Ye X(M),

(17) PxY =VyY+3(X(b) Y+ Y(b) X —g(X, Y)grad b),
where b = log a (cf. [9]).

Since div Z =tr(X — Vy Z), by (17) we have
(18) div Z = div Z+g2(b).

Since #,9(X, Y) = Zg(X, Y)—g(£, X, Y)—g(X, £, Y) and § = ag,
(19) F,g=a¥;9+Z(a)g.
Consequently, by (18), (19) and the definition of S, we obtain

_ 2— 2
SZ = ,szg'—;div Zg = a,SFZg—Z(a)g—;(div Z+gZ(b))ag =aSZ,

ic. the desired formula (14).
Let ¢ be an arbitrary tensor field of type (0, 2) on M. One can calculate,
by (5) and (17), that

— 1., n—2
div ¢ = —div ¢ +-——¢(grad b, ).
a 2a
Consequently,

-2
! — ¢ (grad b, X)
a

G 1 _ & 2 — 2 .
g(S* o, X) =E*‘7(S* ®, X) =ad1v ¢ (X) =Pdw o+

(1 sto+ 'V X
_g 02 @ UZ " ’



DIFFERENTIAL OPERATORS AND QUASICONFORMAL DEFORMATIONS 211

where V is the vector field defined by g(V, X) = ¢(grad b, X), Xe X(M),
which implies (15).

Finally, since div(ap) = a div ¢+ ¢(grad a, ')} and (1/a)grad a = grad b,

we obtain, by (17),

_2
B ZaSZ (grad b, )
2a

—_ 1
div SZ = -div(aSZ)+
a
. 1 n—2
= div SZ+ESZ(grad a, -)+TSZ(grad b, )

= div SZ+’—;SZ(grad b, ).

Consequently,

2 1
9(5%5Z, X) = div sz+gSZ(grad b, X) =g(—S"‘ szZ+2w, x),
a a

where W is the vector field defined by g(W, X) = SZ(grad b, X), X e X(M).
This implies the last assertion (16) and completes the proof.

[1]

[2]

(3]
(4]

[5]
[6]
(7]
(8]
(%]
[10]
(1]

[12]
[13]

References

L. V. Ahlfors, Condition for quasiconformal deformations in several variables, in: Contribu-
tions to Analysis, A collection of papers dedicated to L. Bers, Academic Press, New York-
London 1974, 19-25. '

—, Invariant operators and integral representations in hyperbolic spaces, Math. Scand. 36
(1975), 2743.

—, Quasiconformal deformations and mappings in R", J. Analyse Math. 30 (1976), 74-97.
—, A singular integral equation connected with quasiconformal mappings in space, Enseign.
Math. 24 (1978), 225-236.

—. The Hdolder continuity of deformations, Amer. J. Math. 101 (1979), 1-9.

B. Bojarski and T. Iwaniec, Topics in quasiconformal theory in several variables, in:
Proc. First Finnish-Polish Summer School in Complex Analysis at Podlesice (Poland),
Part II, Lodz 1978, 21-44.

T. P. Branson, Conformally covariant equations on differential forms, Comm. Partial
Differential Equations 7 (1982), 393-431.

S. I. Goldberg, T. Ishihara and N. C. Petridis, Mappings of bounded dilatation of
Riemannian manifolds, J. Diff. Geometry 10 (1975), 619-630.

D. Gromoll, W. Klingenberg und W. Meyer, Riemannsche Geometrie im Grossen,
Springer, Berlin—-Heidelberg-New York 1968.

P. 1. Kiernan, Quasiconformal mappings and Schwarz’s lemma, Trans. Amer. Math. Soc.
148 (1970), 185-197.

J. Lelong-Ferrand, Etude dune classe dapplications liées a des homomorphismes
dalgébres de fonctions, et généralisant les quasi conformes, Duke Math. J. 40 (1973), 163-
186.

A. Lichnérowicz, Géométrie des groupes de transformations, Dunod, Paris 1958.

A. Pierzchalski, On quasiconformal deformations on manifolds, in: Proc. Romanian-



212

[14]

[15]
(16]
[(17]
(18]
[19]

[20]

A. PIERZCHALSKI

Finnish Conference on Complex Analysis, Bucharest, 1981, Part 1, Lacture Notes in Math.
1013, Springer, 1983, 171-181.

—, On quasiconformal deformations of manifolds and hypersurfaces, in: Proc. Second
Finnish-Polish Summer School in Complex Analysis at Jyvliskyli, Ber. Univ. Jyviiskyld
Math. Inst. 28 (1984), 79-94.

H. M. Reimann, Ordinary differential equations and quastcory‘ormal mappings, Invenl.
Math. 33 (1976), 247-270.

J. Sarvas, Quasiconformal semiflows, Ann. Acad. Sci. Fenn. Ser. Al Math. 7 (1982), 197 -
219.

W. 1. Semenov, On one-parameter groups of quasiconformal homeomorphisms in Euclidean
space, Sibirsk. Mat. Zh. 16 (1976), 179-193 (in Russian).

K. Shibata and M. Mohri, Conformal structures on the reat n-torus, Osaka J. Math. 17
(1980), 137-164.

K. Suominen, Quasiconformal maps in manifoilds, Ann. Acad. Sci. Fenn. Ser. Al Math. 393
(1966), 1-35.

H. Weyl, Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig gestal-
ten elastischen Korpers, Rend. Circ. Mat. Palermo 39 (1915), 1-50, or: Selecta, Hermann
Weyl, Birkh&user, Basel-Stuttgart 1956, 59-110.



