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Graphs that are locally paths and cycles are studied. In particular, circulant
graphs that are locally paths are determined.

1. Graphs with prescribed links

All graphs in this note are finite, simple, and connected unless specified
otherwise.

Let F be a family of isomorphism classes of graphs. A graph G is said to be
an F-graph if for each vertex v of G the link graph Link(v), i.e. the graph
induced on the set of neighbors of v, belongs to F. Let Link(G) denote the
family of isomorphism classes of all Link(v), where v is a vertex of G. If Link(G)
consists of a single graph, say H, we simply write Link(G) = H and say that
G is a constant link graph. In such a case G is regular of valence |V (H)|. The
problem of existence of F-graphs for a given family F is hopelessly difficult in
general since it is a generalization of Zykov’s problem [Z] which is itself
recursively unsolvable. However, for special families F of graphs it can be quite
simple —locally complete graphs are clearly complete. For certain families F it
becomes quite an interesting problem. If F consists of all Hamiltonian graphs
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we deal with the so-called locally Hamiltonian graphs that were first studied by
Z. Skupien [Skl1, Sk2, Sk3]; see also [PS1, PS2]. It seems that these were
chronologically the first examples of F-graphs.

In this note we consider a special family of links. Let P denote the family
of all paths P={P,: n> 1} and let C denote the family of all cycles
C ={C,: n>2}. Let PC denote the union of P and C. Finally, for a given
family F let F’ denote the family of isomorphism classes of graphs that we
obtain from F by taking finite (vertex disjoint, repeated) unions of elements
from F. This means that F' contains disconnected graphs with components
from F. First we mention briefly PC-graphs.

2. PC-Graphs

In this section we give a topological characterization of PC-graphs. Let G be
a PC-graph. Then each vertex is either a P-vertex (its link is a path) or it is
a C-vertex (its link is a cycle). A cycle of length 3 is called a triangle. The
proof of the following result is easy and ts omitted.

PROPOSITION 2.1. In a PC-graph each edge belongs to at least one triangle
and to at most two triangles.

According to this proposition there is a natural partition of edges of
a PC-graph into two classes. Edges belonging to two triangles will be called
inner edges and edges that belong to a single triangle will be called boundary
edges. Clearly all edges incident to a C-vertex are inner edges. On the other
hand, each P-vertex has two incident boundary edges. That is why we call
C-vertices also inner vertices and we call P-vertices also boundary vertices.
Finally, we will call a triangle an inner triangle if all three of its sides are inner
edges, ie. if it is adjacent to three other triangles; otherwise it is called
a boundary triangle. A boundary triangle may have 1, 2, or 3 boundary sides. If.
it has 3 boundary sides we get K, which is an exception among PC-graphs. If
a boundary triangle has 2 boundary sides then there is a P,-vertex present in
a PC-graph. Such a triangle is called a pending triangle and a P,-vertex is called
a pending vertex. It is always possible to remove a pending vertex and thereby
a pending triangle and the resulting graph remains a PC-graph.

ProrosITION 2.2. A PC-graph different from K, has a P,-vertex if and only
if it has a pending triangle.

Proof. A P,-vertex is incident to exactly two boundary edges and a single
triangle. If the third side of this triangle is a boundary edge, then the graph is
K ;. Otherwise we are dealing with a pending triangle. On the other hand, it is
clear that a pending triangle gives rise to a P,-vertex, i.e. the vertex incident
with the two boundary edges. =
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PROPOSITION 2.3. G is a maximal outer planar graph if and only if G is
a P-graph which can be reduced by removal of a sequence of pending triangles to
the graph K.

Proof. By induction; see also Brown and Connelly [BC2, p. 200]. =

This means that by removal of a sequence of pending triangles we
eventually arrive at a PC-graph that is either K, or has no P,-vertex. The
reverse operation is attaching pending triangles to boundary edges. It also
yields a PC-graph if we start from a PC-graph. Moreover, the C-vertices are
not changed. The resulting graph remains a PC-graph. From now on we will
disallow P,-vertices in a PC-graph.

PROPOSITION 2.4. The boundary edges and boundary vertices of a PC-graph

G form a graph OG which is a union of boundary cycles. Each boundary cycle has
length > 3.

Proof. Since a boundary edge lies in a single triangle both of its endpoints
must be P-vertices = boundary vertices. Each P-vertex is incident with
precisely two boundary edges. This means that 3G is a regular graph of degree
2, therefore it is a union of cycles. A cycle of length 3 in 0G would imply that
G = K,, which is forbidden. =

To each graph G we may associate a simplicial complex K(G) in which the
simplices are complete subgraphs and incidence relation is the subgraph
inclusion.

PROPOSITION 2.5. A connected graph G is a PC-graph if and only if there is
a surface S, possibly with nonempty boundary 0S, such that K(G) is a trian-
gulation of S in which 0G = 0S; each triangle of G is a face of the triangulation
K(G).

Proof. Let T be a triangulation of S and let G(T) be its one-skeleton.
Assume that each triangle of G(T) is a face of T This implies that each
boundary vertex of G(T) is a P-vertex and that each inner vertex is a C-vertex.
In other words, G(T) is a PC-graph.

Given a PC-graph G we may construct a 2-cell embedding of G into some
closed surface S’ by first specifying a local rotation p, for each vertex v and then
the switching A(e) for each edge e of G, i.e. by defining an embedding scheme
(G, P, A). Take an arbitrary vertex v of G. Then Link(v) is either a cycle or
a path. In both cases the link induces a cyclic permutation p, of neighbors of
v (up to inversion). We may select any admissible rotation. Let e = uv be an
arbitrary edge of G. We will select A(e) in such a way as to make all triangles of
G the faces of the embedding, If p,(u) = p,(v) or if p, ' (u) = p; }(v) then let
Ale) = —1, otherwise let A(e) = 1. By the theory of Stahl [St] this defines
a 2-cell embedding of G into some surface §'. Now delete all nontriangular
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(open) 2-cells of this embedding. The graph G is then embedded into some
complex T, homeomorphic to some topological space S. By Proposition 2.4, 0G
is a union of cycles. It is clear that the deleted 2-cells give rise to 0G and S is
therefore a surface with k boundary components where k is the number of
cycles in 0G. =

COROLLARY 2.6. If G is a P-graph then all vertices of G lie on the boundary
of K(G).

CoROLLARY 2.7. If G is a C-graph then 0S = .

Here we only briefly mention an analogous characterization of (PC)-
graphs. The proofs will be given elsewhere. A vertex of a (PCY-graph with
a disconnected link is called a singular vertex as opposed to a regular vertex
whose link is connected. A (PC)Y-graph with no singular vertex is obviously
a PC-graph. Since Proposition 2.1 applies also to (PC)'-graphs the definition of
a boundary graph can be obviously extended to (PC)-graphs.

PRrOPOSITION 2.8. A connected graph is a (PCY-graph if and only if there is
a pseudosurface S, possibly with nonempty boundary 0OS, such that K(G) is
a triangulation of S in which 0G = 0S; each triangle of G is a face of the
triangulation K(G). =

COROLLARY 2.9. If G is a P’-graph then all vertices of G lie on the boundary
of K(G). m

CoOROLLARY 2.10. If G is a C’-graph then 0S = . =

Notice, however, that in general attaching disks in various ways to
a pseudosurface with several boundary components may result in non-
homeomorphic pseudosurfaces. Now we return to the study of PC-graphs.

The topological operation of attaching or deleting disks to a surface has
a combinatorial counterpart. An inner vertex v of a PC-graph G with the
property that all vertices of Link (v} are inner vertices will be called superfluous.
If we delete an inner vertex which is not superfluous we would obtain
a (PC)-graph with singular vertices. Therefore we forbid such a deletion. If we
delete a superfluous vertex v from G we get a graph G—v which is still
a PC-graph. The reverse operation “fills in a hole” and adds a vertex. It
diminishes the number of boundary cycles by one. By a sequence of vertex
additions we obtain a (uniquely determined) graph c¢(G) which we call
a completion of G. Note that ¢(G) is a C-graph.

Finally, let us mention the fact that regular P-graphs and regular C-graphs
are constant link graphs. Here we propose an open problem.

ProBLEM 2.11. For each surface (compact 2-manifold) § determine all
integers k such that there is a regular P-graph G whose completion c(G) is
a regular k-valent triangulation of §.
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3. The Euler formula for PC-graphs

In this section we prove a formula for PC-graphs that is derived from the Euler
formula for 2-cell embeddings of graphs.

Let G be a PC-graph. Let p, denote the number of vertices v such that
Link(v) = P, let ¢, denote the number of vertices v such that Link(v) = C,.
Furthermore, let p=p;+p,+... and c=c¢,+¢c5+... Let n=p+c be the
number of vertices, e the number of edges, and ¢t the number of triangles in G.
Let d be the number of boundary cycles in 8G. Let S be the surface determined
by K(G) and let §’ be the surface which is obtained from § by “filling in the

d holes”. Let x = x(S’) be the corresponding Euler characteristic. Then we can
prove the folowing result.

ProrosiTION 3.1. For each PC-graph G
Y. (k—6)c,+).(k—4)p, =6(d—x) and p=4d.

Proof. We start with the Euler formula y = n—e+f, where f = t+d is the
number of faces of §'. By counting the edges on faces we obtain 3t+p = 2e. By
counting the degrees we get )_ k(c, +p,) = 2e. This means that we can express n,
e, and fin terms of d, ¢, p,. This is how we obtain the formula. The inequality
p = 4d follows from the fact that each boundary cycle is of length at least 4. w

If we select certain special subclasses of PC-graphs we get the following
results.

COROLLARY 3.2. Let G be a PC-graph.
(@) If G is regular of valence k then
(k—6)c+(k—4)p = 6(d—yx) = (k—6)n+2p.

(b) If G is a C,-graph then 6y = (6—k)n.
(c) If G is a P,-graph then 6(d—yx) = (k—4)n, and n > 4d.

4. Circulant graphs that are locally paths

In this section we extend Parsons’ result from [P] to characterize connected
P,-circulant graphs. Let B, denote the set of all connected circulant graphs that
are locally P,-graphs. As in the previous paper [P] let G(n, S) denote the
circulant graph on n vertices with symbol S. '

THEOREM 4.1. G(n, S) belongs to B, if and only if one of the following
conditions holds.

@ n=2 k=1, §={1} and G(n, S) = K, [Link = P,].

) n=3 k=2, S={—1, +1} and G(n, §) = K, [Link = P,].

©nz27,k=4,S=a{—1, +1, =2, +2} for some a from Z3, the group
of units of the ring Z, [Link = P,].
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Proof. 1t is easy to verify that the graphs specified in this theorem are
indeed P,-graphs. We have to prove that there are no other such graphs. The
proof is divided into several disjoint cases.

Case 1: There exists an a from S such that 2a =n.
Case 1.1: S = {a}. Then G(n, S) is connected if and only if n =2,
k=1, §= {1}, and G(n, S) =K,.
Case 1.2: There exists an element b in S, different from a and
adjacent to a. This is impossible since we would get a triangle C, = (b,
a, a—b).

Case 2. For each a from S the corresponding —a also belongs to S but
a # —a. Hence |§] is even, say |S| = 2m, and Link(0) = P,,,. The map f/: S-S
with f(a) = —a induces an automorphism of G(n, S) fixing 0. It also induces
a nontrivial automorphism of P, . Since Aut(P,,)=Z, the nontrivial
automorphism is uniquely defined. Therefore P,, is of the following form:

P2m = (_xli _xZ’ LN ) _.xm, xmg crey xz, xl),

where § = {—x,, +x;, —X3, + X3, ..., —X,., +Xn}. Therefore there exists an
element a in S [with —a also from §] such that a is adjacent to —a [and there
exists an element b in S such that b is not adjacent to —b]. Namely, a = x,, and
b=x,. If a is adjacent to —a then 2a belongs to S.

Case 2.1: a, 2a, —a, —2a are distinct elements of S. Therefore
Link(0) contains P, = (—2a, —a, +a, +2a).

Case 2.1.1: S ={—a, +a, —2a, +2a}. This implies k = 4. Sin-
ce we must have Link(0) = P, neither 3a nor 4a belongs to S. This implies
n2=7 and ged(n, a)= 1.

_ Case 2.1.2: S contains a fifth element, say b. This would imply
that b is adjacent to 2a, which is impossible.
Case 2.2: Both a and 2a belong to S and 2a = —a.

Case 22.1. S={—a, +a},and 2a= —a. Hence n =3, k = 2,
S={-1, +1}, and G(n, S) = K,.

Case 2.2.2: S contains a third element, say b. We do not obtain
anything new. The case reduces to 2.1, in which b plays the role of a.

These cases cover all possibilities and thus the theorem is proved. =

It follows from the proof that for each n we obtain at most one circulant
graph that is locally P,. Let Circ(n) denote this graph. The following results are
given here (without proof) for the sake of completeness.

PrOPOSITION 4.2. Circ(2) is not a triangulation. Circ(3) = K, is a trian-
gulation of a disk, Circ(2m), m > 4, is a triangulation of a cylinder [the
antiprism], and Circ(2m—1), m > 4, is a triangulation of a Mdébius strip. All
triangulations have only boundary vertices. m
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ProposiTION 4.3. Aut(Circ(2)) = Z,, Aut(Circ(3)) = S;, and Aut(Circ(n))
=D,, n=217 where Z,, S,, and D,, denote the cyclic, symmetric, and dihedral
group of respective orders n, n!, and 2n. =

5. Characterization of P,-graphs, for k <5

THEOREM 5.1. The only connected P,-graphs, k < 4, are the ones given in
Theorem 4.1.

Proof. For k < 2 the result is obvious. For k = 3 there are no such graphs,
see [BC1]. Now we prove it for k = 4. By Corollary 3.2(c) we have 6(d—y)
=(k—4)n =10, n>=4d. It follows that the Euler characteristic equals the
number of boundary components: y = d. For the sphere we get two boundary
components. We are dealing with the cylinder. Also, for the projective plane the
corresponding surface with boundary is the Mdbius strip. It is then an easy
verification that the only P ,-triangulations of the cylinder and the Mdbius strip
are indeed Circ(n), n=>7. »

Let us introduce the so-called T-construction. We start with an oriented
2-cell embedding of a simplicial cubic graph K into an orientable surface
S such that no face of the embedding is a triangle. Next we form another graph
T (K) as follows. For each vertex w of K we form three vertices of T(K). Hence
|V(T(K))| = 3|V (K)|. We would like T(K) to be a regular S5-valent graph. We
will construct three types of edges in T(K): boundary edges, triangle edges and
diagonal edges. Each vertex of T(K) will be the endvertex of two boundary
edges, two triangle edges and one diagonal edge.

Let u be an arbitrary vertex of K. Let e, f, and g be the three edges of
K incident with u. Then we denote the three vertices of T(K) corresponding to
u by u,, u,, and u,. Let v be the other endvertex of e: e = uv, and let ¢, h, and
i be the three edges incident with v. In general the edge e lies on two faces of the
embedding of K. Without loss of generality we may assume that feh. .. is a part
of the oriented boundary of one of the two faces determined by e. If we have
a coherent orientation of faces then ieg... is a part of the oriented boundary of
the other face.

Now we can describe the adjacencies of a typical vertex, say u,, of T(K).
The vertex u, is adjacent to u, and u,. The three vertices of T(K) belonging to
the same vertex u of K form a triangle. Its edges are the triangle edges of T(K).

Since we would like T(K) to be a regular 5-valent graph we need three
more adjacencies for u,. We let u, be adjacent to v,. We can explain this
- adjacency by following the boundary ieg... There h and f are two consecutive
edges incident with the 2-cell. By the same argument u, is adjacent to another
vertex, say w,, if w represents the other endvertex of the edge g and j the next
edge perpendicular to this face. Also, by the same argument u_ is adjacent to v,.
This is how we construct the boundary edges of T(K).
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So far we have 4 neighbors of u,. The first two, namely u, and u,, do not
depend on the embedding of K. The edges involved are the triangular edges.
The second pair, ie. v, and w, is determined from the face structure of the
embedding. The edges involved are the boundary edges. However, no orien-
tability is needed in their description.

The last adjacency uses the orientation of feh... and ieg... Namely we let
u, be adjacent to v, since both f and i precede e on the two oriented boundaries.
By the same argument u, is adjacent to w,. These edges are called the diagonal
edges. This now determines a S-regular graph T(K).

The T-construction is of interest because of the following result.

THEOREM 5.2. The only connected Pg-graphs are the ones that can be
obtained from an oriented embedding without triangular faces of a simplicial cubic
connected graph with a T-construction.

Proof (sketch). From the construction it immediately follows that T'(K) is
indeed a P,-graph. The proof in the reverse direction is a little more involved.
Let G be a P,-graph. We first identify the boundary edges. There are two
boundary edges incident with a given vertex. It is easy to see that from the
remaining three edges incident with a given vertex two lie on an inner triangle
and the third one has to be a diagonal edge. In order to carry out this
identification globally we have to have an orientable surface with boundary
determined by G. =

Compare [Ha] where a vague description of the T-construction is
mentioned. There it is also possible to find a different proof of Theorem 5.1.

COROLLARY 5.3. The surface with boundary that is determined by a connec-
ted Pg-graph is orientable.

Let us conclude with a couple of problems.
PROBLEM 54. Give a characterization of P,-graphs, for k > 5.

We have seen that P.-graphs cannot triangulate nonorientable surfaces.
So the following problem is related to Problem 2.11.

ProOBLEM 5.5. For a given k determine the surfaces that can be trian-
gulated by a P,-graph.
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