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1. Introduction. In the alternating group 4,, a fixed partition of n
into odd unequal parts determines, by its cycle structure, a type that
bifurcates into two conjugacy classes. For every other partition of n
having an even number of even parts, the cycle structure determines
a single class C in 4,,.

The symbol C* = CC denotes the set of all elements in A, obtainable
by multiplying two elements of C; the symbol ¢ = CC*~' = C""'C is
defined inductively.

For each non-trivial class C in any finite non-abelian simple group
@G, there is a minimal exponent » = »(C) such that C” covers G. The set
of these “class exponents” are invariants, just as the periods of the classes
are. Thus they may be used (in part) to categorize finite non-abelian simple
groups. Among the questions studied in this article are

1. If CC o 4,, what period can C have?
2. For fixed n, what classes C have maximum exponent?

In answer to a research problem [2], Xu showed [8] that the period
2[n/2]—2 (i.e. n—2 or n — 3 according as n is even or odd) always occurs
among classes of exponent 2 in 4, ; Bertram [1] showed in addition that
all odd periods I, —1+3n/4 <l <mn-—1, also occur. The investigation
of periods I = n [n—1], when n is odd [even], is more difficult; negative
results (and one positive result) for these cases are given in [3].

Let | be the smallest period of a class C in A4, such that CC o A4,,.
The question whether ! = o(n) is possible remains open; I = O(1) seems
unlikely. (P 911)

Another open question is the characterization of all groups G for
which CC > C for all C in G (P 912). (If @ and H have this property, so
does G xH.)
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J. G. Thompson conjectured in conversation that in every finite
non-abelian simple group G there are classes C and C* such that the set
{cc*|ceC and c*e(C*} covers G. We know of no such group G for which
a class C fails to exist such that CC o G. The well-known conjecture
that every element of a finite non-abelian simple group is & commutator
would follow if such a C always exists.

2. Some lemmas.

2.01. LeMMA. Let C = {wax~'|x<G} be a class in the group G such
that CC > G. Then every element of G is a commutator.

2.02. Remark. O. Ore stated, and Ito proved in [6] that in A4,
(n > 4) every element is ‘a commutator. Lemma 2.01 shows that the
existence of a class ¢ with CC > G is a stronger assertion.

Proof of 2.01. Suppose g = waw 'tat™'. Since 1 is covered, there
are x,ye@ with zar—'yay~' = 1. Then

g =dfd'f', where d =wy 'at™! and f = to 'yay 'zt .

2.03. Counter-example. The converse of 2.01 is false. Let A4,
(cf. [7]) be the set of all even permutations on the positive integers in
which only a finite number of symbols is displaced. Then (i) every element
in A, is a commutator; (ii) there is no positive integer » such that C” covers
A,, no matter what C may be.

2.04. LEMMA . Let C and C* be classes in the group G such that CC* > G.
Then

(i) |C] = |C*| (cardinality);

(ii) every element in C has an inverse in C*;

(iii) every element in G is a commutator;

(iv) for any aeC and ge@, g is simslar (conjugate) to a commutator
of a (i.e., there are z,yeG with zgz~' = aya~'y™").

Proof. If aa* = 1, then (sas™')(sa*s™!) = 1, from which (ii) follows.
To see (i), cbserve that a — a™' gives a one-to-one correspondence between
the elements of ¢ and C*. Regarding (iii), let § = ab*. Then there is an s
such that b* = sa~'s~'. To see (iv), note that if = (27'az)(sa~'s~!), then

292~ = a(z2s)a"*(28)".

2.05. LEMMA. If every element of G is conjugate to some commutator
of a fized element a <G, then there exist classes C and C* satisfying the assump-
tion of Lemma 2.04. Moreover, acC.

Extensions of 2.04 appear in [4].

3. Classes of period 2. In this section it is proved that, if n > 6,
there is no class C of period 2 in A4, such that CC > 4,. (On the other
hand, C* = {#(12)(34)z"'|ze4,} is such a class if n = 5 or 6.) The proof
separates into four cases, according to the residue of » (mod 4).
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3.01. LEMMA. A k-cycle cannot be written as a product of - fewer than
k—1 transpositions (see [b], p. 15).

3.02. LEMMA. Let n = 4k > 4. There is no class C of period 2 in A,
such that CC covers A,,.

Proof. If C is a class generated by a product of 2k —2 (or fewer)
transpositions, CC does not cover a (4k —1)-cycle. The same contradiction
arises if C is the class generated by a product of 2k transpositions, since
no element in CC .can fix an odd number of letters.

The case n = 4k+3 > 3 is similar. The arguments needed in the
other two cases (Lemmas 3.03 and 3.04) are of a different sort, and we
include a detailed proof of one of these.

3.03. LEMMA. Let n = 4k+2 > 6. There is no class C of period 2
in A, such that CC covers A,.

Proof. It is only necessary to show that if C is the class generated
by a product of 2k transpositions, then CC contains no permutation
(abe)(de)(fghj). If ¢ = (12)(34) ... (n—3, n —2), this amounts to showing
that there is no collection of distinct letters a,...,j such that v =
(abe) (de)(fghj)o is a product of 2k transpositions. A reductio ad absurdum
argument is needed in each of the five cases for (abc) equal to (i) (123),
(ii) (135), (iii) (12 =), (iv) (13 =), (v) (1, n—1, n).

In case (i), 12.= 4, but 74 # 2. In case (iv), 123 = 2, 123 # 3. In
case (v), v21 =n # 1. In case (ii), 11 =4, ©3 = 6, 75 = 2. But then,
(de)(fghj) must have the 3-cycle (642) as a factor. In case (iii), the argu-
ment is closer: (de) must be either (34), (35) or (3, n—1). These subcases
are eliminated individually.

3.04. LEMMA. If n = 4k+1 > b, there is mo class C of period 2 in
A, such that CC covers A,.

The class (abc)(de)(fghj) is again not covered.

3.05. THEOREM. If n> 6, there is no class C of period 2 in A, such
that CC o A,,.

4. Classes of period 3. Tables in [4] show that, for n =5,7,8, 9,11, 12,
there are classes C of type 173, 1'3?, 123%, 1332, 123%, 1°3%, respectively, such
that CC > 4,,.

4.01. LEMMA. There is no class C of period 3 in Ag such that CC > A,.

Proof. There are two classes of period 3. The class of 3-cycles is,
obviously, not a candidate ((12)(3456) is not covered). To complete the
proof, it is enough to show that (ab)(cdef)(123)(456) cannot be a product
of two disjoint 3-cycles. The only cases are ¢ =1, b =2 and a =1,
b = 4. The details are easily supplied.

4.02. LEMMA. If n = 1214+10 (I > 0), there is no class C of period 3
such that CC o A4,,.
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The proof is lengthy; details are given in the Appendix. The type
26¥+34 is not covered, and in A,, this is the only elass not covered.

4.03. Remark. Let r and » be given. There may be an N = N(r, »)
such that, for all » > N (or for infinitely many n > N), there is no class
C of period r such that C” > 4,. Theorem 3.05 and Lemma 4.02 decide
this problem in the cases r = 2,3 and » = 2.

5. The maximal value of »(C) in 4, . If a class C s small, its exponent
»(C) may be very large. In this section it is shown that, for the class 1*~°3'
of period 3, the exponent » is [#/2]. For » > 6, this is the smallest non-
-trivial class in 4,,.

5.01. LEMMA. If C is the class of a 3-cycle in A, (n > 4), and e = [n/2],
then C°~! does not cover A,.

Proof. If n is odd and the product of ¢ —1 3-cycles is a k-cycle,
then k¥ < 3(¢e—1)—(e—2) <n, so an n-cycle is not obtainable. If n is
even, the product of e —1 3-cycles cannot yield (12)(34 ... n). (To avoid
a 3-cycle in the product, each factor must have a letter in common with
another factor.)

5.02. THEOREM. If C is the class 1" 3! in A,,, then v(C) = [n[2] = e.

Proof. It has to be shown that every permutation ge 4, is a product
of ¢ 3-cycles. If g is a k-cycle and r = (k+1)/2, the formula

1,2, k) (k 3, k—1)(k—1,4,k—2) ... (k—r+3, 7, k—r+2) = (12... k)

shows that ¢ is a product of (k—1)/2 3-cycles. If g is a product of several
disjoint cycles, one of which is a k-cycle in 4,, an inductive argument
can be used. It will conclude with the observations

(k—1)/24+(n—k)/2 = [n/2] if n is8 odd,
and :
(k—1)24+(n—Fk—-1)/2 < [n/2] 1if n is even.

Finally, ¢ can be a product of several disjoint cycles, none of which
by itself is in 4,,. The only case requiring a detailed proof is that in which
g is a product of only two disjoint cycles, each of which involves an even
number of letters. The following formulas suggest the proof:

(143)(142) = (12)(34),
(123)(316)(645) = (12)(3456),
(123)(318)(847)(756) = (12)(345678),

----------------------

(145)(423)(518)(867) = (1234)(5678).

(The notation needed to make the proof formally correct would not make
the proof more comprehensible.)

PrROBLEM. Presumably, for every class C in 4,, »(C) < [n/2]. (P 913)
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6. Covering theorems in PSL(n, K). The group PSL(3, 4) has 20160
elements (but is not isomorphic to A4;). There are 11 classes in A,, but
only 10 in PSL(3, 4); their periods are 1, 2, 3, 4, 4, 4,5, 5, 7, 7. The class
of period 3 has the exponent 2, as tables in [4] show. So also does each
class of period 4.

6.01. LEMMA. Let K be an infinite field and let n > 1. There is a class C
in PSL(n, K) that involves no more than 2n —1 parameters (i.e., it lies on
an algebraic manifold of dimension mot greater than 2n —1).

Proof. The class C of the transvection

aing(F, 1), 7 =[g 1],
has this property.
6.02. THEOREM. If K is an infinite field, there is a class C in PSL(n, K)
such that v(C) = (n%*—2)/(2n —1).
Proof. PSL(n, K) is an algebraic manifold, and its dimension is
at least n?—2.

7. Self-coverings.

7.01. THEOREM. Let C be any class in A, and let C* be its conjugate
in 8, (n>4). Then CC > C and CC > C*. |

The proof is an easy consequence of Lemmas 7.02 and 7.03.

7.02. LEMMA. Let g and h be disjoint cycles on 21 > 0 and 2m — 21 > 0
letters, respectively. Then there exist cycles k,,t,, ko, t, such that kit k,t,
= gh and, for each ¢ = 1, 2, k; is a 2l-cycle, t; is a disjoint (2m — 21)-cycle,
and k;, t; move exactly the same 2m letters as g, h do.

For example, (13)(2546)(23)(1465) = (12)(3456).

Proof. If

g=1(24,6,...,21—2,21,3,5,...,21—1, 21 +1),
h=(1,21+3,2l+5,...,2m—3,2m —1,21+ 2,2l 1+ 4, ..., 2m —2, 2m),
the formulas for k; and ¢; are

ko= (1,2,...,2l), t, = (20+1,20+2, ..., 2m),
ky = (1,3,4,...,21,21+1), &, =(2,21+3,2l+4,...,2m, 2l +2).

7.03. LEMMA. Let r > 3 be odd. Then there exist r-cycles k,t,,t, on
the letters 1,2, ..., r, in the same class in A, (and in A,,,), such that kt,
and kt, are both r-cycles, but belong to different classes in A, (and in A, ).

Proof. Take t, =k = (12...7) and ¢, = (13)(24)k(13)(24). Then

kt, =1,3,5,...,72,4,...,r—3,r—1),
kt, =(3,1,5,...,72,4,...,7r—3,r—1),
as asserted.
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Appendix. The proof of Lemma 4.02 is carried in two stages: Lemma 1
and Lemma 2.

LEMMA 1. Let n = 121410 (1> 0) and let C be the class of type 33+%
in A,. The CC does mot cover the type 25+%4 in A,,.

Proof. Let o be a product of 4l+3 disjoint 3-cycles. We prove
that there is no permutation = of type 25+34 such that 7o is a product
of 41+ 3 disjoint 3-cycles. It will be convenient to write k — 41+ 3, so
that n = 3k +1.

We shall assume that there is such a 7, and arrive at a contradiction
in every case. First note that exactly one letter is fixed in vo.

We let, without loss of generality,

¢ = (123)(456)(789) ... (3k —2, 3k—1, 3k),

and consider the various possibilities for . The letters of the 4-cycle
in 7 can be disposed among the 3-cycles of ¢ and the letter 3k 41 as in
Table 1. ‘

Consider the 7 cases in the table in order.

1 (a) (1234)c = (13 5...; need (35) in v to close off 3-cycle.

(b) (1324)0 = (1)(3) ...; 2 letters fixed.

2 (a) (123 3k+1)e = (1 3 3k4+1 2)...
(b) (132 3k +1)o = (2 3k+1)...
3 (a) (1245)0 = (25)...

(b) (1246)c = (625 ...; need 5 — 5 in 7 to close off 3-cycle.

(e) (1346)0 = (1)(4) ...; 2 letters fixed.

4 (a) (1247)(3xz) ... 0 = (13y ...; here, x —y in 0. To close off the
3-cycle, we need (3y) in 7, requiring z = y.

(b) (1347) ... -0 = (1)(35 ¥)(48 v)(72 2)..., say, where first we
need (5x)(2y) in v and # — y in ¢ in order to close off the first 3-cyecle.
Then (92) in v and y — 2 in o are required to close off the third 3-cycle.
None of z, y, 2 appears in the 4-¢ycle, and hence (ryz) # (123), (456), (789).
Therefore, without loss of generality, (zyz) = (1011 12).

Table 1
Case No. 3-cycles in o letter 4-cycles in 7 that
(123) (456) (789) (10 11 12)...  3k+1 must be considered
1 3 1 (a) (1234), (b) (1324)
2 -3 1 (a) (123 3k+1), (b) (132 3k+1)
3 2 2 (a) (1245), (b) (1246), (c) (1346)
4 2 1 1 (a) (1247), (b) (1347)
5 2 1 1 (a) (124 3k -+1), (b) (134 3k+1)
6 1 1 1 1 (assuming n = 3k +1 > 10) (147 10)
7 1 ] 1 1 (147 3k +1)
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Table 2 \
Case No. 3-cycles in o letters 4-cycles in v that
) (123)(456) (789)... a, a, ag a, must be considered

We have cases 1 to 7 as before. In addition:

5 2 11 (a) (12a,ay), (b) (13a,ay)
7 1 1 11 (14a, a,)

7 1 111 (la,ayag)

7" 1111 (a,a5a3a,)

Now (8u) and (6v) in 7 and #» — v in o are required to close off the
second 3-cycle. Without loss of generality, « =13 and v = 14. Thus
we have

o = (1347)(510)(211)(912)(813)(614) ... -0 = (1)(35 11)(4814)(7212)...

In 7, 15 must pair with a letter from a 3-cycle in o other than (13 14 15),
without loss of generality, with 16. Thus (15 16) is in v and we have
16 = (16 13910...

Note that if n is too small (less than 22), we cannot fill out the
transpositions in v that are needed to close the 3-cycles. A similar remark
applies elsewhere in the proof.

5 (a) (124 3k+1)o = (4 3k+1 2 5 ...

(b) (134 3k +1)... 0 = (1)(35-)(43k+12)..., and (26) is needed
in 7 to close off the last 3-cycle. But thien 70 = (635 ... and to close
off this 3-cycle we need 5 — 5 in 7.

6. Consider 3k +1 (recall we assume here that 3k -+1 > 10).
(1) (147 10)(23k+1)0 =(23k+13...; need (13) in 7 to close. -
(ii) (147 10)(33k+1)o = (33k+115...
(iii) (14 710)(13 3k+1) ... -0 = (13 3k+114)...; this requires (14 15)
in 7 to close the 3-cycle. Note that 15 is thus fixed.
Now we examine the consequences of closing other 3-cycles in the
product 7o:

vo = (133k+114)(15 y)(4 8 9)(7 11 8)(10 2 %) ...

In order to close these 3-cycles we would require, successively:

(b2)(3y) in 7 and # — v in o,

(8u)(6v) in v and v — v in o,

(117)(98) in 7 and r — s in o,

(2m)(12n) in * and m - n in o.

One can easily check that no three of z, y, u, v, ... can be in the same
3-cycle in ¢. For example, if (vyu) were in ¢, then » = z, and then (5z)
and (6z) would both have to appear in r. Thus, without loss of generality,
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we have

T =
(14710)(13 3k -+1)(1415)(516)(317)(819)(620)(1122)(923)(2 25) (12 26)

and
¢ =(13 3k +114)(1517)(4 8 20)(7 11 23)(10 2 26) ...

Now consider the letter 18:

(18 21) in 7 gives t¢ = (1819924 ...;

(18 28)(29 21) in t gives to = (1829199...;

(18 28)(29 30) in 7 fixes 30 in 7o, and 15 is already fixed;

(18 28)(29 31) in 7 gives 7o = (182932 ..., and this last requires
(32 17) in v to close off the 3-cycle.

The argument above is valid for n > 34. If n = 22, then there are
not enough letters to fill out all of the transpositions that are needed
to close the 3-cycles involved.

7. First consider the case n = 3k +1 = 10. Then o = (123)(456)(789)
and, therefore, by the assumption,

to = (147 10) ... -¢ = (15 -)(48 -)(7 10 2).

Here we required (29) in v in order to close the last 3-cycle. The
letters 3, 5, 6, 8 form the remaining transpositions. Since one letter in

7o must be fixed, we need (56). But
(14710)(29)(56)(--)o =(548...

and we would need (48) in 7 to close off this cycle.
Now let n > 22. We have

(147 3k +1)o = (73k+12...

and this requires (29) in v to close off. Since one letter in vo is fixed,
another transposition must be, without loss of generality, (56) or (10 11).
As above, (56) does not work. With (10 11) in 7, we still have to dispose
the letter 8; the transpositions containing 8 can, without loss of generality,
be (83), (85), (86), (8 12) or (8 13):

(83)(10 11)(29)(14 73k +1)o = (4815 ...,

85) . . ... ... '=(486x..., where x +# 4,
(86) . . . ... ..., = (48) ...,
(812) . . ... ... .. ... =(481012...,

(813) . v v i —(4814)(1393)...
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In the last case, in order to close the 3-cycles shown, we need (6 14)
and (3 15) in 7. But

(6 14)(3 15)(8 13)(1011)(29)(14 73k +1)o = (61515 ...).

We have excluded all possibilities for 7, and so Lemma 1 is proved.

LEMMA 2. Let n = 121410 (1> 0), and let C be a class of type 3,
t < 41+ 3. Then OC does mot cover the class of type 28734 in A,,.

Proof. We proceed as in Lemma 1. Let
o = (123)(456) ... (3t—2, 3t —1, 3t),

k = 414+ 3, and v as before. Note that in 7o at least 4 letters are fixed.
The letters of the 4-cycle in 7 can be disposed among the cycles of ¢ and
the letters 3k +1, 3k, 3k —1, 3k — 2 (denote these by a,, a,, a,, a,, respec-
tively) as in Table 2.

The cases 1 (a) and 2-6 are disposed of as in Lemma 1. So is the
case 7, with ¢ in place of k there. We consider the remaining cases.

1 (b) (1324)(56)0 = (1)(3)(254) ...; we require (56) in r to close
the 3-cycle here. This fixes 6, and one more letter must be fixed. This
requires, without loss of generality, (78), and hence also (9 10). But

(1324)(56)(78)(9 10) (11 7(11))o = (1)(3)(6)(8)(254)(7 9 11 ...

and 7(11) # 9, so that this last cycle is not closed at length 3.

Here, if the number ¢ of 3-cycles in o were too small, then while
the argument above would not be appropriate, it would be the case that
some of the transpositions in = would be left over in ro. A similar remark
applies in some of the other cases.

5" (a) Without loss of generality, one transposition is (34). Thus
(12 @, a,)(34)0 = (a, a,2)(135...; require (35) in t to close.
(b) (13 a, a,)(24)0 = (a,a,25 ...
7. (14 a,a,)0 = (a,a,2...); need (2 a,) in 7 to close.
7. (la,aya3)0 = (a,a,a32...
7. (ayaga3a,)0 = (a,a,asay) ...

All possibilities for v having been excluded, we have proved Lemma 2.
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