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1. Introduction®

In [1], Bing and Borsuk described a certain 3-dimensional compact
metric absolute. retract Q* such that @* contains no 2-dimensional disc,
and they ask whether @* contains any 2-dimensional absolute retract.

The retract Q* is the decomposition space associated with a certain
upper semicontinuous decomposition M of a 3-dimensional ball Q. The
elements of M consist of countably many ares a,, a,, a;, ... in @ together

with the singleton subsets of @ — () a;. See [1], Section 8, for a descrip-
tion of M. =1

By a Bing—Borsuk retract we shall mean any retract obtained from
a 3-dimensional ball @ by using an upper semicontinuous decomposition
M satisfying the conditions imposed on M in [1], Sections 2-8 (and
a technical condition described below). Each such space is a compact

metric absolute retract of dimension 3 that eontains no disc [1].
) The main result of this paper is that there exists a Bing—Borsuk retract
which contains a 2-dimensional absolute retract. ‘

Recently, Singh [4] has given an example of a 3-dimensional AR
- which contains no 2-dimensional AR. Singh’s construction is quite similar
to that of [1]. We shall discuss this point further in Section 13.

We shall now describe some notation and terminology to be used
in this paper. In this paper, all spaces are metric and by a retract we’
shall always understand a metric retract. Following Borsuk [2], we shall
use the notation AR to denote a compact absolute retract.

For a definition of upper semicontinuous decomposition and for basic
facts concerning such decompositions, see [5]. If M is an upper semi-
continuous decomposition of a space X, then X/M denotes the associated
decomposition space, and ¢: X — X/M denotes the projection map.

@ denotes the unit solid ball, centered at the origin, in E%;Q = {v: 2 E®
and d(z,0) <1}. § denotes the boundary of Q.

A sequence M,, M,,...of sets in a metric space is a null sequence if and
only if the sequence of diameters (diam M,), (diam M,), ... converges to 0.

In this paper, we use complex to include infinite complexes, and
polyhedron to include non-compact polyhedra. If K is a complex; then |K|

* Research supported in part by National Science Foundation grani no. GP-
30798.



] A Bing-Borsuk retract

denotes the carrier (or polyhedron) of K. For any complex K and any non-
negative integer n, K" denotes the n-skeleton of K, i.e.,

K" = {o: ceK" and dim o < n}.

2. Antoine’s necklaces

In Section 5, we shall give a brief description of the construction
of Bing-Borsuk retracts. In this section, and the next, we shall describe
certain sets to be used in the construction. We follow [1], Section 3-5,
closely; our aim is primarily that of indicating our notation.

In this section, let i denote some fixed positive integer.

First we shall describe the construction of an Antoine’s necklace
M?. Suppose that A’ is a polyhedral solid torus in Int Q. Let m; be an even
positive integer with m,> 8. Let & be a chain of solid tori {L}, L;,..., Lj,}
in Int A®. By a chain of solid tori, we shall, in this paper, mean a chain
constructed as in [1], Section 3. This chain circles A¢ exactly once, and
if 8 and ¢ are integers such that 1 < s < m, and 1 < ¢ < my, then L] and
L; are linked if and only if |§ —¢ = 1. The sets L{, L}, ..., L}, are poly-
hedral solid tori and are the links cf the chain ¥; we say they are the
links of the first stage of the construction of M*; and % is the chain of
solid tori of the first stage.

Suppose j is a positive integer such that j < m;. Let £, be a chain
of solid teri {Lj;, Lj, ..., Ljn} in Int L;, constructed relative to Lj as & is
constructed relative to A‘ Then Ly, L, ..oy Lj,, are the lmks of the
chain %;; we say they are links of the second stage of the construction of M*,

Let this process be continued. Suppose that k is a positive integer
‘and suppose that if each of j,, j,, ..., j, is @ positive integer no greater
than m,, then there has been defined a link L;j k In each such link
le, .jx» We define a chain &, ., of solid tor} {LM2 Jgl? L,lh d2r

L,1J 5...Jpymg 1D fashion analogous to that described above. The result-
lng links are the links of the (k4 1)st stage of the construction of M'.

We rcquire further that for any positive number ¢, there is a positive
intcger N such that for any positive integer n greater than N, the maximum
diameter of the links at the nth stage should be less than e .

For each positive integer %k, let N} denote the union of the links

of the kth stage in the construction of M'. Let M’ denote (M) Ni; M*
is an Antoine’s necklace. k=1

Now we shall describe some notation and terminology for indexes.
Suppose k is a positive integer. Then a is a stage k indexr for M' if and
only if there exist positive integers j,, jg, - .., jx, €ach no greater than m,,
such that a = j,js... Jx
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3. Wreaths

We shall need the notion of winding number of an arc in a solid torus.
Suppose that a is an are in a solid torus 7. Let T denote the universal
covering space of T. If D is a meridional disc of 7', then in T there exist
infinitely many (mutually disjoint) copies both of D and of a. Let dbe
one of these copies of a. For each meridional disc D of 7, there is an

integer kj such that d intersects exactly kp distinet copies of D in T. It is
easily seen that kj is independent of the choice of 4. Then let

w(a, T) = min{kp: D i8 a meridional disc of T}.

We shall call w(a, T) the winding number of a in T.

We return now to the construction of the preceding section; we
use the notation of Section 2.

Suppose j is a positive integer such that j < m;. Let M; denote M*NL;;
Mj is also an Antoine’s necklace. We have the following lemma whose
proof is well known. '

LEMMA 3.1. For each positive integer j such that j < m;, there i3 an
arc Jj such that J: c IntLi, Mi c J}, and J} has winding number 1 in L.

For each positive integer j such that j < m,, let J} be an arc in IntL
™y

containing M} and having wirding number 1 in Li. If W, =) Jj,
i

then W, is a wreath substituting for the solid torus A%, and the arcs J3, J3, ...,
J;, are the links of the wreath W,.

The term “wreath” is accordingly used in this paper in a more restrict-
ed sense than in [1], the difference being that we require that each arc
J; which is a link of the wreath should have winding number 1 in the
solid torus Lj.

4. Construction of discs

We describe a construction which yields, for a specified Antoine’s
necklace A, a disc having 4 on its boundary. Constructions of this type
are well known. Later in this paper, we shall make use of the process
described here. We use the notation and terminology of Section 3.

Suppose that L is a polyhedral solid torus and % is a chain of solid
tori {L,, L,, ..., L,} in Int L. Then F is a flange for L and % if and only
if ¥ is a polyhedral disc in L such that (1) FNnBdL is an arc on BdF
and (2) ¥ is disjoint from each link of #. The arc FNBAL is the edge
of F on L.



8 A Bing-Borsuk retract

Suppose that ¥ is a flange for L and . Then R,, R,,..., R, are
strips for L, &, and F if and only if R,, R,, ..., R, are mutually disjoint
polyhedral discs in IntZL such that if ¢t =1,2,...,m, then (1) B,NF
= BdR,NnB4d F and is an are, (2) B,nL, = B R;NBAL, and is an are,
and (3) if 8 =1,2,...,m and ¢ # 8, then R, and L, are disjoint.

Suppose i is some positive integer. Let A* be a polyhedral solid torus.
M* will denote an Antoine’s necklace in A constructed as in Section 3,
and for each positive integer k and each stage % index a, (1) L will denote
a link of the kth stage in the construction of M?, and (2) £ will denote
the chain of solid tori in Int LS. If j is a positive integer such that j < m,,
let M} denote M'NIj. '

Suppose that j =1,2,...,m,;, and suppose that 4 is a polygonal
arc on BdL;. We shall describe a disc Dj such that i; c Bd.Dj, Dj— 4
c Int L}, and M} c BdDj. Further, Dj is locally polyhedral modulo Mj.

-+ Let Fj be a flange for L} and <] having ; as its edge on Bd L}, and
let Rj, Rj,,..., R}, be strips for Lj, %}, and F;. If t =1,2,..., m,,
let A5 be LjNR}; Aj; is an arc on BdLj. Let 4 denote

3 m‘ 3
F;U(H Ry).

Suppose that p is a positive integer, a is a stage p index for A,
and the polygonal arc i: on Bd L! has been constructed. Then there exist
(1) a flange F* for L and # having A% as its edge on Bd L} and (2) strips
R, R, ..., R, for L}, % apd Fi. If t =1,2,...,m,;, let 1}, denote

t

R, NL:. Let A denote
my
Fiu (U R%).
=1

Let D} = Aju (U{4i: a is an index for M'})UM;. Tt is easy to show
that Di is a disc, and that M; c BdD;. It is clear that A} « Bd D} and
Di—% < Int L.

Suppose that if j =1,2,...,m,, 4 is an arc on Bd D] containing
M; and lying in IntZ}.

LemMA 4.1. If j =1,2,...,m}, u} has winding number 1 in L.

Proof. Let ‘P," be a polyhedral meridional disc in L] which does
not intersect 2;. We may modify %] to obtain a meridional disc @; in
L} such that (1) ®jnJ} c Mj and (2) Dj lies, except for Jin®], entirely
“to one side” of @;; that is, there is a neighborhood N of @] in L such
that N — @] has exactly two components and Dj intersects only one
of them. &} may be constructed from ¥} by repeatedly pushing tubes over
the strips and flanges used to construct Dj. We may suppose @; to be
locally polyhedral modulo Mj.



4. Construction of dises 9

It follows that if in the universal covering space L: of Li, D} is a
copy of Dj, then 1.)} intersects at most one of the copies of (ﬁ} in I-JJ‘ According-
ly, o(ui, Lj) < 1. Since 4 contains Mj, it can be shown that w(yj, Lj)
# 0. Hence w(uj, Lj) = 1.

5. Construction of Bing-Borsuk retracts

In this section we shall describe the construction of Bing-Borsuk
retracts. We follow [1] closely. For terms not defined in this paper, see [1].
Recall that @ is a- 3-dimensional ball and § = Bdg.

A chord of @ is a closed segment both of whose endpoints belong
to 8. In [1], it is shown that there is a sequence K,, K,, ... of mutually
disjoint chords of @ which form a null sequence and are dense on 8, i.e.,
for each open subset U of 8, there is a positive integer » such that both
endpoints of K, are in U. | ' ,

A sequence A, A%, ... of solid tori in IntQ is dense in Q if and only
if for each simple closed curve C in Int@Q, there is a positive integer n such
that A™ misses C and some core of A™ is (homologically) linked with C (rela-
tive to the integers).

The results of [1], together with Lemma 3.1, yield the following:
Suppose that K,, K,,... is a null family of mutually disjoint chords of
B, dense on 8. Then there exists a sequence A', A% ... of polyhedral solid

tori in (IntQ)— {J K; such that (1) 4%, A% ... is demse in @, (2) if
i=1

i=1,2,..., the inner radius of A* is less than 1/, (3) if i =1,2,...,
there is a wreath W, in A° substituting for 4° such that (a) each link of

W, has diameter less than 1/i, and (b) W, misses U K,, and (4) the sets
W,, W,, ... are mutually disjoint.

We may now describe the BIDO‘—BOI'bllk retracts. First we introduce
a special type of decomposition of Q. By a Bing—Borsuk decomposition
of @ we shall mean a decomposition M of @ consisting of (a) the arcs of
a null sequence K,, I{,, ... of mutually disjoint chords of @ which are
dense on 8, (b) the arcs which are the links of wreaths W,, W,, ... obtained
as in the paragraph immediately preceding this one, and (¢) the singleton

subsets of @ —[(L K;)u(lU W,)]. By construction, the arcs of M form
i=1 i1

a null sequence, and hence M is upper semicontinuous.

The statement that a space Q* is a Bing-Borsuk retract means that
there exists a Bing—Borsuk decomposition M of @ such that @Q* = Q/M.
By the results cf [1], each Bing-Borsuk retract is a 3-dimensional com-
pact AR that contains no disc.
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We inay now indicate how the remainder of this paper is organized.
In Section 10, we ghall describe the construction of a particular Bing—
Borsuk decomposition of Q. The associated decomposition space Q* is
thus a Bing-Borsuk retract. At the same time, we construet a 2-dimensional
compact absolute retract X in Q such that the image X* of X under projec-
tion is a 2-dimensional AR in @*. In Section 11, we shall show that X is
a 2-dimensional AR, and in Section 12 that X* is a 2-dimensional AR.

Sections 6-9 are devoted to material preliminary to the construction
described in Section 10.

6. Sets in solid tori

Suppose that L is a polyhedral solid torus in IntQ, m is a positive
integer such that m > 8, & is a circular chain {L,, L,, ..., L,} of linked
polyhedral unknotted solid tori in IntL, as described in Section 2, and
j=1,2,...,m.

The statement that A is a special meridional disc of L relative to & and
j means that A is a polyhedral meridional disc in L such that (1) LnL,
is the union of two disjoint polyhedral meridional dises in L;, and (2)
ift=1,2,...,5—-1,j+1,...,m;, 4 and L, are disjoint. See Figure 1.

Suppose 4 is a special meridional disc in L relative to # and j. Then V
is a special netghborhood of A im L relative to & if and only if V is a poly-
hedral 3-cell in L such that (1) Bd4 <« BdV and Int4 < IntV, (2)BdV N
NBAL is an annulus having Bd 4 as a centerline, (3) L,VL;, , c IntV
and each of L; ,NV and L,,,nV is a 3-cell, and (4) if ¢ =1,2,...,j—2,
§j4+3,...,m, V and L, are disjoint. See Figure 1.

hY
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Suppose, in addition, that V is a special neighborhood of 4 in L rela-
tive to &. Then A is a special are for L, A, and V if and only if (1) 41 is a
polygonal arc spanning the annulus Bd VNBd L and (2) 4 intersects Bd 4
in only one point. See Figure 1.

Recall that F is a flange for L if and only if F is a polyhedral disc
in L such that FNBdL is an arc in Bd¥; the arc FNBA L is the edge
of F on BdL.

If A is a special meridional disc of L relative to % and j, and V is
o special neighborhood of 4 in L relative to %, then a flange F for L is
a special flange for L, ¥, A, and V if and only if (1) F < V, (2) FNn4 is
an are, (3) #nBdV is an arc on BdF which contains, in its interior, the
arc FNBAL, and (4) F is disjoint from each link of #. See Figure 1.

C is an associated 3-cell for L, ¥, 4, and V if and only if C is a polyhedral
3-cell in V such that (1) 4 =« BdC, (2) (BAC)N(BdA V) is an annulus in
Int[(Bd V)n(BAT)], (3) (BAC)—(4uUBdYV) is a disc spanning V, (4) each
of CNnL; and CNL;,, is a 3-cell, and (5) C is disjoint from L; ,VL; ,
See Figure 1.

Now suppose that i, m;, k, and r are positive integers with m; > 8,
and if ¢t =1,2,...,% j is a positive integer such that j, < m;. Let
a denote jij, ... ji-

Suppose that L{ is a polyhedral solid torus in IntQ, £ is a chain
of solid tori {Lg,, Lgyy .-y Lz} in ¢, and j =1, 2, ..., m;. Suppose that
AT is a special meridional dise of L: relative to %% and j, V¥ is a special
neighborhood of 4 in L: relative to #!, C" is an associated 3-cell for L,
&L, 47, and V7, and AT is a special arc for L%, A, and V. See Figure 2.

Fig. 2
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Now we shall construct certain sets in L. Let F* be a special
flange for L}, &%, A with edge A on BAL!. Let

a1y Ri;9 seey sz-l)v Ri?j+z)9 cery Rzn;

be mutually disjoint polyhedral dises in L such that nift=1,2,...,m;
(a) RY intersects F'' in an arc on BdFT, and otherwise F and F¥ are
disjoint, (b) B%5NL,, is an are A% in BARYNBA L., and (c) RY is disjoint
from 47, and (2) BY;_, and R, lie in V¥, and if t =1,2,...,j=2,
j+3,...,my, RENVYT is a disc. See Figure 3.

! TFig. 3

Let Z}; denote (Bd L) NCY¥, and let A% be a polyhedral disc attached
to 47 UZ,; as shown in Figure 4, and such that A NLi;,y is a polyhedral
meridional disec 4g;,,). '

Now (BdAY)NZ; is an arc 7. Let 87 be a polyhedral disc in Cf
such that 8;NF; is an arc in (BdSY)N(BAFY), 85nA4¥ is an arc spanning
A¥ —Int(L{;nA4¥) as shown in Figure 4, and 87;nZ¥ is a subarc of 1.

Let VY be Li;NCY. Let AT be AX —Int(4¥nLi). AY is a dise with
two holes. Let 4% be a polyhedral meridional disc in Lf; such that Bd 47
< Bd L;; and Int 4 c Int V. See Figure 5. Let Vi;,, be Li;,,)NCy .

Let 8%;,, be a polyhedral disc in CF and near A% such that (1)
Int8%,,, is disjoint from LY, Li,,,, and L&y, (2) 8%,,nBdLy
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is a subarc of i} with one endpoint the point a¥,,, of A%NAY, (3)
8 yNBALY,,, is the point yi,,, common to A¥ and i¥,,, and
(4) 874N is an are from il to ¥, . See Figure 5.
Let X7 denofe
FrudruZiuAbustudiny
Uzgfj_*_l)usg(l]‘_i_l)u(u{Rz;: t = 1, 2’ ...,j—l,j-l—z, ey m‘})n

Suppose then that there has been specified a solid torus L and
chain £ of solid tori. If the sets A%, Vi, and 4 are also given, we say
that X7 is based on AY, V', and i¥.

PROPOSITION 6.1. X¥ is a contractible 2-complex, and hence ts an AR.

Proof. Clearly X¥ is a 2-complex. Let X¥(1) denote

AruztuAuay,.
Then X¥(1) is contractible. Let X¥(2) denote
F,‘;'U(U{Rfj: t=1,2,...,5—1,j+2,...,m}).
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Then X77(2) is a disc and X¥(1)nX"(2) is a spanning arc of X*(2), and
thus if X77(3) = X¥(1)UX¥(2), X¥(3) is contractible. Z¥, . is an annulus
that intersects Xy (3) in a simple closed curve Bd 4%;,,, which is a center-
line of X%,,,. Thus if X7(4) = X¥(3)UZ¥,,,, X¥(4) is contractible.
Finally, 8% and 8%, are disjoint discs which intersect X (4) only in
arcs on their boundaries. Since XY = Xi(4)US[USY,,,, it follows
that X" is contractible.

The following proposition can be proved by a simple modification
of the proof of Proposition 6.1.

PROPOSITION 6.2. X¥NV¥ i3 an AR.

PROPOSITION 6.3. Let Y denote

Xyu i;uvzﬁl)-

Then Y i3 an AR.

Proof. Since VENXY = Ziud%, Ve, nX¥ =37 4%, ., and
XY is contractible, it follows that Y is contractible. Since Y is.a 3-com-
plex, it is thus an AR.

We point out now how to construct certain discs that are useful.
At the next step of the construction, the process deseribed above is repeated
in each of the links L, and Liu+1)- In particular, we construct a flange
Fy in L, with edge 43 on Bd L}, and a flange Fyy;,, in Li;,, with edge
Rgg+yy on BaLy,,,.

Let E' denote

CFPV[UEBE: t=1,2,...,j-1,j+2, ..., m}yY
UG UF US4y UF 4y

Then E¥ is a disc in L! such that (1) E¥nBdL!, (2)ift =1,2,...,5—1,
J+2y ..., my EfnLi, =%, and (3) E¥YnLy =F% and EInLiy,,
= Lfa(s+1)-

7. Replacing discs in solid tori

Suppose that i, m,, and r are positive integers with m,> 8, A’ is
a polyhedral solid torus in Int@, #* is a chain of solid tori {L}, L;, ..., L, }
in Int 4%, and j =1,2,..., m;. Suppose that A" is a special meridional
disc of A°® relative to #* and j, V¥ is a special neighborhood of A* in
L relative to #*, and (' is an associated 3-cell for 4°, &*, A, and V*.
See Figure 6.

Let 4j denote a polyhedral meridional disc in L as shown in Figure
7,let A3 denote a polyhedral disc in A*, as shown in Figure 7, with A{"nL],
a polyhedral meridional disc 4, in Lj,,. Let Vi be C*NL; and let
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Vi be C"nLj,; Vi and VJ}, are special 3-cell neighborhoods of A"
and 4%, ,, respectively, in L. )

Let Z" be (BAL))nVy and let Zf,, be (BdL;,,)nV},,. Let A" be
AT —Int (4" NL); A" is a dise with two holes.

Fig. @

Let X{* denote
ATOZF UL VAT VI,
It is easy to see that X is a contractible 2-complex.
If L is a polyhedral solid torus in IntQ, A4 is a polyhedral merldlona,l

dise in L, V is a polyhedral 3-cell neighborhood of A in L with VNnBd L
an annulus having Bd 4 as a centerline, and A is a polygonal arc spanning

Fig. 7
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VNBAdL and intersecting Bd 4 in only one point, then (4, V, 1) is an
admissible triple for L.

If (4, V, 1) is an admissible triple for a solid torus L, and m is any
even positive integer with m > 8, it is easily seen that there exists a chain
Z of solid tori in Int Z such that A is a special meridional disc in L relative
to # and 1, V is a special neighborhood of A relative to %, and A is a special
arc for L, 4, V.

If 1is j or j+1, let A be a special arc for L}, 4{" and V. Then (47,
Vi, 4") is an admissible triple for L.

If t=1,2,...,m, let % be a chain solid tori {L},, Lj,, ..., L, }
in Int Tt such that (1) if I is j or j+1, A" is a special meridional disc in
L} relative to #} and 1, and V}" is a special neighborhood of 4;" relative
to Z;. Since m, > 8, clearly such chains exist.

If 1 is either j or j 41, then, by the results of Section 6, there exists
a contractible 2-complex X such that (1) Xi" < Lf, (2) XI'nBA L} = A"y
u Bd 4, (3) X is based on A", Vi, and A" (4) if t =1,2,...,j—1,
j+2,...,my, then XINL} is a polygonal arc A} on Bd L}.

Let X' denote

(X3 — (47 A )V (XS VES,).

It is easy to see that Xi"is a contractible 2-complex in-4% and that X¥n
NBd A* = Bd 4”. Note that Xy and X} differ only in LjUL{,,, and
that X" c¢ A*ULjUL},,. Note also that if I is either j or j+1, and ¢ is
either 1 or 2, then there exist a meridional disc 4§ in Lj,, a neighborhood
Vi of AY in L}, and an are A on BA L such that (a) (4, Vi, A7) is
an admissible triple for L} and (b) X¥nL} = AU,

At this point we need a restricted type of index. If k is a positive
integer, then a special index of stage k is a finite sequence’j,7j, ... j, of
positive integers such that ifn =1, j,isjor(j+1),andifn =2,3, ..., k,
jn i8 1 or 2,

Suppose k is a positive integer. Let .#, denote the set of all indexes
of stage % in the construction of M* having first term either j or j+1.
Let f, denote the set of all indexes of ., that are not special indexes
(of stage k). Finally, let #, denote the set of all special indexes of stage k.

Suppose now that p is a positive integer and that the construction
in A* relative to 4% has been completed through step p. Then the following
exist:

(1) For each positive integer g less than p +1 and each stage ¢ index
a for M*, a polyhedral torus L and a chain % of solid tori in IntLi.
These chains form the first p stages in the construction of an Antoine’s
necklace.

(2) A contractible 2-complex X} in A* such that (a) XjnBdA’
= Bd 4", (b) if B is a special index of stage (p 1), then there exist a
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meridional disc 45 of L}, a neighborhood V§ of 47 in L, and an are
i on BdL‘ such that (45, V¥, A¥) is an admissible triple for L} and
X"nL‘ ¥UAy, and (c) if ae &,,, and t =1,2,...,m;, X NL} is
a polygonal arc A% on BdL,.

We shall now describe the (p +1)st step of the construction in A°
relative to A'. For each stage (p +1) index e, there is a chain #* of m; solid
tori in LY such that if « is, in fact, a special index of stage (p +1), then
A¥ is a special meridional disc in L relative to % and 1, V" is a special
neighborhood of A7 relative to #%, and A is a special arc for L., A¥,
and V¥, ‘

First suppose that g is a special index of stage (p +1). By the results
of Section 6, there exists a contractible 2-complex X} such that (1) X}
c Lj and XJnBdL} = (BdA Uiy, (2) X is based on 47, Vi, and

¥, and (3) if t =3,4,...,m,, X"nL", is an arc iy on BdL},.

Now suppose that ae of,,, and t =1,2,..., m;. Then there exist
(1) a flange F¥ in L} with edge A" on Bd L} and (2) strips R, R, ..., Ro,
for L', ¥, and F'. Let E" denote

m;
Fru(U BE).
8=1

Let X! | denote
(X7 —U{45: BeZp |V [ULXF: By Y| V[U{BY: ae 11l

It is easily verified that X" 241 18 a contractible 2-complex in A* such that
Xy, ,NBdA4* = BdA™. Now for each special index B of stage (p+2),
let 4) denote Xy, ,NL}.

We may easily define, for each such index g, a neighborhood Vz' of
A7 in Lj such that (4¥, V¥, 27) is an admissible triple for L}. Further,
if ae o#,,, and t =1,2,...,m,;, then x‘Han,, = A%,

Note that X7 , and X, differ only in

U{L;: veSpii}s
and that
g1 < Ly V|ULLS: vesppl]-

Clearly the construction at the (p41)st step yields the sets needed
to repeat the process Hence we obtain, by repetition of the construction,
(1) a sequence X', X¥, ..., (2) for each positive integer n, a finite collec-
tion of chains of sohd ton {Zf,: ae S}, and (3) for each positive integer n,
a finite collection of mutually disjoint 3-cells, {V¥: fe4,}. Clearly we
may carry out the construction such that as n increases without bound,
(max {diam L = aef,}) approaches 0. Recall that for each special
index B considered, V¥ < LY. |
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For each non-negative integer #, let QF denote
Xf:U [U {L:: ae.fn+l}].

LEMMA 7.1. For each positive integer n, 2 is a compact connected
set and QF | < OF

Proof. For each positive integer n, X! is contractible, and hence
it is clear that Q¥ is connected; it is easy to see that Q' is compact.

It follows from the construction described above that if » is a positive
integer, Xir , and X' differ only in {J {L!: a¢#,}. Since

U {L:n: pefyay © UL vesy ),
it follows from the definitions of Q¥ , and Q¥ that Q¥ , < QF,
(>4
Let X' denote () Q. Since X" < QF, QF = XFULiVLf,,, and

n=0

XrULIVLL,, c V¥, it follows that X¥ c V',

8. Discs in X¥

By using some ideas mentioned in Section 6, we shall construct
two useful discs in X*. One of these discs, Dj, lies in X" nL}, and the
other, Dj,,, lies in X" NLj,,.

Suppose that I is j or j+1. Recall that, in the notation of Section 6,

Bf = FfO[U(R{: t = 3,4, ..., m}]US{UF{USUF].

Then E¥ is a disc in L such that (1) EIfnBd L! = A¥",(2)if ¢t = 3,4, ..., my,
By nLj = A7, and (3) By nLj = Fj; and Ef NI}, = F.

Suppose that # is a special index of stage p where p > 1. Then as
in Section 6, if E} denotes

Fyu|U{RE: t =3,4,..., m,}]ung_ USSR VR,

Ef is a dise in Lj such that (1) Ey nBdLj.= A, (2) if t = 3,4, ..., my,
FinLj, = A%, and (3) EfynL) = Fi and EfnL, = Fi,. '

Suppose that « is an index of stage » not a special index but with
first term 7. Then in Section 7, we let E" denote

mg
FyulU EE.

§=1
Then E¥ is a dise in LY such that (1) EXnBALf =i and (2) if
t=1,2,...,my, E'nLY = %,

Recall that in the construction described in Section 7, the chains

of solid tori in Lj satisfy certain conditions described in Section 3, and
accordingly they define an Antoine’s necklace M} in IntLf.
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Notice that X —(M;UMj;,,) is locally a 2-complex.
Let D! denote
M{U[U{E¥: a is an index for M* with first term 1}].

It is easily verified that (1) D} is a dise in L}, (2) DinBdL; = A", and
(3) M!c< BAD:. )

Tf I is § or j+1, then we define J} to be the arc

(Bd Dir) — (Int A¥T).

Define Ji to be an arc in IntJ} containing M}; note that J{ < IntLj.

It follows from Lemma 4.1 that if I is j or j-+1, then J) has winding
number 1 in Lf. '

9. X is an AR

In this section we shall prove that the set X constructed in Section
7 is an AR. We retain the notation and terminology of Sections 6-8.

PROPOSITION 9.1. X' has dimension 2.

Proof. This follows from the facts that (1) X — (M;UM],,) is locally
a 2-complex and (2) dim(Mj;uM;,,) = 0.

For each positive integer n, let UT denote

X"’U[U {Vi: Be ,,“}].

Clearly for each positive integer n, U is compact. Further if § is a special
index of stage (n+1) and I is either 1 or 2, V& c V. It then follows that
for each positive integer n, U, , = UY. Since, as n increases without
bound, (max {diam V}}’: Be#,.,}) approaches 0, it follows that

X" = N Uk

n=1
LEMMA 9.2. For each positive integer n, U is an AR.

Proof. First notice that UT may be obtained from X in the fol-

lowing way: first define Ui (1) to be
xru|U{vy: ﬂfguﬂ}]-

By the construction of X7, if # is a special index of stage (n+1), Xy nVy
is a disc spanning Vj. It follows, since Xj is contractible, that U; (1)
is contractible. Clearly U (1) is a finite 3-complex, and hence (see [2])
is an AR.

It follows from the construction of X* that U is obtained from
U (1) by attaching to U (1) finitely many mutually disjoint dises, each
of which intersects U (1) exactly in an arc on its boundary. It follows
from [2] that U’ is an AR.
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LeEMMA 9.3. If n i8 any positive integer and f i¢ a special index of
stage n, then VinXY is a contractible 2-complex.

Proof. This follows from the construction of X

LEMMA 9.4. If n i8 a positive integer and § is a special index of stage n,
then VinUY is an AR.

Proof. By Lemma 9.3, V¥nX¥ is an AR. Now V¥nUY is obtained
from VinXJ as follows: First, attach to VinXy the two 3-cells V¥
and V},. There results a contractible 3-complex which is then an AR.
Second, attach to this contractible 3-complex certain discs that lie in
X*nVy. These discs intersect the 3-complex exactly in arcs on their
boundaries. There results VyNUY, and hence ViNUY is an AR.

Recall that in Section 8 we constructed a certain arc Jj in Lj and
a certain arc J},, in ILj,,.

LEMMA 9.5. Iflisj or j+1, p i8 a point of Jt, and U is any neighbor-
hood of p in @, then for some positive integer n, there is a closed neighbor-
hood V of p in U such that V < U, V is an AR, and for any special index
B of stage n such that Vi intersects V, Vi < V.

Proof. We shall consider three cases.

Case 1: p is a point of J§ — M?. In this case, X¥ is, by construction,
locally a 2-complex at p. Let n be a positive integer such that for any
special index g of stage (n+1), p¢ V. Then it is easy to construct a closed
neighborhood V of p in U as required.

Now let Z* denote N[ {Vy: Be4,}]. Z" is a Cantor set, and Z*
c M:UM;_H. o=t

Case 2: p is a point of M{—2Z", In this case, there exists a sequence
31y 72y sy ... Of positive integers such that j, = I, each of j;, js, Jey ... i8
less than or equal to m;, the sequence j;, js,js, ... does not terminate

in 1’s and 2’s, and pe() Ly, 4,-
s=1

Then there is a positive integer n such that (1) L;,, ;... = U and
(2) if B is any special index of stage (n+41), p is not in Vy. The fact that
P ¢Z" yields (2) of the preceding statement. Let a, ., denote j,jg ... jpins1-

By the construction of X, L,, “nXﬁ{ is an arc on BdL, 1 In
the construction of X* from X}, we add a disc in L, to L,  NXj.
It follows that L, +lnX"' is a disc, hence an AR, and is a neighborhood

of p in U¥ as required. _

Case 3: p is a point of Z”. In this case, there exist a positive integer
n and a special index B of stage n such that peInt VY and V¥ < U. By
Lemma 9.4, VinUy is an AR. Since peUy, then Urn¥y is a closed
neighborhood of p as required. '
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LEMMA 9.6. If £k =0, 1, or 2, X is k—C.

Proof. Suppose that f: 8¥*—X* is a map. By Lemma 9.2, U is an
AR, and since X" < UY, there is an extension F: B**'-»U¥ of f to B*+!.

Now we shall construct a retraction R,: Ur—U, If j, =j or j+1
and j, = 1 or 2, then by Lemma 9.4, V}’, NUY is an AR, and hence there
is a retraction 7, ;,: Vi, >V}, NUY. Let B, = Uy—>Uy be the map such
that if j, = j or j+1, and j, =1 or 2, then R,|V}, =17, ,and elsewhere
on U¥, R, is the identity. Then R, is a retraction of U{ onto UY.

Let G, = R,F; then @,: B'*'»>UY, and since X" < U¥, it follows
by the construction of R, that @, extends f.

By applying Lemma 9.4 to UY, we may construct a retraction R,:
Uy —Uy such that if #e(UF — \J{Vi: Bed,}), then R,(z) ==, and for
each special index f of stage 3, R,[Vi]c Vy. Let G; = R,@,. Then
Gy: B**'>U¥ and since X < UY, @, extends f. Further, it follows that

||G4y Gsl] < (max{diam Vi: ve4,}).

Suppose now that ¢ is a positive integer, maps @,, G,, ..., G, have
been defined, and if s =1,2,...,¢, then G,: B**'>U},,, G, extends f,
and if t =841, 8+2,...,4q,

I1G,, Gl| < (max{diam V¥: ue®B,,}).

By applying Lemma 9.4 to U;’;l, we may construct a retraction
Ry iy UF,—UT,, such that if o is a special index of stage ¢-+2, then
R, [Vil<c VI, and if ze(Ug,,— U{V7: 0eHy,,}), then Ry, (x) =a.
Let G,,, = R,,,G,. Then G,,, is a map from B**! to UJ,,, and Gy,
extends f. Further it follows from the construction thatifs =1,2,...,q,

then .
1§41y Golt < (max{diamV¥: ced,,,}).

In this way, we must construct a sequence @, @,, ... of extensions
of f, each having domain B?*! and each into Q. Now (max {diam V¥": 1¢4%,})
approaches 0 as ¢ increases without bound. This implies that the sequence

G4, G,, ... converges uniformly to 2 map @. Since X = MUY, it follows

n?
n+1

that G: B**'— X". Since each of @,, @,,... extends f, G extends f.

Hence X" is k—C.

Lemma 9.7. If k = 0,1, or 2, X 48 k— LC.

Proof. Suppose peX". If p¢Jiud},,, then by construction, X* is
locally a 2-complex at p, and hence is LC at p.

Suppose | = j or j+1, and pedi. If U is any neighborhood of p in
X, then there is a neighborhood U of p in @ such that U = Un X",
Now by Lemma 9.5, there is a positive integer # and a closed neighborhood
V of p in Ul such that V < U, V is an AR, and for any special index
p of stage n such that Vi intersects V, Vi = V.
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Suppose that k = 0,1, or 2 and f: s*~V is a map. By an argument
similar to that given for Lemma 9.6 and making use of the special properties
of V relative to the cells Vi for special indexes f of stage #, we may prove
that f has a continuous extension G = B**'>V. Thus for each map
f: 8*~>V, there is a continuous extension G = B**' U of f. Thus if
k=0,1, or 2, X is k—LO at p.

LEMMA 9.8. X is a 2-dimensional AR, X" c V" (and hence X
< A%), and X*nBd A* = Bd 4%,

Proof. The fact that X* is a 2-dimensional AR follows from Lemmas
9.1, 9.6, and 9.7, and [2]. The remaining facts follow from the construe-
tion of X™,

Recall that at the beginning of Section 7, we supposed that i, m,,
j, and r are positive integers with m; > 8 and j < m;, A* as a polyhedral
solid torus in Int@, £* is a chain of solid tori {L3, L;, ..., L;,} in Int A’
4™ ig a special meridional dise of 4° relative /to Z* and j, and V¥ is a special
neighborhood of 4% in Af relative to #*..

We then constructed the 2-dimensional AR X* in V7. We shall
sa