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Fiir Petra und Bjorn

Introduction

Following R. H. Bing [1951] a topological space X is called developable if
it has a development, ie. a sequence (%,),<, Of open covers of X such that for
each point x in X the collection {St(x,%)|n < w} forms a neighborhood base
of x, where St(x, %) =|){Ue%|xeU}. The notion of a development,
however, was introduced already in 1916 as a part of R. L. Moore's axioms for
an abstract theory of convergence and continuity (Moore [1916]). Based on
these axioms, Moore spaces, i.e. developable regular T,-spaces, were intensively
studied by Moore and his school. Many of their results are collected in R. L.
Moore’s book “Foundations of Point Set Theory” ([1962]; first edition 1931).
Independently, developments were also considered by P. S. Aleksandrov and
P. Urysohn [1923].

One of the most interesting problems in recent research in set-theoretic
topology originated from F. B. Jones’ work on the metrization of Moore
spaces. Assuming 2° < 2”* he could show in [1937] that every separable
normal Moore space is metrizable. Since then the so-called Normal Moore
Space Conjecture, i.e. the question whether every normal Moore space is
metrizable, has been the source of hundreds of research papers (according to
M. E. Rudin [1975]). Around 1967/68 J. H. Silver and F. D. Tall proved that
Martin’s axiom together with the assumption @, < 2° yields a non-metrizable
separable normal Moore space (see Tall [1977]), thereby showing that the
existence of a non-metrizable separable normal Moore space is consistent with
and independent of the usual axioms of set theory. For non-separable normal
Moore spaces the situation turned out to be more complicated. In {1978] P. J.
Nyikos proved that the Product Measure Extension Axiom (PMEA) implies
that every normal Moore space is metrizable. Since it was known that in order
to establish the consistency of PMEA, the consistency of the existence of
a measurable cardinal is needed (Solovay [1971]), his result connected the
Normal Moore Space Conjecture with an old and deep problem of set theory.
Finally, the important paper [1983] of W. G. Fleissner clarified how close this
connection really is. “Either the existence of a measurable cardinal is
inconsistent with the axioms of set theory or any proof of the Normal Moore
Space Conjecture must start with a large cardinal assumption” (Fleissner
[1984], page 757). Interestingly, D. K. Burke has recently shown that PMEA
also implies that every countably paracompact Moore space is metrizable
(Burke [1984a]).
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As a result of the intensive work on the Normal Moore Space Conjecture
and the work of the Moore school of topologists, Moore spaces and, more
generally, developable spaces belong to the best investigated classes of
topological spaces. Among the high-lights of the theory are M. E. Rudin’s
example of a non-completable Moore space (Rudin [1950]), R. H. Bing’s paper
[1951] on the metrization of topological spaces, the influential paper of H. H.
Wicke and J. M. Worrell, Jr. [1965] on developable spaces, and a series of
more than twenty papers on Moore spaces by G. M. Reed, culminating with
the proof that every locally compact, locally connected, normal Moore space is
metrizable (Reed and Zenor [1976]).

Accepting developable spaces as an important and useful generalization of
metrizable topological spaces we have initiated the systematic investigation of
separation axioms and covering properties generated by developable spaces in
(Brandenburg [1978]). The basic idea was to apply the formation of certain
hulls (e.g. the epireflective hull, the normality hull, the paracompactness hull, and
the left-fitting hull), which have been studied mainly in connection with
metrizable or compact spaces, to the class of developable T;-spaces, and to
search for internal characterizations of the resulting spaces. This procedure led
to a number of new concepts, new insights, and new problems. Since then many
important contributions have been made by J. Chaber [1983], [1983a], [1984],
[1984a], R. W. Heath [1984], N. C. Heldermann (19807, [1981], M. Husek
(Brandenburg and Husek [1987]), A. Mysior [1980], (Brandenburg and
Mysior [1984]), S.-H. Sun and Y.-M. Wang [1988], and the author F1980a],
[1981], [1983], [1985], [1986], [1988].

One aim of this paper is to provide an up to date survey on this area. Of
course, some stress will be layed on the work of the author, i.e. with a few
exceptions only those results will be proved which are due to the author (some
of them in collaboration with M. Husek respectively A, Mysior). The results on
inverse limits of developable spaces (§ 7) are new and appear here for the first
time; but there are also some new results in other sections. The second aim of
the paper is to stimulate further research. For this reason, nineteen research
problems are mentioned (A-S) which might serve as starting-points for new
interesting investigations. Some of them may be easy, others will be
harder.

Instead of describing the contents of the subsequent sections, we conclude
these introductory remarks by presenting two diagrams which illustrate the
relationships between various (more or less) well-known classes of topological
spaces and the classes of spaces which will be studied here ‘(the latter are
underlined). These diagrams are meant for the expert, i.e. they contain some
entries which will not be defined here(!). We hope they will explain why we will

(') Most of the relevant definitions can be found in (Engelking [1977]), (Burke [1984]), or
(Gruenhage [1984]).
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8 Separation axioms. covering properties. inverse limits

second countable — regular —————breulcon&—;; Dieudonné-complete
metrizable Lindelbt

paracompact
second countable —» D-completely ——————» D-complete ——— inverse limit_of

developable regular developable T;-spdces
Lindelof /

D-paracompact
Diagram 1l

rarely present (counter-)examples witnessing that certain implications are not
valid. In most cases the latter is quite obvious in view of the validity of other
implications. For simplicity all spaces occurring in the diagrams are assumed
to be at least T,-spaces.

Notation

Throughout this paper no separation axioms are assumed unless explicitly
stated. According to this convention compact spaces, paracompact spaces,
normal spaces, completely regular spaces, and regular spaces are not neces-
sarily T,-spaces. D-completely regular spaces are the exception of the rule.
Their definition includes the T;-axiom (see § 2). For notions from topology
which are used here without definition we refer to (Engelking [1977]).
However, the reader should always be .aware of the above convention.

Our set-theoretic notation is fairly standard and can be found, e.g., in
(Kunen [1980]). An ordinal (number) is the set of all ordinals which precede it.
Thus ae f and « < f are the same. A cardinal (number) is an initial ordinal, i.e.
an ordinal which cannot be mapped bijectively onto any smaller ordinal; w is
the smallest infinite cardinal, while w, denotes the smallest uncountable
cardinal. If x is a cardinal, % * is its successor cardinal, whereas %+ 1 = {x}ux
denotes its successor ordinal. Whenever an ordinal is considered as a topologi-
cal space without specific mention of a topology, it is assumed that it carries
the topology induced by the natural well-order. Thus, 2 is the discrete space
{0, 1}, w is the discrete space {0, 1,2,...}, and w+1 is the one-point
compactification of w, etc. '

The following symbols will be used frequently:

1X| cardinality of X;

2(X) power set of X

(X7 the set of all subsets of X of cardinality x;

[X]1%* the set of all subsets of X of cardinality < x;

[X]®* the set of all subsets of X of cardinality < x;

Xy the set of all mappings from X into Y.
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If the set of real numbers is considered as a topological space, it will
always carry the Euclidean topology. A family or collection of sets will be
denoted, for example, by 4, or by (Ui, but also by (U(i))ier. If % = (U )t is
a family of subsets of X, we will rarely distinguish between (U)),s and
{U;liel}. Thus U e% usually means that there exists an i€ ] such that U = U,.
%« is a cover of X, if ( J{U|Ue%} = X.

If Xisaset,xeX, A c X, and % and ¥ are families of subsets of X, then

¥ refines % (or ¥ is a refinement of ¥) if | J{V|Vev}=|J{U|Ue%},
and for each Ve  there is some Ue% with V< U;

UNY ={UnV|Ue, Vev};
St(d, %) = | J{Ue# | AnU + B};
St(x, #) = J{Ue¥|xeU};
ord(x, %) =|{Ue%|xeU}|.

Finally, all classes of topological spaces are assumed to be homeomor-
phism-closed, i.e. they contain every homeomorphic copy of its members.

§ 1. The spaces D and D,

For every nonempty class E of topological spaces there exists a smallest
class EH(E) of topological spaces which contains E and is closed with respect
to the formation of arbitrary products and subspaces. EH(E) is called the
epireflective hull of E. It consists of all E-completely regular spaces, i.e. of those
spaces which can be embedded into products of spaces belonging to E. Thus, if
M is the class of metrizable spaces, a topological space is M-completely regular
if and only if it is a completely regular T;-space.(?)

The investigation of D-completely regular spaces, where D is the class of
developable T;-spaces, was initiated in (Brandenburg [1978])(?). At that time
we did not expect that there might exist a nice developable T,-space which
could serve as an analogue, for the theory of D-completely regular spaces, of
the real line. However, in [1980] A. Mysior pointed out that the class of
D-completely regular spaces is simple, i.e. that there exists a single developable
T,-space X such that EH({X}) = EH(D). Shortly later, N. C. Heldermann
[1980] found an ingenious construction of a second countable developable
T,-space generating all D-completely regular spaces. This contruction was
simplified in (Chaber [1983a]) and, in a different way, in (Brandenburg

(}) For more on epireflective hulls see (Herrlich [1968], [1971], [1983]).
() In (Brandenburg [1978]) we have called these spaces D-regular. This term will now be
used for a more general class of spaces (sce 2.14).
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[1983]). The space D, which we are going to define now is a modiﬁcation.of
the latter construction. In this section we will present its basic properties

following (Brandenburg [1983]). .
Let (0) be the unique mapping from 1 onto 0ew and consider

§ = {O}o U e\ oDI0 <k < ).

The elements of S will be denoted by (n,, ..., n,—,). For each (ng,...,n~1)€S
let Png....me- 1) @ — o be the projection, i.€. Piag,....m - 1) (x) = x(ng, ..., m—1) for
each x e Sw. Moreover, for each n < w let ne 5w be the constant mapping which

maps § onto {n} < @. Inductively define subsets A(n,,...,n-1) of Sw as
follows:
If k=1, set

Ang) = {{9}1 if'no =9,
Py [{0,....n}NA(0) if ny > 0.
If k>1 and A(ng,...,n.-,) is already defined, set
Alng,....m-y) = P(;ol....,m,_z)[{oa---, nk—l}]\(A(O)UA(no» ceey "k—z))-

Take o = {A(ng,...,m-1)|(Ng, ..., m—1)ES} as a subbase for the closed sets
of a topology on Sw and call the resulting space D.

1.1. THEOREM. D is a developable space of weight w.

Proof. For each (ng,...,m—;)e|J{@\{0})|0 < k <w} consider the
open cover ¥ . ...y Of D defined by

V(Ilo ..... K- 1)
_ ({D\A(0), D\A(n,)} if k=1,
B {{D\A(O)! D\A(n09---1nh—2)} A {D\A(no,--'ynk—2)7 D\A(HO)'--: nk—l)}

if k>1.

If o: o= J{*@\{0})|0 < k < w} is a bijection, then it is easily seen that
(#%,)n<e 1s a development of D, where %, = ¥,q), and ¥, =WUp_ 1 AV o)
whenever 0 < n < w. Obviously, w(D)=w. =

Now let n: D— D, be the T-reflection of D, ie. D, is the quotient space
obtained from D by identifying all points which have the same neighborhoods
in D and = is the corresponding quotient mapping. Then D, is a T,-space of
weight w which is also developable (see Worrell, Jr. [1965] for a more general
result). The following somewhat technical lemma is our main tool for
constructing continuous mappings into D respectively D,.

1.2. LeMMA. Let X be a topological space and consider the set &(X) of all
mappings E: S—{A c X|A closed} satisfying

(El) X\EQ)=|{EM)I0<n<w}, and X\(E(QO)UE(n,,...,n_,)) =
U{E(ng, ..., m—1, n)|0 < n < w} whenever (ng,...,n,_)eS\{(0)};
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(E.2) E(n)c E(n+1) and E(ny,...,m—, 1) < E(ng,...,m -y, n+1) when-
ever 0 <n < w and (ny,...,n,-1)€S\{(0)}. For each E€ &(X) let fz: X = D be
defined by x> fg(x), where fg(x) =0€D whenever xe E(0), and

Je(X)ng, ... M- q)
min{0 < n < w|xeE(n)} if (ngy...,m—y)=1(0),
0 ¥ (ng,....m—1) # (0)
= and xeE(ng,...,n—,),
min{0 <n < w|xeE(ny,...,m-1,n)} if (ng,...,m—,) #(0)
and x¢E(ng,...,m_y),

whenever xe X\E(0) and (ng,...,n,-,)€S. Then the following holds:
() f& '[A(ng, ..., n—1)] = E(ng,...,m,) for each E € &(X) and for each
(ngs...,m—q)€S.
(i) The correspondence E\—{g defines an injective mapping from &(X) into
C(X, D) = {fe*D|f continuous).
(iii) The correspondence Evnofy defines a surjective mapping from &(X)
onto C(X, D,)= {fe*D,|f continuous).

Proof. (i) Consider an arbitrary Ee &(X). We proceed by induction.

Ifk = 1, then xefz ' [A(0)] if and only if fz(x) = O D. From the definition
of f we see that the latter condition is equivalent to xe E(0). Similarly, if
ng > 0, then xefy '[A(n,)] if and only if xe X\E(0) and fz(x)(0)e{1,...,n,},
which is equivalent to xe E(n,) (bécause of (E.1) and (E.2)).

If k>1 and the claim is true for all (ny,...,m_;)eS, then xe
fe '[A(ng,...,m—,)] implies that xeX\E(0) and fg(xMng,--.,Mm-3)
€{0,...,m—~,}. More precisely, it cannot happen that fz(x)(n,,...,n-2) =0,
for otherwise we would have xeE(ny,...,m-3) =fr '[A(ng;...,m-2)], ie.
Je(x)eA(ng,....,m—_3)nA(ng,...,m—;), which is impossible.  Hence
JeX)(ng,...,m—2)e{l,...,n_,}, which shows that xe E(n,...,n-,) (because
of (E.2). Consequently fz '[A(ng,...,m—1)] < E(ng,...,m—,). In order to
prove the reverse inclusion, note that if xe E(n,, ..., n-,), then xe X\E(0) and
Se(X)(ngs ..., m-3)€{0,...,m_}. Moreover, fe(x)(ng, ..., m—3)¢ A(ng, ..., m_3)
for otherwise xefg '[A(ng,-..,m-2)] = E(ng,...,m—,) which is impossible
(because of (E.1)). Hence xefs '[A(ng,...,Mm-1)] and therefore E(ny,...
e Mhe) € S5 [A(gs ., M),

(ii) That fye C(X, D) for each Ee £(X) is an immediate consequence of (i).
If D, Eec£(X) are distinct, then D(n,,...,m—,) # E(ng,...,n-,) for some
(ng,---,M-1)€S. Without loss of generality we may assume that there is an
xeD(ng,...,m - )\E(ng,...,m—;). But then fi(x){(ng,...,m-,})=0 while
Je(x)ng,...,m-1) > 0. Hence f, and f; are also distinct.

(ii1) Consider an arbitrary fe C(X, D,). Since the Ty-reflection n: D—- D,
is a closed mapping, we obtain an Eed(X) by defining E(ng,...,m—;)
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=f"[n[A(ny,...,m-1)]] for each (ng, ..., )€S. We claim that mofy =f.
Indeed, if nofg # f there would exist an xeX such that mofg(x) # f (x). Since
& is a subbase for the closed sets of D, this would imply that
fx)en[A(ng,...,m-1)] but nofg(x)¢n[A(ny,...,m-1)] for some
A(ng, ..., m— )€, ie. that simultaneously

xef n[Amo,...,m—1)]] = E(ngs..., m—1)
and
x¢fe '[A(ng, ..., m—1)] = E(Mgs...sMx—1). ®
As a first application of this technique we can now relate two of the basic
notions introduced in (Brandenburg [1978]) to the spaces D and D,.

1.3. DEFINITION. A collection @ of closed subsets of a topological space
X is called a Gj-collection, if for every B in 4 there exists a sequence (B,), <, in
# such that X\B = (J{B,|n < w}. A subset of X is said to be D-closed, if it
belongs to some G;-collection in X. Complements of D-closed sets are called
D-open.

The equivalence of (i) and (iv) in the following proposition was proved
(implicitly) in (Brandenburg [1978]), while the equivalence of (i) and (iii) is
essentially due to N. C. Heldermann [1980].

1.4. PROPOSITION. For a subset B of a topological space X the following
conditions are equivalent:

(i) B is D-closed.

(i) B= g '[A(0)] for some continuous mapping g from X into D.

(iii) There exists a continuous mapping f from X into D, such that
B=f'[{n(O)}].

(iv) There exist a continuous mapping f from X into some developable space
Y and a closed subset A of Y such that B = f'[A].

Proof (i) implies (ii): If B is D-closed, then we may assume without loss of
generality that B belongs to a (countable) G,-collection & which is closed with
respect to the formation of finite unions (Brandenburg [1978], 3.1.17).
Therefore, for each (ny,...,n,_,)€S we can define a set E(ng,...,n,_ )€ as
follows.

If k=1, set

B if np=0
E(ng) = 0= =
(o) {U{B,Jngno} if ny > 0,
where (B,),<, is a sequence in # satisfying X\B = | J{B,|n < w}.
If k>1 and for each (ny,...,m_;)€S, E(ny,...,m_,)e® is already

defined, choose a sequence (E(ny,...,M—3),)a<e in & such that X\(E(O)u
VE(ng,...,m—2) = | {E(ng, ..., m—2), |7 < ®} and set

E("o,'--a"n—1)=U{E("o: M=)y |n <y 1}
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Since the so-defined mapping E from § into the closed sets of X belongs to
&(X), the induced mapping f; from X into D (1.2) is continuous and
B = E(0) = fg '[4(0)].

Clearly, (ii) implies (iii), for if B = g~ ! [4(0)] for some continuous mapping
g from X into D, then f = nog is a continuous mapping from X into D, such
that B =f~'[{b}], where b = n(0).

Obviously, (iii) implies (iv). If f is a continuous mapping from X into
a developable space Y such that B = f~![A4] for some closed subset A of Y,
then # = {f "'[C]|C = Yclosed} is a G,-collection in X containing B, which
proves that (iv) implies (i). m

We can now prove the main results of this section.

1.5. THEOREM (Brandenburg [1983]). If A is a D-closed subset of a topologi-

cal space X and f: A— D is continuous, then there exists a continuous mapping
g: X —»D such that g(x)ecl{f(x)} whenever xeA.

Proof. Let # be a Gj-collection in X containing A. By virtue of
(Brandenburg [1978], 3.1.17) we may assume that % is closed with respect to
finite unions. Therefore we can define a closed set B(n,,...,n;_) < X\A for
each (ng,...,m-)eS\{(0)} as follows.

If k=1, choose a sequence (B(n)p<s<o in 4% such that X\A
= U{B(n)IO <n < w} and B(n) c B(n+1) whenever 0 <n<w. If k> 1 and
B(ng, ...,n_;)e B is already defined, let (B(n, ..., M —2, N))o<n<a bE a sequen-
ce in # such that

X\(B(ng, ..., m_3)ud) = J{Bng,...,m—-2,m)|0 <n<w} and
B(ng,...,m_3, n) < B(ng,...,m_,, n+1) whenever 0 <n < w.

With the help of these sets we define, for each (ng,...,n,-;)€S, another
closed subset E(ng,...,n;—1) of X by

E(ng,...,m—y)
_ {f‘l[A(O)] if (ng,....,m-1)=(0),
fﬁl[A("o:~~-:"k—1)]UB("o,~-,nk—l) if (ng,...om~1) #(0).

Since it is easily seen that the so-defined mapping E from § into the closed
subsets of X belongs to #(X), the induced mapping f from X into D (see 1.2) is
continuous. Suppose that there exists an x e A4 such that f(x)¢cl{f(x)}. Since
&/ is a subbase for the closed sets of D, there must be an A(n,,...,n— )€
such that f(x)e A(ny, ..., - 1) and fg(x) ¢ A(ng, ..., n—1). On the other hand it
follows from 1.2 (i) that

xef T [Ang,....0-1)] = E(ng, ..., m—1) = f5 ' [A(ng, ..., - 1)1,

ie. fg(x)eA(ny,...,m-;) — a contradiction! Hence fz(x)ecl{f(x)} for each
xe A, which completes the proof. u
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Let us say that a subset 4 of a topological space X is D-embedded in X, if
every continuous mapping from A4 into D, is the restriction of a continuous
mapping from X into D,. The preceding theorem implies:

1.6. COROLLARY. Every D-closed subset of a topological space is
D-embedded.

Proof If A is a D-closed subset of a topological space X and f is
a continuous mapping from A into D,, then there is an Ee&(A) such that
nofy = f(1.2 (iii)). By virtue of Theorem 1.5 there exists a continuous mapping
g from X into D such that g(x)ecl{fgz(x)} for each xeA. Since mog is
a continuous mapping such that nog [ A4 =, the proof is complete. =

1.7. Remarks. (a) It is well known that a subset B of a topological space
X is a zero-set if and only if there exist a continuous mapping f from X into
some metrizable topological space Y and a closed subset 4 of Y such that
B = f"![A]. Therefore, Proposition 1.4 shows that D-closed sets are the
proper analogue of zero-sets for the theory of developable spaces. From this
point of view it is somewhat surprising that Corollary 1.6. holds, for the
corresponding statement concerning zero-sets is known to be false (ie.
not every zero-set is C-embedded; see (Gillman and Jerison [1960],
Example 3 K)).

(b) In view of the simple internal characterization of D-closed sets given by
1.3 and 1.4, it is quite natural to ask for a similar characterization of zero-sets.
It turns out that such a characterization was already proved in [1958] by J.
Kerstan. Let us call a collection # of closed subsets of a topological space
X a strong G,-collection, if for every B in 4 there exist two sequences (A,)y <
and (B,),<, such that X\B = J{X\4,|n < w} and X\4, c B, < X\B for
each n < w. Obviously, every strong G;-collection is a Gy-collection (1.3).
Kerstan proved that a subset of a topological space is a zero-set if and only if it
belongs to some strong Gs-collection. Unfortunately this nice result is little
known. Quite recently an internal characterization of completely regular
T,-spaces was rediscovered by G. Reynolds [1979], which is an immediate
consequence of Kerstan’s theorem. One reason, why this theorem is not widely
known, might be its lengthy proof in (Kerstan [1958]). Therefore the following
short proof (due to Brandenburg and Mysior [1984a]) may be of some
interest.

Note first that the collection of all zero-sets of a topological space is
a strong Gg-collection. Conversely, if a subset B of a topological space
X belongs to a strong G,-collection & in X, one may assume without loss of
generality that 4 is countable. Let X, be the topological space obtained by
supplying X with the topology generated by # as a subbase for the closed sets.
Since # is a strong Gs-collection, X, is regular but not necessarily T;.
However, identifying points in X 4 which have equal closures yields a second
countable regular T;-space Y. If f: X, — Y denotes the corresponding quotient
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map and A =f[B], then f: X—>Y is continuous, A is closed in Y, and
B = f71[A4]. By virtue of the Urysohn metrization theorem, Y is metrizable.
Therefore A, being a closed subset of a metrizable space, is a zero-set.
Consequently B is a zero-set in X.
(c) The spaces D and D, are not compact. In fact, (n[A(n, 1)])o<n<w IS
a centered family of closed subsets of D, which has an empty intersection.
(d) Both spaces, D and D,, have cardinality 2°. =

§ 2. D-Completely regular spaces

Recall from § 1 that a topological space is D-completely regular if and only
if it can be embedded into a product of developable T;-spaces. In (Brandenburg
[1978]) we have used the theory of nearness spaces (Herrlich [1974]) as the
main tool for proving some interesting characterizations of these spaces. Here
we choose a different approach, based on the results of § 1, which yields in
particular that the class of D-completely regular spaces is simply generated by
the space D,. In order to formulate the first main theorem we need some
notions from the theory of generalized metric spaces.

2.1. DEFINITION. A topological space X is called

(i) a o-space (Okuyama [1967]) if it has a g-closure preserving closed
network.

(ii) semi-metrizable if there exists a distance function d: X x X — R such
that d(x, y) =0, d(x, y)=0 if and only if x =y, d(x, y) =d(y, x) for all
x,yeX, and clA={xeX|d(x, A)=0} for each A c X, where d(x, A)
= inf{d(x, a)|ae A}.

(iii) semi-stratifiable (Creede [1970]) if for each open set U in X there
exists a sequence (U,),<, Of closed sets such that U = | J{U,|n < w} and
U,c V, whenever Uc V and n <.

(iv) perfect (e.g. Heath and Michael [1971]) if every open subset is an
F3-set.

The relationships between these classes of spaces are summarized in the
following diagram.(*) For simplicity all spaces are assumed to be T;-spaces.

developable ———— = d-space

semi-metrizable ———» semi-stratifichle ——»perfect

Let us call a (sub)base for the closed sets of a topological space
a G;-(sub)base if it is a G,-collection in the sense of 1.3. In (Brandenburg [1978])
we have shown that conditions (i)~(vii) in the following theorem are equivalent.

(*) For more on generalized metric spaces see (Gruenhage [19847).
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The equivalences (viii) and (ix) are essentially due to N. C. Heldermann [1980].
Note, however, that he used a slightly different space D; and that (viii) is
somewhat stronger than in his theorem.

2.2. THeOREM. For a T,-space X the following conditions are equivalent.
(i) X is D-completely regular.
(i) X can be embedded into a product of T, o-spaces.
(iii) X can be embedded into a product of semi-metrizable spaces.
(iv) X can be embedded into a product of semi-stratifiable T, -spaces.
(v) X can be embedded into a product of perfect T;-spaces.
(vi) The D-open subsets of X form a base for the topology of X.
(vii) X has a G,(sub)base for the closed sets.
(viii) For every closed set A in X, for every point xe X\A and for every pair
a, b of distinct points in D, there exists a continuous mapping f from X into D
such that f[A] = {a} and f(x) = b. ‘
(ix) X can be embedded into *D,, where » = w(X) and *D, carries the
natural product topology.

Proof. The implications

(i) ——ii}

{lii) ——— {iv) ——{v]

follow immediately from the preceding diagram. In order to prove that (v)
implies (vi) note first that every closed subset of a perfect space is D-closed, for
the colléction of all closed subsets of a perfect space is a G,-collection (1.3). In
view of this observation it is not difficult to show that the collection of all
D-open subsets of a subspace of a product of perfect spaces forms a base for the
open sets.

Obviously, (vi) implies (vii). If a space has a G,-subbase for the closed sets,
then it also has a G,-base (Brandenburg [1978], 3.1.17). Therefore, in order to
verify that (vii) implies (viii) we may assume that there is a G,-base 4 for the
closed sets of X. Thus, if A is a closed set in X and x e X\ A4, there exists a Be #
such that A < B and xeX\B. Moreover, there is a Ce4 such that
xeCc X\B. If a, b are distinct points in D,, we can define a continuous
mapping g: BuC— D, such that g[B] < {a} and g[C] < {b}. By virtue of
Corollary 1.6 there exists a continuous mapping f from X into D, such that
J N (BuC) = g. Clearly, f has the desired properties. To show that (viii) implies
(ix) is a matter of routine. Since (i) is formally weaker than (ix), the proof is
complete. m

A topological space X is said to be a universal space for the class E of
topological spaces, if X €E, and every space from E can be embedded into X.
The following corollary shows that “D, is a universal space for the class of
second countable developable T;-spaces.
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2.3. CoROLLARY (Brandenburg [1983]). For a T,-space X the following
conditions are equivalent:

(i) X has a countable G,-(sub)base for the closed sets.

(i) X can be embedded into “D,.

(iti) X is a second countable developable space. w

Let us mention some facts which indicate that the behaviour of developab-
le Hausdorff spaces is essentially different.

2.4. THEOREM (i) (Mysior [1987]). There is no universal space for the class of
developable Hausdorff spaces of weight w.

(ii) (van Douwen [1979]). There is no universal space for the class of
separable developable Hausdorff spaces.

(iii) (van Douwen [1979]). There is no universal space for the class of
separable Moore spaces. m

On the other hand it is well known that for every infinite cardinal x there
exists a unjversal space for the class of metrizable spaces of weight » (Kowalsky
[1957]). Hence the following question arises which is well-known among
people working in generalized metric ‘spaces.

PROBLEM A, Let x > @ be a cardinal. Does there exist a developable
T,-space D(x) of weight x such that every developable T;-space of weight » can
be embedded into D(x)?

Quite recently J. Chaber has answered the corresponding question
concerning metacompact developable T;-spaces in the affirmative.

2.5. THEOREM (Chaber [1983a], [1984a]). (i) For every cardinal x 2 w there
exists a universal space for the class of metacompact developable T,-spaces of
weight .

(ii) For every cardinal x > w there exists a single orthocompact(*) developa-
ble T,-space of weight 2* which contains a copy of every orthocompact
developable T,-space of weight x. u

Since completely regular T,-spaces are characterized externally as

— (up to homeomorphism) the subspaces of compact Hausdorfl spaces
(Tikhonov [1930]) and

— the T,-spaces which are uniformizable (Weil [1938]),
it is quite natural to wonder whether D-complete regularity can be charac-
terized in a similar way. Of course, in order to get satisfactory answers one first
has to find suitable generalizations of compact Hausdorff spaces respectively
uniform spaces. Ih this context the following notion turns out to be useful.

() A topological space is called orthocompact, if every open cover has an interior-preserving
open refinement, where a collection % pen_sets is interior-preserving, if ﬂ{Ul Ue#'} is open
for each %' c %. B U
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2.6. DEFINITION. A topological space is called D-compact if every open
cover has a finite refinement consisting of open F_-sets.

Evidently, every compact Hausdorff space is D-compact. The co-finite
topology on o yields an example of a D-compact T;-space which is not
HausdorfT, while the co-finite topology on w, defines a compact T, -space which
is not D-compact.

Whenever # is an open cover of a D-completely regular space X, one can
find, for each xe X, an open F,-set V, and a U _e% such that xeV, c U,
(2.2(vi)). If additionally X is assumed to be compact, there exists an 4 e[X]<°
such that X = | J{V,|xe A}. This simple observation proves that (ii) implies (i)
in the following proposition. The converse implication will be established
in 4.3.

2.7. PROPOSITION. For a T,-space X the following conditions are equivalent:

(i) X is D-compact.

(i) X is compact and D-completely regular. m

Using this proposition, we can now prove what might be called the
analogue, for D-complete regularity, of Tikhonov’s characterization of comp-
letely regular T,-spaces.

2.8. THEOREM. For a topological space X the following conditions are
equivalent.

(i) X is D-completely regular.

(ii) X is homeomorphic to a subspace of a D-compact T,-space.

Proof. Because of 2.7 it suffices to show that (i) implies (i), We claim that
the following holds.

A.  Every developable T;-space of weight w can be embedded as a dense
subspace into a compact developable T,-space.

Once we have proved Claim A, we may argue as follows. If X is
D-completely regular, there is some cardinal 3 such that X can be embedded
into *D, (2.2.(ix)). By virtue of A, D, has a developable T,-compactification
aD,. Hence X is homeomorphic to a subspace of the D-compact space *(aD,).

For the proof of Claim A consider an arbitrary developable T,-space Y of
weight o and let # be a countable G,-base for the closed sets of Y (2.3).
Moreover, let aY be the Wallman—Frink-compactification of Y with respect to
4, ie. aY is the set of all #-ultrafilters (see 7.3) supplied with the topology
which has the collection #* = {B*|Be %} as a base for the closed sets, where
B*={FeaY|BeF}. Since aY is a compact T,-space, #* is countable, and
the correspondence y—% , = {Be 4|y B} defines an embedding from Y into
aY(e.g. see Steiner [1968]), it suffices to show that aYis D-compact, for then the
developability of aY follows from 2.7 and 2.3. But in order to prove that aYis
D-compact it is enough to note that aY\B* = | J{4*|4e B, AnB =@} isan
F,-set in oY for each Be%. n
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As a consequence of the preceding theorem every D-completely regular
space has a T; D-compactification. We will see later (7.15) that certain
D-completely regular spaces (including all countably compact D-completely
regular spaces) have a D-compactification with a universal property similar to
the Cech-Stone compactification.

Let us now explain the important .relationship between D-complete
regularity and the theory of nearness spaces.

2.9. DeFINITION. Let 4 be a non-empty collection of covers of a set X,
(i) For each subset 4 of X,

int,A = {xeA|St(x, %) = A for some % e u}
is called the interior of A with respect to p.

(ii) (Herrlich [1974]). The pair (X, y) is called a nearness space (and p is
a nearness structure on X) if the following conditions are satisfied:

(N.1) If %eu and % refines ¥, then ¥ ep.
(N2) If % ¥ ey, then % A ¥ ep.
(N.3)  If #ep, then int, % = {int, U|Ue%}ep.

Any subcollection f# of a nearness structure u on X with the property that
for each ¥ eu there is a % € which refines ¥~ is called a base of p. It is
a subbase of p if the collection of all covers of the form #y A A%,-y, n < w,
%€ B, forms a base of . Since arbitrary nearness spaces are too general for our
purpose, we have to impose some suitable restrictions.

2.10. DErFINITION (Brandenburg [1978]). (i) A non-empty collection B of
covers of a set X is called kernel-normal if for each % € 8 there is a ¥" € f which
refines int,% = {int,U|Ue%}.

(ii) A nearness space (X, u) is said to be para-uniform if for each % ey
there exists a countable kernel-normal subcollection f, of u such that
U € By

Clearly, every uniform (nearness) space (Herrlich [1974]) is para-uniform,
for it is easily seen that every normal cover in the sense of J. W. Tukey [1940] is
kernel-normal. The collection of all covers of w which are open with respect to
the co-finite topology on w forms a base for a para-uniform nearness structure
on « which is not uniform. Since every nearness structure u on a set X induces
a topology 7, = {U < X |int, U = U}, it is natural to ask for a characterization
of those topological spaces (X, t) which are para-uniformizable, i.e. for which
there is a para-uniform nearness structure 4 on X such that t, = 7. It turns out
that a T)-space is para-uniformizable if and only if it is D-completely regular.
For a proof of this fact we need the following basic observation concerning
kernel-normal open covers of a topological space.
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2.11. LeMMa (Brandenburg [1978], [1981]). For an open cover % = (U )y
of a topological space (X, t) the following conditions are equivalent:

() % is kernel-normal, which by definition means that there is a countable
kernel-normal collection B of open covers of X such that %ep.

(i) There exists a developable topology v <t and a t'-open cover
¥ = (Vs of X such that V,c U, for each i€l

Proof. (i) implies (ii): Assume that % is kernel-normal. Then there exists
a countable kernel-normal collection f of open covers of X such that % €p.
Denote by p the collection consisting of all open covers of the form
UgA AH,—,, where {%,,...,U,—,}€[B]1"°. Tt is easy to see that
7 ={U c X|int,U = U} is a topology on X such that v" < =. We claim that
(X, v") is developable. To prove this assertion it suffices to verify:

A. For each # ep the collection int,5# is a 7-open cover of X.

Indeed, since 4 is countable, A implies that {int, #’| # € p} is a develop-
ment of (X, 7).

In order to verify Claim A consider an arbitrary # ep. There exist
Ug,...,Un— 1€ such that # =%, A AU, . At first We show that int, #
is a cover of X. Since p is kernel-normal, int;%; is a cover of X for each i <n.
Thus, given an arbitrary point x € X, there exist Uy,e%,,...,U,-; €%,-, such
that xeint,Uyn...nint,U,-,. For each i<n there is a #7,ef such
that St(x, #°) < U, Hence St(x, ¥ oA AW,.1))cUgn...aU,_,, ie
xeint, H where H = Uyn...nU,_, € #. Next we prove that for each H e #,
int,H is 7-open, ie. that int,H cint,(int,H). To this end consider an
arbitrary H € # and a point x eint, H. There exist &, ..., 8-, € such that
St(x, g A ... AE-)) = H. Since B is kernel-normal, there is an #,ef
for each i<k such that #, refines int,8, We claim that
Stlx, FoA....AF ) cint H. In fact, if zeSt(x, FoA A F,_,), there
exist Ege &g, ..., Ex- €8, — such that x, zeintpEon...r\intﬂE,‘_l. For each
i < k there is a %;ef such that St(z, 4,) < E, Now

Stz, 9o A AG-)Egn...nE_,cSt(x, 8o A A1) H,

which proves that zeint, H. Hence we have shown that St(x, # ;A A #F;_))
< int, H, ie, xeint,(int, H), which completes the proof of Claim A.

For each ie I define now V, = int, U,. Since % belongs to , A implies that
(V)ier is a t"-open cover with the desired property.

(i) implies (i): Assume that there is a developable topology ' = 1 and
a v-open cover ¥~ of X which refines %. If (¥",),<. is a development of (X, 7'),
then f = {#} {7 ,|n < w} is a countable kernel-normal collection of T-open
covers of X containing %, ie. % is kernel-normal. m

Our second lemma on kernel-normal open covers will be applied in
Sections 4 and 5.
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2.12. LEMMA (Brandenburg [1978], [1981]). If u is a non-empty collection of
open covers of a topological 3pace X such that

(i) % A ¥ eu whenever % ey and ¥V ey,

(i1) for each % €y there is a sequence fi = (¥,)o<n<w in p containing a U,
such that int,%, refines U,
then every % ey is kernel-normal.

Proof. Consider an arbitrary # eu. For technical reasons define
% o.m = {X} whenever 0 < n < . Using complete induction and conditions (i)
and (ii) it is easy to construct an open cover %y ,cp, 0<k <, and
a sequence B(k) = (¥ y.mn>x in u such that

(a) QY = ql(l.l) and %(R.k) = %(k—'l.k) for each k > 1;
(b) ¥ i+, refines intgu, ¥y xy whenever 0 < k < w;
(c) U,y refines %y, whenever 0 <k <w and n>k.

We set & = (#yuo<k<o and claim that ¢ is kernel-normal. To prove this
assertion note first that intsy, A < int, A whenever A = X and 0 < k < . For if
x€intgyy A, there exists an n > k such that St(x, #,) = A. Condition (c)
implies that

St(xg qy(n.n)) < St(x) %(n— l.n)) c < St(x, %(k.n))'

Therefore x € int, A. In particular, it follows that intsg, % i) refines int % x, for
all k such that 0 < k < w. By virtue of (a) and (b) g + 1 x+1) = Xk +1) refines
intgg ¥y Hence #yyyk+1y refines int, %, whenever 0 < k < w, which
proves that & is kernel-normal. Since # €&, the proof is complete. u

We can now prove the characterization of para-uniformizable topological
spaces which actually was our starting-point for the investigation of
D-completely regular spaces in (Brandenburg [1978]). The equivalence (ii) was
added by N. C. Heldermann in [1980]. The equivalence (iii) is new and will
turn out to be important later (see 7.6).

2.13. THEOREM. For a topological space X = (X, 1) the following conditions
are equivalent:

(i) X has a G,(sub)base for the closed sets.

(i) For each closed set A in X and for each xeX\A there exists
a continuous mapping f from X into D such that f(x)¢clf[A].

(i) The collection of all countable kernel-normal open covers of X is a base
Jor a para-uniform nearness structure p, on X satisfying Ty =T

(iv) The collection of all kernel-normal open covers of X is a base for
a para-uniform nearness structure y, on X satisfying t, = 7.(%)

(v) X is para-uniformizable.

Prool. (i) implies (ii): Let & be a G,-base for the closed sets of X. We may
assume that & is closed with respect to finite unions (Brandenburg [1978],

(°) Note that u | is the finest among all para-uniform nearness structures on X which induce 7.
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3.1.17). If A is a closed set in X and x e X\A, there exist B, Ce # such that
AcB and xeCc X\B. Hence, if b, ¢ are points in D such that
cl {b}ncl{c} = @, we can define a continuous mapping g from Bu C into D in
such a way that g[B] < {b} and g[C] < {c}. Since BUC is D-closed, there
exists a continuous mapping f from X into D such that f (z) ecl {g(z)} whenever
ze BuUC (1.5). In particular, f(x)¢clf [A].

(i) implies (iii): It is easily seen that

Lo ={¥|¥ is a cover of X which is refined by some countable ker-

nel-normal open cover of X}

satisfies conditions (N.1) and (N.2) for a nearness structure on X (see 2.9(ii)). In
order to prove that it also satisfies (N.3) consider an arbitrary ¥" € u,. Let % be
a countable kernel-normal open cover of X such that % refines ¥". By virtue of
2.11 there exist a developable topology " — t and a 7"-open cover # = (Wy)yen
of X such that W, c U for each Ue%. For each Ue# let f, be a continuous
mapping from (X, ') into D such that X\W, = f ~1[4(0)] (1.4(ii)). Since % is
countable, the initial topology 7" on X with respect to (fy: (X, t') = D)yeq is
developable and second countable. We will show that # ey, refines
{int, U|Ue%}, which immediately implies that {int, V|Ve¥"} belongs to
Uy To this end consider a Ue# and a point xe W, Since (X, t") is
developable and second countable, there is a 7"-open cover 4 such that
St(x, 9) =« Wy < U. Since Fep,, it follows that xeint, U, ie. that
Wy cint, U for each Ue%, which completes the verification of (N.3).

Evidently, 7, <1 For the proof of the reverse inclusion consider an
arbitrary Bet and a point x e B. By virtue of (ii) there exists a continuous
mapping f from X into D such that f(x)e D\clf [X\B]. If 7, = 7 is the initial
topology on X with respect to f; we can find a countable t,-open cover 3# of
X such that St(x, #) c B. Since # € u,, it follows that xeint, B, ie. that
B =int, B. Consequently, Bert, ,ie. 1, =T

Since an obvious modification of the argument used to verify that u,
satisfies (N.3) shows that (X, u ) is para-uniform, the proof of this implication
is complete.

It is easily seen that (iii) implies (iv). Therefore it only remains to verify that
(v) implies (i). To this end consider a para-uniform nearness structure u on
X such that t, = 7. For every ¥ epu let £(7") be a countable kernel-normal
subcollection of x containing ¥~ Note that every £(¥) is a subbase for
a nearness structure p(¥") < u on X. We claim that

# = {X\U|there is a ¥ ey such that int, U = U}

Tuly)

is a Gy-base for the closed sets of X.

Consider a closed subset 4 of X and a point xe X\A. There is a ¥ ey
such that St(x, ¥") = X\A. It follows that xeint,y,V < 4 for some Ve?, ie.
we have shown that # is a base for the closed sets of X. If X\U e %, where
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int,“mU = U for some ¥ €y, consider a countable base f(¥") of u(¥"). For
W e p(¥) define

U(W) = U {int“(ﬂW| WE ‘#/‘, int"(ﬂ WH(X\U) # @}v
Then {X\U(#)|# €B(¥)} is a countable subcollection of # satisfying

U={J{X\UW¥)|# eB(¥)}, which shows that & is a G,-collection and
completes the proof, m

In [1981] N. C. Heldermann has studied the following generalizations of
D-completely regular spaces.

2.14. DerFINTTION. A topological space is called weakly D-completely regular
if it has a base consisting of open F-sets. It is called D-regular if every point
has a neighborhood base of (not necessarily open) F-sets.(?)

For T,-spaces the following implications hold:

completely regular - regular

‘D-completely regular —=weakly D-completely ——» D-regular
regular

The main contribution of (Heldermann [1981]) is the conmstruction of
(somewhat involved) examples witnessing that there are no other implications
between these notions. In particular, it is shown that there are a regular
T,-space which is not weakly D-completely regular, and a regular weakly
D-completely regular T;-space which is not D-completely regular.

2.15. Remarks. (a) (Weak) D-complete regularity and D-regularity are
productive, hereditary, additive, and preserved by inverse limits. However,
none of these properties is preserved by quotients. That D-complete regularity
is not invariant with respect to. perfect mappings was recently shown by S.-H.
Sun and Y.-M. Wang [1988].

(b) Para-uniformizable topological spaces form precisely the bireflective
hull BH(D) (e.g. see Marny [1979]) of the class D of developable T,-spaces. For
a topological space X the corresponding bireflection is given by id: X — X,
where X, is the space obtained by supplying the underlying set of X with the
topology which has the collection of all D-open subsets of X as a base
(Brandenburg F1978], Heldermann [1981]).

(c) For a topological space X the epireflection corresponding to the class
of D-completely regular spaces is given by e: X — eX, where eX is the image of
X under the mapping e from X into “*P)D  which maps each xe X onto
e(x)e“X:PuD . defined by e(x)(f) = f(x) for each fe C(X, D,). Of course, both
spaces C(X, D,) and “*PID, are supposed to carry the topology of pointwise
convergence.

(") Our terminology here differs from that of (Heldermann [19817).
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(d) While the class of D-completely regular spaces is simply generated by
the space D, it is a consequence of a theorem of H. Herrlich [1965] that the
class of D-regular spaces is not simple (see also 3.2). That the class of weakly
D-completely regular spaces is not simple was shown by A. Mysior [1980].

(¢) In (Brandenburg [1988]) it is shown that a nearness space is
para-uniform if and only if it can be embedded into a product of nearness
spaces having a countable base. It is an open problem whether the Herrlich
completion (Herrlich [1974]) of a para-uniform nearness space is necessarily
para-uniform.

(D) Alternatively, Claim A in the proof of Theorem 2.8 can be verified using
(Chaber [1984a], Proposition 3.1).

(8) A T,-space is completely regular if and only if it has a strong
Gy-(sub)base (1.7(b)) for the closed sets. This little known internal charac-
terization of complete regularity due to J. Kerstan [1958] corresponds to our
2.2 (vii).

(h) Since every metrizable space can be embedded into *R for some
cardinal x, it is worth mentioning that 2.2 implies that every developable
T,-space can be embedded in *R for some cardinal x, where R denotes the reals
supplied with the co-finite topology. To verify this fact it suffices to recall that
every T,-space of cardinality < 2® can be embedded into *R for some cardinal
4 (see Engelking [1977], Problem 2.7.8(b)), and to apply 2.2. m

Recall that a T -space is called quasi-metrizable, if there exists a distance
function d: X xX =R such that d(x, )20, d(x,y) =0 if and only if
x =y, d(x, z) <d(x, y)+d(y, 2) for all x,y,zeX, and (U(x, ¢)),>, forms a
neighborhood base for each xe X, where U(x, &) = {ye X |d(x, y) < €}. In view
of 2.2(iii) the following problem arises naturally.

ProsLem B, Characterize internally the spaces belonging to the epireflec-
tive hull of the class Q of quasi-metrizable T;-spaces.

§ 3. On the epireflective hull of Moore spaces

For those topologists who are used to work with spaces which are at least
regular and T, the situation would be much nicer if results similar to those
obtained in § 1 and §2 could be proved for the spaces belonging to the
epireflective hull of the class of Moore spaces. However, in response to
a problem raised by H. Herrlich, we will show in this section that the
epireflective hull of the class of Moore spaces is not simple. Consequently, there
is little hope that for this class analogues of Theorems 2.2(vii), 2.8, and 2.13 can
be obtained. In fact, the corollary to the following theorem shows that even for
developable Hausdorff spaces the situation is essentially different from the
T -case (compare with 2.3 and 2.4). All results in this section are from the
paper (Brandenburg and Mysior [1984]).



§ 3. On the epireflective hull of Moore spaces 25

3.1. THEOREM. For every Hausdorff space Y there exists a non-trivial
metacompact Moore space on which all continuous mappings into Y are constant.

3.2. CorOLLARY. Whenever E is a class of Hausdorff spaces containing all
metacompact Moore spaces, E is not simple, i.e. there is no Hausdorff space
X such that E = EH({X}). In particular, neither the epireflective hull of the class
of developable Hausdor{f spaces nor the epireflective hull of the class of Moore
spaces is simple. m

Another consequence of Theorem 3.1 is that in the special case Y= R one
obtains a metacompact Moore space (]) on which every real-valued con-
tinuous mapping is$ constant. The first example of a Moore space which admits
only constant real-valued mappings was found by S. Armentrout [1961] based
on a non-completely regular Moore space constructed by F. B. Jones [1958].
Other examples were given by J. N, Younglove [1969] and P. Roy (cited in
Jones [1973]). Although their spaces are not metacompact they do have other
nice properties. On the other hand, we believe that the construction we are
going to present mow is simpler.

The main step in the proof of Theorem 3.1 is Lemma 3.4 below. For its
verification we use the following result of Bernstein type which seems to be
a part of the set-theoretical folklore. However, for the sake of completeness, we
include a brief argument.

3.3. LeMMA. Let A be an uncountable cardinal. If % is a family of subsets of
a set X such that |4| = A and |G| = A for each Ge ¥, then there exists a partition
Z of X such that |Z|=w and |GNZ| = A for each GE¥ and Ze Z.

Proof. For every Ge¥ there exists a partition %#; of G into 1 sets of
cardinality 1. The set # = [ {# ;|G ¥} can be written as & = {F,|y < 4}.
Using transfinite induction one can choose, for every y < A, a countable set

Z,={z,ain <0} c F\|J{Z |« < 7}.

If Z,={z,,ly <A} for each n2>1 and Z,=X\|J{Z,|1 <n<w}, then
Z ={Z,|n < w} is the desired partition of X. =

3.4. LeMMA. For every Hausdorff space Y there exists a metacompact Moore
space R containing two distinct points a, b such that f(a) =.f(b) for every
continuous mapping f from R into Y.

Proof. Let Y be an arbitrary HausdorfT space and let x be a cardinal such
that {Y|<x and x®=2" Note, for example, that the cardinal
|Y| 42714224 satisfies the hypotheses on x (see Sierpinski [1965], page
154). Moreover, let X = (X, d) be a metric space of weight » such that every

(®) Note that metacompact Moore spaces are identical with T-spaces having a uniform base
in the sense of P. S. Aleksandrov [1960].
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nonempty open subset of X has cardinality 2% e.g. the countable power of
a discrete space of cardinality » with the usual product metric. Denote by % the
collection of all subsets of X which have cardinality 2* and are intersections of
< x F,-sets in X. Since ¥ is of cardinality 2% it follows from Lemma 3.3 that
there exists a partition {Z,|ie Z} of X such that |GnZ,| = 2* for each integer
i and for each G in 9.

The space R is obtained by defining the following topology on
X x X u{a, b}, where a, b are two distinct points not contained in X x X, All
points in X x X with distinct coordinates are isolated. For a point x in Z,
a basic neighborhood system of (x, x) in R consists of all sets

U,(x, x) = {(x, 2) |26 Z, 0 Z;4,, d(x, z) < 1/n}

u{(z, x)|z€Z,0Z; .y, d(x,2) < 1/n},
where 0 < n < w. Finally, basic neighborhoods of a and b are of the form
U@ = {a} v J{U,(x, x)|1xe|J{Z;]i < —n}}

and
U,(b) = {b}u | {U,x. ¥ 1xeJ{Z;]i = n}},

respectively. Since basic neighborhoods of points from X x X are clopen in
RandclpU,; (@) < U,(a), clgU,41(b) = U o(b) whenever 0 < n < w, the space
Ris regular and T,. Moreover R is a metacompact Moore space, for the open
COVers

%, ={U.(a), U,(B)}u{U,(x, x)|xe X}

Ui{0, 2310, DeX x X\ {U,(x, x| xe X}}

are point-finite and form a development of R (see Engelking [1977], 5.4.7).

Now let f be an arbitrary continuous mapping from R into Y. To prove
‘that f(a) = f(b) it suffices to show that f(b)e V for every open neighborhood
Voff(a)in Y. To this end consider an arbitrary open set Vin Y containing f (a).
For each ye Y denote by 4(y) the set of all points xe X such that f(x, x) =
By the continuity of f there exists an integer i, such that {A(y)|ye V} covers
Z,;,. Consequently, since |V| < x and |Z; | = 2%, there must exist a y, e V such
that |A(yg)nZ, | = 2*. We claim that f (b) Yo- Note that this is proved once
we have shown that every neighborhood of b meets f ! [{y,}] which, however,
is an immediate consequence of the following claim.

A, |A(yo)NZ| =2 for every i =i,

To prove Claim A we proceed by induction. Assume i>i, and
IA(yO)nZ | = 2% To see that |A(y,)NZ; 4| = 2* it suffices to construct a set
Gin % suchthat GNZ,,, = A(y,)nZ,;4,. For this purpose we define for every
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point y in Y distinct from y, an F,-set F(y) in X containing A(y,)nZ,; and
disjoint from A(y)NZ;,,. Observe that G = [\ {F(y)|y€Y, y # y,} then has
the desired properties.

Let y be an arbitrary point in Y distinct from y,. There exists an open
neighborhood W of y, which does not contain y in its closure. For each
0<n<w denote by A, the set of all points xeA(y,)nZ; such that
SU.(x, x)] = W. Since F(y) = ){cly4,|0 <n<w} is an F,set in X con-
taining A(yo)NZ;, it only remains to prove that cly4, and A(y)nZ;, are
disjoint whenever 0 < n < w. To this end consider an arbitrary n such that
O0<n<w and a point ze A(Y)NnZ;,. Since f(z, z) does not belong to the
closure of W in Y, there exists an m = n such that f[U_(z, 2)]nW=@. It
follows that d(x, z) > 1/m for each xe A4,, for otherwise there would exist an
x€ A, such that U, (x, x)nU,,(z, z) # @ which is impossible. Hence z¢cly A4,
which completes the proof. =

Proof of Theorem 3.1. Let Y be an arbitrary Hausdorff space. Our first
aim is to construct for every Moore space M a Moore space R(M) containing
M as a closed subspace in such a way that every continuous mapping from
R(M) into Y is constant on M. Additionally R(M) will be metacompact if and
only if M is metacompact.

Let M be an arbitrary Moore space and let (¥}),<, be a development of
M such that ¥, ., refines ¥, for each n < w. The underlying set of R(M) is
{p}U(R' x M)UM, where R is the space from Lemma 3.4, R’ = R\{q, b}, and
p is a point neither contained in R'xM nor in M. For each n < w define
a cover R(7,) of R( M) as follows. Let (%,),<, be a development of R such that
%, refines 4, and %, is point-finite for each n < w. Moreover, let (U <o
and (U%),<. be sequences of open subsets of R’ such that (Uju{a}),<. and
(Ubu{b}n<o are neighborhood bases in R of a and b, respectively, and
clp Udyy c Us, clp Uby, c Ub for each n<w. Then R(¥}) consists of
{p}u(Uix M), all sets Ux{z}, where Ue#, and zeM, and all sets
R(V)=(Utx V)LV, where Ve? , One can easily check that taking
U {R(¥;)In <w} as a base yields a regular T,-space R(M) for which
(R(¥))n<w is a development. Obviously, M is contained in R(M) as a closed
subspace. For further reference we note some additional properties of R(M)
which can be easily verified.

(i) R(V)nM =V for each Ve? ;

(i) R(V)NR(W) =3 whenever ¥, We| ) {7",|n < 0} and VnW= @,

(iii) R(W) = R(V) whenever ¥, We| ) {¥",In <} and Wc V;

(iv) clranR(W) = R(V) whenever cl, W V, We ¥, Ve¥, and n<m;

(v) R(#,+,) refines R(¥}) for each n < w;

(vi) R(¥;) is point-finite if and only if ¥, is point-finite.

Note that the topology on R(M) is defined in such a way that for every ze M
there is an obvious homeomorphism from R onto the subspace
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{p}U(R’ x {z})u{z} of R(M) mapping a onto p and b onto z. Therefore
f(2) = f(p) for every. continuous mapping f from R(M) into Y, ie. every such
mapping is constant of M.

Starting with an arbitrary Moore space M, having a development (¥7°), <,
with every #;° point-finite and #;%, refining %, we can now define a
sequence My, =M, c M, c... of Moore spaces according to the rule
M., = R(M,). In the following we consider for every M, the development
(¥9,<o which is inductively obtained from (¥;)).<o by ¥¥*! = R(¥}).
Our aim is to define a topology on X = | ) {M, |k < w} which turns X into
a metacompact Moore space on which every continuous mapping into Y is
constant. For this purpose we introduce the following notation.

If Vev}* for some n, k < w, define T(V)=|J{R'(V)|i < w}, where
R°(V) = ¥, R*V) = R(V), R*(V) = R(R(V)),... It can be easily seen that for
each n <  the collection ¥, = {T(V)| Vel {¥¥|k < w}} is a cover of X.
From (v) it follows that ¥, refines ¥, for each n < . For each x € X denote
by k(x) the smallest k < w such that xe M,. The crucial property of the covers
¥, is the following:

(vii) If T(V)e¥,, and xe T(V), then there exists a We¥;** containing
x such that T (V)= T(W).

This can be easily verified using (i). As an immediate consequence ‘of (vii) one
obtains

(viii) St(x, 7;) = J{T (V)| Ve ¥}, xeV} for each xeX and n < w.

Using (ii), (iii), and (viii) it is not difficult to check that (J {7, |n < w} is

a base for a topology which turns X into a developable T;-space. Finally it
follows from (iv) that X is a Moore space which is metacompact because of (vi)
and (vii).
Now let f be an arbitrary continuous mapping from X into Y. To see that f is
constant consider two distinct points x and x’ in X. There exists a k < w such
that x and x’ are both contained in M,. Since it follows from (i) that M, ,, is
a subspace of X, the restriction of f to M, is a continuous mapping from
M4y into Y which is constant on M, because M,.; = R(M,). Hence
f(x)=f(x'), which completes the proof. m

3.5. Remarks. () A weaker notion than simplicity is that of semi-
simplicity of a class of spaces: A class A of topological spaces is called
semi-simple (e.g. see Herrlich [1983], 3.2.8) if there exists a minimal class E of
topological spaces such that A = EH(E), where minimality of E means that
EH(E\{Y}) # A for every space Yin E. In view of Corollary 3.2 one might
wonder whether the epireflective hull of the class of Moore spaces is semi-
simple. We give a brief argument which shows that it is not.

Let A be the epireflective hull of the class of Moore spaces and consider
a class E of spaces such that A = EH(E). We claim that A = EH(E\{Y}) for
each YeE. To this end consider an arbitrary Ye E. There exists a family (M );e;
of Moore spaces such that Y can be embedded into the product of this family.
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The disjoint union M of all spaces M; is a Moore space such that Ye EH({M}).
Therefore it suffices to prove that M e EH(E\{Y}). From the proof of Theorem
3.1t follows that there exists a Moore space R(M) containing M as a subspace
such that all continuous mappings from R(M) into Y are constant. It follows
that R(M)e EH(E\{Y}) and, consequently, that M e EH(E\{Y}).

(b) The proof of Theorem 3.1 is a modification of the technique which was
used by H. Herrlich [1965] to show that for every T,-space Y there exists
a non-trivial regular T,-space on which all continuous mappings into Y are
constant. However, the proof of the crucial Lemma 3.4 seems to be quite
different from previous arguments. In fact, a modification of this construction
also yields a relatively simple proof of the theorem of Herrlich [1965] and A.
Ramer [1965] that for every T,-space Y there exists a regular T,-space
R containing two distinct points a, b such that f(a) = f (b) for every continuous
mapping f from R into Y, which is the first step in the proof of the above
mentioned result of Herrlich. For a description of this modification we refer to
(Brandenburg and Mysior [1984]). u

§ 4. D-normal spaces

Given a, nonempty class E of topological spaces the normality hull N (E) of
E consists of all E-normal spaces, i.e. of those topological spaces X with the
property that for every pair 4, B of disjoint closed subsets of X there exists
a continuous mapping f from X into some space YeE such that
clf[A])nclf[B] = @. For example, il M is the class of metrizable topological
spaces, then M-normality is nothing but the usval normality. However, if
E = {2}, a topological space X is E-normal if and only if Ind(X) = 0.

Quite often it turns out to be a non-trivial task to characterize E-normal
spaces internally, for usually this requires to prove an analogue, depending on
the class E, of Urysohn’s Lemma. Fortunately, for D-normal spaces, where as
always D is the class of developable T,-spaces, we can even prove an extension
theorem corresponding to the classical Tietze extension theorem. Independent-
ly, J. Chaber [1983a] has got a similar result for his modification of
Heldermann’s space.

4.1. THEOREM (Brandenburg [1983]). Every closed G;-subset of a D-normal
space is D-embedded.

Proof. Let X be a D-normal space and consider a closed G;-set 4 in X.
By virtue of Corollary 1.6 it suffices to show that A is D-closed. For this
purpose we define inductively, for each (ng,...,m—1)€S (°), a closed G,-set
E(ng,...,m—y) of X as follows.

(®) Recall the definition of S from § 1,
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If k = 1, set E(0) = A and choose a sequence (4,)o < <o, Of closed sets such
that X\E(0) = | J {4,]0 < n < w}. Since X is D-normal, we can find for each
0<n<w a closed Gyset E(n) such that A, c E(n) = X\E(0).

If k> 1 and E(ny,...,m-,) is already defined for each (ng,...,n-2)€S
such that E(n,,...,m-,) is a closed Gyset, there exists a sequence
(E(ngs--.sM—2))o<n<w Of closed sets such that  X\E(ng,...,m—2)
= {J{E(n,,...,m-2),|0 < n < »}. By the D-normality of X again we can
find a closed Gj-set E(ng,...,n-2,n) for each 0 <n<aw such that
E(ng,...,m—2), < E(ng, ..., k-2, n) = X\E(ny, ..., n3), which completes the
induction. Obviously, {E(ng, ..., m-1)|(ng, ..., m-1)€S} is a G,-collection in
X containing A. =

We can now prove various characterizations of D-normal spaces which
show in particular that D-normality is a rather natural generalization of
normality,

4.2. THEOREM. For a topological space X the following conditions are
equivalent:

(i) X is D-normal.

(i) (Brandenburg [1986]). For every pair A, B of disjoint closed subsets of
X there exists an upper-semicontinuous mapping [ from X into [0, 1] such that
S[A1 = {0}, f[B] = {1}, and f~*[{0}] is closed in X.

(iii) (Heldermann [1980]). Whenever A = X is closed and U < X is open
such that A = U there exists an open F_-set F such that Ac F< U.

(iv) (Brandenburg [1978]). For every pair A, B of disjoint closed subsets of
X there exist disjoint closed Gs-sets F, G in X such that Ac F and Bc G.

(v) (Heldermann [1980], Brandenburg [1983]). For every pair A, B of
disjoint closed subsets of X and for every pair a, b of distinct points in D, there
exists a continuous mapping [ from X into D, such that f[A] < {a} and
f[B] < {b).

Proof. (i) implies (ii): Let 4, B be disjoint closed subsets of X. By virtue of
() there exists a continuous mapping g from X into some developable T;-space
Ysuch that clg[A]nclg[B] = &. Let (%,)n<. be a development of Ysuch that
Y+ refines %, for each n < w and define a mapping h from Yinto [0, 1] by

0 if yeclg[A4],
h(y) = {1/2""’ if ye Y\clg[A], where
n(y) = min{n < w|yeclg[B]u(Y\St(clg[4], %,))}.
If f=hog, then f[A] < {0}, f[B] = {1}, and f~'[{0}] =g '[clg[4]] is
closed in X. In order to prove that f is upper-semicontinuous consider an
arbitrary ¢ such that 0 < ¢ < 1. Since g is continuous, it suffices to show that
h~1[[0, ¢)] is open in Y. But the latter follows from the observation that

h™'[I0, )] = St(clg[A4], %ue) N (Y\clg[B]),
where n(c) = max{n < w|c < 1/2"}.
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Clearly, (ii) implies (iii), and it is easily seen that (iii) implies (iv).

In order to show that (iv) implies (v) consider two disjoint closed sets A,
B in X. By virtue of (iv) there exist disjoint closed G,-sets F, G in X such that
A < F and B < G. Therefore, if a, b are distinct points in D,, we can define
a continuous mapping g: FuG— D, such that g{F] < {a} and g[G] = {b}.
By virtue of Corollary 1.6, g has a continuous extension f/: X — D, with the
desired properties. Since (i) is formally weaker than (v), the proof is complete. m

Obviously, every developable space and every normal space is D-normal.
Moreover, from (v), respectively (iv), we obtain the following corollary which
completes the proof of Proposition 2.7.

4.3. COROLLARY. (i) Every D-compact Rg-space (%) is D-normal.
(ii) Every D-normal T,-space is D-completely regular.
(iii) Every perfect space is D-normal. w

Of course, none of these implications is reversible. An example of
a completely regular T;-space which is not D-normal will be given in 5.8.
Concerning perfect spaces we know a little bit more.

44, THEOREM. For a topological space X the following conditions are
equivalent:

() X is perfect. _

(i) (Brandenburg [1978]). Every closed subset of X is D-closed.

(i) (Heldermann [1980]). For every closed subset A of X there exists
a continuous mapping f from X into D, such that A =f"'[{n(0)}]. =

In view of 4.3(ii) one might ask what must be added to D-complete
regularity in order to get D-normality. The following theorem from (Branden-
burg [1979]) gives an answer. It is the analogue of a result due to P. Zenor
[1969].

4.5. THEOREM. For a T,-space X the following conditions are equivalent:

(i) X is D-normal.

(i) X is a D-completely regular space with the property that every
continuous mapping from X into an arbitrary T,-space which maps D-closed sets
onto closed sets is closed.

Proof, See (Brandenburg [1979]) for a more general result. m

One of the most useful properties of normal topological spaces is the fact
that every point-finite open cover has a shrinking. Furthermore, every locally
finite open cover of a normal space has a locally finite cozero-set refinement.
Therefore it is quite natural to ask for similar characterizations of D-normal
spaces. Before giving an answer we recall two definitions.

(*%) A topological space is an Rg-space, if every open subset is a union of closed sets.



32 Separation axioms, covering properties, inverse limits

4.6. DEFINITION. If % is an open cover of a topological space X,
a continuous mapping f from X into a topological space Y is called
a %-mapping if there exists an open cover ¥~ of Ysuch that {f~'[V]| Ve ¥’}
refines %.

4.7. DerFINITION. (Smith [1975]) An open cover % of a topological space
X is called a weak G-cover if % =)<, %, such that
(i) for each xeX there exists an n(x) < w such that

0 < ord(x, #px) < w;

(i) the cover ({J{U|Ue%,})r<w is point-finite.
The space X is said to be weakly O-refinable if every open cover of X has an
open refinement which is a weak f-cover of X.

Except for the equivalences (ii) and (iii) which appear here for the first time
the following theorem was already proved in (Brandenburg [1978],
[1981]).

4 8. THEOREM. For a topological space X = (X, 1) the following conditions
are equivalent:
(i) X is D-normal.
(ii) For every weak G-cover (U,),<, of X there exists a D-open cover('!)
(Fou<x of X such that F, < U, for each a < x.
(iii) For every weak O-cover (U,),<, of X there exists an open F ,-cover('?)
(Fa<x of X such that F, < U, for each o < x.
(iv) For every point-finite open cover (U),<. of X there exists an open
F -cover (F,)z<x of X such that F,c U, for each a < x.
(v) Every locally finite open cover of X has a locally finite open
F ,-refinement.
(vi) Every locally finite open cover of X is kernel-normal.
(vii) Every countable point-finite open cover of X is kernel-normal.
(viil) For every locally finite open cover % of X there exists a %-mapping
from X onto a developable T,-space.
(ix) For every countable point-finite open cover % of X there exists
a %-mapping from X onto a developable T,-space.

Proof. (i) implies (ii): Let % = (U,),<. be a weak B-cover of X. There is
a sequence (4,),<, of subsets of x such that x = () {4,|n < ®} and

(a) for each x e X there exists an n(x) < w such that 0 < ord(x, %) < o,
where %, = {U,|aecA4,} for each n < w;

(b) ¥ = (V)n<o is point-finite, where ¥, = | J{U,|ae 4,} for each n < w.

{(*!) A D-open cover is a cover consisting of D-open sets (1.3).
(*?) An F,-cover is a cover consisting of F,-sets.
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We claim that the following holds:

A. For each m, k such that 0<m<w and 0 <k <w there exists
a collection & (m, k) = (F(m, k, a)),<, of D-open sets in X such that the
following conditions are satisfied:

() Fim, k, @) c U, for each a <

(d) if ord(x,¥)=m and ord(x,%,) =k for some n<w, then
xel J{FeF m', K)|(m', k') < (m, k)}, where (m’, k') < (m, k) if either
m<morm=mand K<k

Note that once we have proved Claim A it follows from (a}{(d) that (F,), <, is
a D-open cover of X such that F,cU, for each a<x, where
F,={Fim k,a)]0<m< o, 0 <k <w}.

In order to verify Claim A we proceed by induction. Assume that m = 1
and k = 1. Then for each n < w and for each ae 4,

EQ1, 1, n, @) = " {X\U,| Be A\{a}} n N {X\V | e w\{n}}

is a closed set contained in U,. Hence, by virtue of (i), there exists a D-open
set F(l,1,n,&) such that E(1,L,na)cF(l,1,na)cU, If F(1,1,a)
=J{F(1,1,n,0)|n < w, a€ A,} for each & < x, then F (1, 1) = (F(1, 1, @))p<y
satisfies (c) and (d).

Now let (1, 1) < (m, k) and assume that for each (m’, k') < (m, k) a collec-
tion & (m', k') of D-open sets satisfying (c) and (d) is already defined. For each
Nel[w]™, neN, and Be[4,])* define

E(m, k, N, n, By = ({{X\U,|ae A\B}  (}{X\V,|le ®\N}
A {X\FIFeFm, k), (', k) < (m, k)}.
Then the following holds:
B.  Every E(m, k, N, n, B) is contained in (){U,|fe B}.

C. Every &(m, k, N, n) = {E(m, k, N, n, B)| Be[A4,]"} is a discrete collection
of closed sets.

In fact, if ze E(m, k, N, n, B) and N(z) = {{ < w|ze V}}, it follows from the
definition of E(m, k, N, n, B) and from the induction hypothesis that N = N(z).
In particular, 0 < ord(z, %,) < |B| = k. But ord(z, %,) < k is impossible by the
induction hypothesis. Hence ze (") {U;|f€e B}, which proves Claim B.

In order to verify Claim C consider an arbitrary &(m, k, N, n) and an xe X.
If ord(x, ¥)) > m, then () {V;|] < w, xe W} is a neighborhood of x which meets
no member of &(m k, N, n). If ord(x, ¥)<m or ord(x,¥)=m and
ord(x, #%,) < k, then, by the induction hypothesis, U {FeFm', k)|(m', k')
< (m, k)} is a neighborhood of x which meets no member of &(m, k, N, n). If
ord(x, %,) > k, there exist k+ 1 sets in #, containing x. Their intersection is
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a neighborhood of x which has an empty intersection with every member of
&(m, k, N, n). Finally, if ord(x,?)=m and ord(x,%,) =k, definc
N(x)={l < w|xeV} and B(x)={neA,|xeU,}. Then ({U,laeB(x)} is
a neighborhood of x which meets at most one member of &(m, k, N, n), namely
E(m, k, N(x), n, B(x)) in case that N = N(x).

For each Ne[w]™, ne N, and Be[A,]* define now

a(m, k, N, n, By=min{e < x| E(m, k, N, n, By < U,},
which exists by virtue of Claim B. It follows from Claim C that for every a < x
E(m,k, N, n, o) = | J{E(m, k, N, n, B)|Be[A4,]", a(m, k, N, n, B) = a}

is a closed set contained in U,. Since X is D-normal, there exist D-open sets
F(m, k, N, n, a), o <x, such that

E(m, k,N,n,a)c F(m, k, N,n,a) c U,.
If
F(m, k, a) =\ J{F(m,k, N, n, a)| Ne[w]™, ne N} for each a < x,

then F(m, k) = (F(m, k, &))<, is a collection of D-open sets satisfying (c) and
(d), which completes the induction.

Obviously, (ii) implies (iii), (iii) implies (iv), and (iv) implies (v). In order to
prove that (v) implies (vi) let u be the collection of all locally finite open covers
of X. By virtue of Lemma 2.12 it suffices to show that for each % € u there exists
a sequence f = (%,),<,, in p such that %, refines int,% for some n < w. To this
end consider an arbitrary % € u. Assuming (v) there exists a locally finite open
F,-refinement ¥ = (V,),<, of %. For each « < x let (V(a, n)),<,, be a sequence
of closed sets such that V,=|){V(x, nin<w}. If n<w and xeX(n)
= J{V(a, n)|a < »}, define

Ulx,n)y = {Vlo <% xeV( n)}n(X\L.){V(a, n)|a < x, x¢ Vo, n)}).

Since 7 is locally finite, every U(x, n) is an open set containing x. Therefore,
for each n < w the collection

U, ={V\X()|a < x} U{U(x, n)| xe X(n)}

is a locally finite open cover of X, ie. 8 = (%,),< is 2 sequence in u. Since %,
refines int,%, we have reached our aim.

By virtue of Lemma 2.11, (vi) implies that for a given locally finite open
cover % of X there exists a developable topology ' = t and a t’-open cover
7" of X which refines %. If Y is the space obtained from (X, t') by identifying
points which have identical closures, then Y is a developable T;-space and the
corresponding quotient mapping defines a “-mapping from (X, t) onto Y.
Therefore (vi) implies (viii). Similarly, (vii) implies (ix). Clearly, both (viii) and (ix)
imply (i). Hence the proof is complete once we have shown that (ii) implies (vii).
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To this end consider a point-finite open cover # = (U,),<, of X.
Assuming (ii) there exists a D-open cover ¥ = (V,),<, of X such that V, < U,
for each n < w. By virtue of Proposition 1.4 there exists, for each n < w,
a continuous mapping f, from X into D such that X\V, = f,”'[4(0)]. If ¢’ is the
initial topology on X with respect to (f,: X — D), <., then ' < t is developable
and ¥ is 7-open. Hence % is kernel-normal (2.11), which completes the
proof. w

Let us call a topological space X F,-shrinkable if for every open cover
(Uya<x of X there exists an open F,-cover (F,),<, of X such that F, = U, for
each a < . The preceding theorem yields:

49. COROLLARY. Every weakly 0O-refinable D-normal space is
F ,-shrinkable. m

The Dowker space constructed by M. E. Rudin [1971] is an example of
a normal, hence D-normal, T;-space containing a countable open cover which
has no open F_-shrinking. We do not know whether there exists a simpler
T,-space witnessing that D-normal spaces need not be F,-shrinkable.

Recall that for a family (X)), of topological spaces and a point ae [ [ X;
the subspace

Z(a) = {xeﬂXA {jellx; #a}l <w} of BX,

is called a Z-product of the spaces (X);;; with respect to a (Corson [1959]). In
[1983] M. E. Rudin has shown that every X-product of metrizable spaces has
the shrinking property, which means that every open cover (U,),<, has an open
refinement (V),<, such that clV,c U, for each a < x. This observation
motivates our next research problem.

ProBLEM C. Does every X-product of developable T,-spaces have the
F -shrinking property, ie. is every X-product of developable T,-spaces
F,-shrinkable?

The following generalization of D-normality was studied by T. R. Kramer
[1973] and J. Chaber [1979].

4.10. DEFINITION. A topological space X is called subnormal if for every
pair A, B of disjoint closed subsets of X there exists a pair F, G of disjoint
Gg-sets such that Ac F and Bc G.

4.11. ExampLE (Mysior [1980]). Let A(w,) = X(w,)u{a} be the Aleksand-
rov one-point compactification of a discrete space X (w,) of cardinality w, and
consider the quotient space X obtained from (A(w,)x(w+\{(a, w)} by
identifying the points in {a} x «. Then X is a subnormal Hausdorff space which
is not even D-completely regular. m

Using the fact that “'w is not normal (Stone [1948]), N. Noble [1971] has
shown that, more generally, *X is not normal for all non-compact Hausdorff
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spaces X provided that x > max{w,, w(X)}, where w(X) denotes the weight
of X. For short proofs of Noble's theorem see (Franklin and Walker [1972]),
(Keesling [1972]), and (Polkowski [1979]), for an application, e.g., (Herrlich
and Strecker [1971]). Since R. Pol and E. Puzio-Pol [1976] improved Stone’s
result by showing that ®* is not even subnormal, the following problem arises.

ProbLEM D. Suppose that X is an arbitrary non-compact Hausdorff space.
Does there exist a cardinal » such that *X is not subnormal?

In the remainder of this section we will show that the corresponding
question for D-normality can be answered affirmatively, thereby improving on
Noble’s theorem. More precisely, we will verify the following theorem from
(Brandenburg and Husek [1987]).

412, TueoreM. If X is a non-compact Hausdorff space and
» 2> max{w, w(X)}, then *X is not D-normal.

We can prove this theorem due to the fact that for D-normal spaces we
may use the analogue 4.2(v) of Urysohn’s lemma which enables us to mimic
Keesling’s proof of Noble’s theorem. In order to describe this method we need
some notation. )

A continuous mapping f from a cartesian product [ [;or X of topological
spaces into a topological space Y is said to depend on a subset J of I if
S(x) =f(y) whenever x, ye[]iwsX; and p,(x) = p,(y), where p, denotes the
natura] projection from [, X, onto [];c; X, If f depends on a countable
subset J of I, it is said to depend on countably many coordinates. Similarly,
a subset A of [ [ir X is said to depend on countably many coordinates, if there
exists a countable subset J of I such that p;'[p,[4]] = A. The following
proposition generalizes Keesling’s argument from [1972]. For the sake of
completeness we give a proof.

4.13. PROPOSITION. Suppose that E is a nonempty class of T,-spaces which
has the following property:

(x) Whenever X is a non-compact Hausdorff space such that *X is countably
compact, then every continuous mapping from *X into a space from E depends on
countably many coordinates.

If ®w is not E-normal, then, more generally, *X is not E-normal for every
non-compact Hausdorff space X and for each x > max{w,, w(X)}.

Proof. Consider an arbitrary non-compact Hausdorff space X and
suppose that *X is E-normal for some » > max{w,, w(X)}. Then *X is
countably compact, for othervise *X would contain a closed subspace
homeomorphic to “*w, which is impossible. It follows that X and *“¥X are also
countably compact. Since X is not compact, there exists a centered family
(Foa<wux) of closed subsets of X such that () {F,|¢ < w(X)} = @. Moreover,
by the E-normality of **¥)X there exists a continuous mapping f from **X
into a space from E such that f[[].<wx F,] NS [4] = @, where 4 < *™X is
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the diagonal. By virtue of (+), f depends on countably many coordinates.
Hence (){F,laeA} =@ for some countable set A. It follows that
(Y{F.leeB} =@ for a finite subset B of A4, for X is countably compact
— a contradiction! =

Thus, in order to prove Theorem 4.12 we only have to convince ourself
that the class D of developable T,-spaces satisfies condition (#) in the previous
proposition. We could do this directly, but we prefer to consider the more
general problem to characterize internally those product spaces on which every
continuous mapping into a developable T,-space depends on countably many
coordinates.This leads to the following theorem from (Brandenburg and Husek
[1987]) which is interesting in itself (see 4.18(j)).

4.14. THEOREM. For a product space [ i1 X; the following conditions are
equivalent:

(i) Every continuous mapping from [ |1 X, into a subdevelopable space (**)
depends on countably many coordinates.

(ii) Every continuous mapping from []ie1X, into a developable T,-space
depends on countably many coordinates.

(iii) Every continuous mapping from [|ier X, into D, depends on countably
many coordinates.

(iv) Every D-closed subset of |1 X, depends on countably many coor-
dinates.

Proof. Obviously, (i) implies (ii), and (ii) implies (iii). If 4 is a D-closed
subset of [].er X, there exist a point ae D, and a continuous mapping f from
[ [ierX; into D, such that A =f~'[{a}] (1.4). Assuming (iii) / depends on
countably many coordinates J < I. Since p; ‘[p,[A]] = A, we have shown
that (iii) implies (iv).

In order to prove that (iv) implies (i) suppose that there exists a continuous
mapping f from [[,; X, into a subdevelopable space (Y, t) which does not
depend on countably many coordinates. Without loss of generality we may
assume that f is surjective. Let v < 7 be a T;-topology which is developable.
We will first show that it suffices to verify the following claim.

A. (Y, 7) is second countable.

In fact, once we have proved A we may choose, for every set B from
a countable base # for the closed sets of (Y, 1), a countable subset I, of I on
which f~![B] depends. Then f depends on | ) {I5| Be &} which is countable
— the desired contradiction!

(*?) We call a topological space (X, 1) subdevelopable if there exists a developable
T,-topology 7' c .
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Suppose now that Claim A is false. Then there exist a development (%,), <4
of ¢’ such that %, , refines %, for each n < w and a subset D = {y,|& < w,} of
Y which is closed and discrete with respect to ' (*#). For every subset 4 of
[TierX; define

J(4) = {jel|pris[prn 41\ # B}
Then the following holds (*5):
B. Every closed subset A of [[isX; depends on J(A).
C. If A<][iaX; depends on J < I, then J(4)c J.

In particular, if T1(P)=J(f "'[{y,|a€P}]) for each subset P of w,, then,
assuming (iv), every I(P) is countable and f ~*[{),|a€ P}] depends on I(P).

D. There exists an uncountable family 2 of pairwise disjoint nonempty
subsets of w, such that (J{I(P)|Pe#} is countable.

In order to verify this claim we may assume that | J{I({a})|a < w,} is
uncountable, ie. that U{I({a})|a<w1} ={i|p <o} If

7o = min{y < o, |I{w,) < {iz| B < }},

then, for each y such that y, <y < w,, the set 2, = {P,(0)|d < w,} forms
a partition of w,, where

P,0) =(\{P cw,|6eP, I(P) c {ij| B < 1}}.
Since | {I(P,(8))|6 < w,} is countable, it suffices to show that at least one 2,
is uncountable .

Suppose that every £, is countable. Then, for every y such that
Yo <y < wy;, we can find two disjoint subsets R, S, of w, such that
(1) IR,AP|=1 and |S,nP| =1 for each uncountable P2
(2) R,nP=S8,nP =0 for each countable PeZ,;

(3) R=U{R,lyo<y<w,} has cardinality o, and Rn|J{5,17
Sy<o}=

Since there exists a y, such that y, <y, < w, and I(R) < {i;| B < y,}, it follows

that P < R for some uncountable P€#, . But then U {S,170 £y < @,} must

have a nonempty intersection with P, which contradicts 3).

Having established D we continue the proof of Claim A by considering an
arbitrary family 2 = (Py<., of pairwise disjoint nonempty subsets of w, such
that I(#) = | {I(Py)| ¢ < w,} is countable. We may assume that there is
a subset {i;|& <w,} of I\I(?) such that every X,, contains a non-trivial
D-closed subset F, ie. & #F, #X,,. (For otherwise there would exist

{**) This follows [rom the fact that a developable T}-space is second countable if and only if
each of its closed discrete subspaces is at most countable.
(**) This is well-known and easy to prove.
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a countable subset K of I\I(#) such that for every ieI\(Kul(#)) every
continuous mapping from X; into (Y, t') is constant. In this case f would depend
on the countable set KUI(#), contrary to our assumption.)) By virtue of
Proposition 1.4 there exist a point b in D, and, for every ¢ < w,, a continuous
mapping f; from X, into D, such that F;, = f;”'[{b}]. For every ¢ < o, let g,
be the continuous mapping from A, =f"'[{y,la€P,}] into D, defined by
ge =frop; [ A¢ Our plan is to use these mappings to construct a continuous
mapping g from [ X into a space Z containing a D-closed subset whose
preimage under g does not depend on countably many coordinates.

As the underlying set of Z we take the disjoint union (Y\D)u | J{D,|¢
< @}, where each D, is a copy of D,. For each ¢ < w, let (#$),<, be
a development of D, such that #}., refines % for each n < w. We supply
Z with the topology generated by ¥ =(),<,¥", as a base, where

¥, ={U\D|UeU,}u{Utu(St({y,|aePg}, %)\
{ylaeP})| Useds, & < w,}.
If g: [ierX;—Z is defined by

_Jfx) if f(x)eY\D,
g(x)_{g;(x) if xe 4,

it is easily seen that g is continuous. Since Z is developable, 4 = g™ '[{b,|¢
< w,}] is a D-closed subset of [ [;; X, where every b, is the copy of be D, in
D, We claim that A does not depend on countably many coordinates.

In fact, we show that if J is a subset of I such that p; *[p,[A]] = A, then
{i;|£ < w,} is contained in J. To this end assume the contrary, ie. that there
exists a £, < w; such that i, e I\J. Then we can find points x, y in H,,_,,X,
satisfying

(4) Pruigg (X} = Py ();
) Piy,(x)€ Fyy

(6) Pi;o(}’) € Xi;O\Fi.,n§
(7 Pr#(X) € P [A.:o] .

Observe that (7) implies that xe 4., and (5) implies that x € 4. By virtue of (4)
we conclude that ye A (since i, € I\J). On the other hand, (4), (7), and (6) imply
that g(y)e Z\{b,| ¢ < w,} — a contradiction! Therefore {i;|& < w,} = J, ie.
A does not depend on countably many coordinates which, however, con-
tradicts our assumption (iv). Consequently Claim A is true, which completes
the proof. =

Now, if 4 is a closed G,-subset of a product space [ [i.;X; which does not
depend on countably many coordinates, we can find an uncountable subset J
of I, a closed set Bc [[wrX;\4, and points x‘e4, e B such that
Prp(x?) = pny (07 for each jeJ (recall Claim B in the preceding proof). It
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follows that {x’|jeJ}u{)’|jeJ} is uncountable. If in addition [[i;X; is
assumed to be countably compact, then this set must have an accumulation
point z in [ [ X;. But for every basic neighborhood U of z there exists a jeJ
such that x’e U and y’e U. Hence it follows that ze A~ B which, however, is
impossible since A and B are disjoint. This contradiction shows that every
closed G,-subset, in particular every D-closed subset, of a countably compact
product space depends on countably many coordinates. In view of 4.13, 4.14,
and the result of Pol and Puzio-Pol [1976] cited above, this observation
completes the proof of Theorem 4.12.

In connection with 4.12-4.14 there are many open problems. Note, for
example, that Problem D would be solved if the following question could be
answered negatively.

ProBLEM E. Does there exist a subnormal Hausdorff space X such that *X
is countably compact for each cardinal %, but X is not D-normal?

It follows from Lemma 2.11 that a topological space X is subdevelopable
if and only if it has a sequence (%), <., Of kernel-normal open covers such that
N {St(x, %,)|n < w} = {x} for each x& X. In (Chaber [1983a], Remark 6) it is
pointed out that every T, o-space is subdevelopable. But we do not know the
answer to the following question.

ProBLeM F. Is every semi-metrizable topological space (2.1(ii)) necessarily
subdevelopable?

All we can show is that “small” semi-metrizable spaces are always
subdevelopable. For this purpose we recall the notion of a perfectly sub-
paracompact space.

4.15. DEFINITION (Burke [1969]). A topological space is called subparacom-
pact if every open cover has a o-discrete closed refinement. It is called perfectly
subparacompact if it is perfect (2.1(iv)) and subparacompact.

4.16. THEOREM. Let X be a perfectly subparacompact space with
G,-diagonal (*8). If |X|< 2%, then X is subdevelopable.

Proof. (*7) Since X has a G,-diagonal, there exists a sequence (%,), <o, of
open covers of X such that

(*) () {Stlx, Z)n < 0} = {x}

for each xe X (Ceder [1961]). By the subparacompactness of X every %, has
a g-discrete closed refinement &, = | Jy< o, Since [X| < 2%, we can find, for
all n, k <w, an injective mapping f,, from o,, into D, (1.7(d)). Let # be
a countable base for the open sets of D, and define E(B,n k)=|){4
€ A ux|for(4)eB} for each Be# and n, k < w. By virtue of 4.4 there exist

(*°) A topological space X is said to have a G,-diagonal if {(x, x)| xe X} is a G,-set in X x X.
{*") This proof is another application of a technique due to G. M. Reed and P. Zenor [1976].
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a point ae D, and continuous mappings g,k from X into D, such that
E(B, n, k) = ghx[{a}]. Now let g: X +#*2*=D  be the mapping defined by
g(x)(B, n, k) = gipniy(x) for all xeX and (B, n, k)e# xwxw. Since g is
continuous and #*“*“D  is a developable T,-space, it suffices to show that g is
injective.

To this end consider two distinct points x, y in X. By virtue of (#) there is
an n, < such that y¢St(x, %,) Moreover, there is a ko <w and an
A€ sy, 4, such that xe A. Suppose that g(x) = g(y). Then gpn () = gp.ax0(X)
for each (B, n, ke B x o x w, ie.

y €N {9350 {800 X)}1[(B, n, k)e # x 0 x w}
< {830k {980,100 1| BEB, fooao(A) € B}

< N {9@moka[{a}11 BeB, f,,r(4)e B}
< ({E(B.ng, ko)| BER, f,40(4) € B}

c A c St(x, %,,),
which is impossible. Hence g(x) # g(y), which completes the proof. =

4.17. COROLLARY. Every semi-metrizable space of cardinality < 2° is
subdevelopable. m

We conclude this section with some remarks and two more problems.

4.18. Remarks. (a) For classes E consisting of a single space the
normality hull N(E) was already studied by S. Mrowka [1968], for arbitrary
classes E by G. PreuB [1970]. However, the concept of E-normality introduced
by H. Herrlich [1967] (for classes E of Hausdorff spaces) is more general than
our notion of E-normality.

(b) It is not true that a closed subset of a D-normal space is always
D-embedded (compare with 4.1). In fact, if M is the Michael line, i.e. the space
obtained from the reals by isolating all irrationals, one can easily define
a continuous mapping from the closed subspace consisting of all rationals into
D, which has no continuous extension to all of M (Chaber [1984a]).

(c) Let us say that a subset A4 of a topological space is d-embedded in X if
for every D-closed subset F of A there is a D-closed subset G of X such that
F = Gn A. Then a topological space X is D-normal if and only if every closed
subset of X is d-embedded in X (Brandenburg [1978], 3.2.3).

(d) In [1984] J. Chaber has pointed out that a topological space is
D-normal if and only if any two disjoint closed sets can be separated by disjoint
subsets of which the first is open and the second is a G,set.

(e) A subset A of a topological space X is said to be normally situated in
X if for every open subset U of X containing A there exists an open subset ¥V of
X such that A <« V< U and V= {J{V,|a < x}, where (V ),<. is a family,
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locally finite in V, of open F,-sets of X. In (Brandenburg [1981]) it is shown
that every normally situated subspace of a D-normal space is D-normal, in
particular every F_-subset. However, the subspace (0, + 1) x (0 + )\{(®,, w)}
of (w,+1)x(w+1) witnesses that D-normality is- not hereditary. For an
internal characterization of hereditarily D-normal spaces see (Brandenburg
[19817]).

(f) Even the product of two paracompact Hausdorff spaces need not be
D-normal. In fact, in [1972] K. Alster and R. Engelking have constructed an
example of a paracompact Hausdorff P-space (*®) X such that X x X is
a non-normal P-space. Since every subnormal P-space is normal, X x X cannot
even be subnormal.

(8) If (X,)n<o is a family of non-trivial Hausdorff spaces (i.e. |1X,| > 2 for
each n < w), then [[,<aX, is hereditarily D-normal if and only if [ [,<.X, is
perfect (Brandenburg [1981]).

(h) Clearly, quotients of D-normal spaces need not be D-normal, for every
topological space is a quotient of a paracompact Hausdorff space (Isbell
[1969]). But D-normality is additive.

(i) Closed images of D-normal spaces are subnormal, closed-and-open
images of D-normal spaces are D-normal (Brandenburg [1981]). However,
perfect preimages of D-normal spaces are not necessarily D-normal (Chaber
[1984]).

() E. V. Scepin [1976] has raised the problem to characterize internally
those product spaces [ [irX; on which every continuous mapping into a space
with G,-diagonal depends on countably many coordinates. This might be
a difficult task, for the usual techniques in this area require that the range space
is Hausdorff. (*°) Therefore Theorem 4.14 seems to be a step in the right
direction. =

For a topological space X let exp X be the space obtained by supplying
the set of all nonempty closed subsets of X with the Vietoris topology. By
a theorem of J. Keesling [1970] (assuming CH) and N. V. Veli¢ko [1975] X is
compact provided that exp X is a normal T;-space. We do not know whether
the compactness of X is already a consequence of the D-normality of exp X:

ProBLEM G. Let X be a Hausdorff space such that exp X is D-normal. Is
X necessarily compact? In particular, prove that exp w is not D-normal.

Let us finally note that it follows from Theorem 4.2 that the normality hull
of the class of semi-metrizable spaces coincides with the class of D-normal
spaces, a fact which motivates our last problem in this section.

ProeLem H. Find internal characterizations of Q-normal spaces, where
Q is the class of quasi-metrizable T,-spaces.

('®) A topological space is a P-space if every G,-sct is open.
(*%) For surveys on this area see (Engelking [1966]) and (Huick [1976]).
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§ 5. D-paracompact spaces

The paracompactness hull P(E) of a class E of topological spaces was
introduced by C. N. Maxwell [1961] and studied by V. Sediva-Trnkova
[1964]. It consists of all topological spaces X with the property that for every
open cover % of X there is a #-mapping (4.6) from X into some space
belonging to E. For example, for the class M of metrizable spaces P(M) is
precisely the class of fully normal spaces (Tukey [1940]). Thus, by Stone’s
theorem [1948] P(M)n{Hausdorfl spaces} is the class of paracompact
Hausdorff spaces, a fact which was shown directly by C. H. Dowker [1948].
D-paracompact spaces, i.e. the spaces belonging to the paracompactness hull
P (D) of the class D of developable T,-spaces, were first studied by C. M. Pareek
who proved a (somewhat technical) internal characterization in [1972] (see
5.12(a)). These investigations were continued in (Brandenburg [1978] and
[1985]) and (Chaber [1984]).

The approach chosen in (Brandenburg [1978]) can roughly be described
as follows. By definition, D-paracompactness generalizes full normality as well
as paracompactness. Thus, in order to characterize D-paracompact spaces
internally it is first necessary to find suitable generalizations of normal open
covers in the sense of Tukey [1940] respectively of locally finite open (F,-)
covers. If this is done properly, the covering properties defined by means of
these generalizations should coincide (remember Stone’s theorem!) and charac-
terize D-paracompactness. Since Lemma 2.11 indicates that we have already
found the “right” generalization of normal open covers, it remains to look for
a suitable weakening of local finiteness.

5.1. DEFINITION (Brandenburg [1978]). A collection # = (U (i) of subsets
of a topological space X is called dissectable if there exists a dissection of %, i.e.
a mapping D from I xw into 2(X) satisfying
(D.1) U@ = {D(G n|n < w)} for each iel;
(D.2) {D(i, n)}liel} is a closure-preserving collection of closed sets for each
n< w;
(D.3) for each n<w and for each xel){D(i n)|iel} the set
N {UWliel, xeD(, n)} is a neighborhood of x.
4 is called o-dissectable, if % = | Jo<o¥, Where every %, is dissectable.

Obviously, every locally finite collection of F,-sets is dissectable. Quite
recently we have noticed that dissectability can be reformulated in terms of
real-valued upper semicontinuous mappings.

5.2. LeMMaA (Brandenburg [1986]). 4 collection % = (U(i))ies of subsets of
a topological space X is dissectable if and only if there exists a family
F = (f;: X—[0, )i of upper semicontinuous mappings satisfying
(F.1) £, 11] = UG) for each iel
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(F.2)  F is equi-upper semicontinuous, i.e. whenever xe X and J < I such that
{fi(x)|jeJ} = [0, b), b < |, there exists a neighborhood U of x such
that {f,(0\jeJ, yeU} = [0, b);

(F.3) whenever xe X and J < I such that {f(x)|jeJ} < (a, 1], a > O, there
exists a neighborhood V of x such that {f,(y)|jeJ, yeV} = (0, 1].

Proof Assume first that % 1is dissectable. Then there exists
a dissection D of # with the additional property that D(i, n) < D(i, n+1) for
each (i, n)elxw (Brandenburg [1978], 3.3.2). For each iel define
fii X-[0,1] by

_fo if xeX\U(),
filx)= 1/2"®  if xe U(i), where n(x)=min{n < w|xeD(, n)}.

Clearly, then (F.1) is satisfied. In order to establish the equi-upper semicon-
tinuity of # consider a point xeX and a subset J of I such that
{fi{x)|jeJ} =[0,b) for some b<1. If n,=max{n <w|b<1/2"}, then
xeX\D(j,n,) for each jeJ. Since {D(i, n,)|iel} is closure-preserving,
U =\{X\D@, m)|jeJ} is a neighborhood of x which has the desired
property that {f,(y)|jeJ, yeU} = [0, b).

It remains to show that (F.3) is satisfied. To this end let x be a point in
X and J < I such that {f|(x)|jeJ} < (a, 1], where 0 < a. Then xeD(j, n,) for
each jeJ, where n,=min{n < w|1/2" < a}. Hence V= ){U(j)|jeJ} is
a neighborhood of x which clearly has the property that
{f;0)ljed, yeV} < (0, 1]. Conversely, if # = (f;: X =[O0, 1]); is a family of
upper semicontinuous mappings satisfying (F.1)~(F.3), then it is easily seen that
@i, m—D(, n) = fi"*[[1/2", 1]] defines a dissection of #. w

The following lemma from (Brandenburg [1978]) is our main tool for
showing that an open cover of a topological space is dissectable.

5.3. LeMMA. Let % = (U(i))iex be an open cover of a subparacompact space. If
there exists a sequence = (%, )a<eo Of Open refinements of 4 such that
U(i) = int, U(i) for each i€, then, for every subset J of I, the collection (U (j));es
is dissectable.

Proof. By the subparacompactness of X there exists, for each n < w,
a sequence (%,(k))<w» Of open refinements of %, with the property that for
every x in X there is a k(x) < o such that ord(x, #,(k(x))) = 1 (Burke [1970]).
For each pair (n, k)e x o define X(n, k) = {xe X |ord(x, #,(k)) = 1}. More-
over, for each xe X (n, k) let U(x, n, k) be the member of %, (k) containing x and
set A(x, m, k) = X\|J {Ue, (k)| x¢ U}. It is easily seen that for every pair
(n, k)ew xw the collection {A(x, n, k)|xeX(n, k)} is closed and discrete.
Additionally, the following holds:

A UG ={UG n k| kyewxw} for each iel, where
Ui, n k) = {A(x, n k)| xe X(n, k), U(x, n, k) = U@}
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In order to verify this claim consider an arbitrary iel and a point ze U(i).
Since U(i) =int, U(i), there is an n(z) <@ such that St(z, %) < UG)
Moreover, there exists a k(z) <w such that ord(z, ¥ (k(@))=1. It
follows that ze X (n(z), k(z)) and therefore ze U(z, n(z), k(2)) = St(z, ¥y k(2))
< St(z, Uney) = U(), ie. z€ A(z, n(2), k(z)) = U(i, n(2), k(z)). This shows that
UG) < | J{UG, n, k)| (n, k)ew x }. That the reverse inclusion holds is clear
from the definitions. Now let mi—(n(m), k(m)) be a bijection from w onto w x @
and consider an arbitrary nonempty subset J of I. We claim that the
correspondence (j, m)e J x w U(j, n(m), k(m)) defines a dissection D of (U (j))e-

Indeed, Claim A shows that D satisfies condition (D.1) in 5.1. That (D.2) is
also satisfied is an immediate consequence of the fact that every collection
{A(x, n, k)| xe X(n, k)}, (n, k)ew xw, is closed and discrete. Moreover, if
m < w and ze | J {U(j, n(m), k(m))|jeJ}, there is an x € X (n(m), k(m)) such that
ze A(x, n(m), k(m)). Then U(x, n(m), k(m)) is an open neighborhood of z which
is contained in (\{U(j)|jeJ, ze U(j, n(m), k(m))}. Therefore D has property
(D.3) from 5.1, which completes the proof. m

In order to formulate the main characterization theorem we need to
introduce one more concept. Let us call a topological space X D-expandable, if
for every discrete collection (F(i)),; of closed subsets of X and for every
collection (¥ (i));e; of open subsets of X such that F(i) = V(i) for each ie [ and
F()nV(j) = 9@ whenever i, jeI and i #j there exists a dissectable collection
(U(i))ier of open subsets of X such that F(i) c U(i) = V(i) for each iel.

5.4. TueoreM (Brandenburg [1978], (1985], [1986]). For a topological
space X = (X, 1) the following conditions are equivalent:
(i) X is D-paracompact.

(ii) For every open cover (U, of X there exists a dissectable open cover
(Vier of X such that V, < U, for each iel.

(iii) For every open cover (U)); of X there exists an equi-upper semicon-
tinuous family F = (f;: X = [0, 11)ies of mappings such that (f;”*[(0, 1]])ies is
a precise open refinement of (U, ie. i[O, 1]] = U, for each iel, and
condition (F.3) in 5.2 is satisfied.

(iv) X is subparacompact and D-expandable.

(v) X is O-refinable (*°) and D-expandable.

(vi) X is weakly B-refinable (4.7) and D-expandable.

(vii) Every open cover of X has a o-dissectable open refinement.

(vili) Every open cover of X is kernel-normal.
Proof. (i) implies (ii)}: Let % = (U),; be an open cover of X. By the
D-paracompactness of X there exists a #-mapping f from X onto a developable

(2°) A topological space X is called O-refinable (Wicke and Worrell Jr. [1965]), if for every
open cover % of X there is a sequence (¥;) . of open refinements of 4 such that for each xe X
ord (x, %,.) < @ for some n(x) < w.

n<w
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T,-space Y. Consequently, there is a developable topology 7’ = © and a 7"-open
cover ¥~ = (V))ir of X such that V, c U, for each i€ I. Since developable spaces
are subparacompact, it follows from Lemma 5.3 that ¥~ is dissectable in (X, 7'),
hence also in (X, 1).

That (ii) and (iii) are equivalent follows from Lemma 5.2.

(i1) implies (iv): We will first show that X is subparacompact. To this end
let % = (U;),; be an open cover of X. By (ii) we may assume that there exists
a dissection D of %. If 9, = {D(i, n)|ie I} for each n < w, then D = | ),<, 9, is
a o-closure preserving closed refinement of % which proves the subparacom-
pactness of X (Burke [1969]).

In order to show that X is D-expandable consider a discrete collection
(F())ier of closed subsets of X and a family #” = (V(i))i; of open subsets of
X satisfying F(i) < V(i) for each iel and F(i)nV(j) = @ whenever i, je I and
i #j. Then ¥ U{X\|J{F(i)|ieI}} is an open cover of X. By virtue of (ii) there
exists an open cover (U(i))esU{U} of X such that (U(i)).s is dissectable,
Uc X\{J{F@)liel}, and U(i) < V(i) for each iel. Since F(i) < U(i) for each
iel, it follows that X is D-expandable.

That (iv) implies (v) is clear, since subparacompact spaces are {-refinable
(Burke [1970]), and that (v) implies (vi) is due to the fact that f-refinable spaces
are weakly O-refinable (Smith [1975]).

(vi) implies (vii): Let % = (U;);; be an open cover of X. By (vi) we may
assume that % is a weak O-cover, ie. that I ={){I(n)|n < w} such that

(@) for each xeX there exists an n(x) < w such that 0 < ord (x, %))
< w, where %, = (U )1 for each n < w;
(b)  «* = (U(M)s<. is point-finite, where U(n) = | J{U,|ieI(n)} for each
n< o
Then the following holds:

A. Foreachm, k such that 0 < m < w and 0 < k < w there exists a o-dissec-
table collection #"(m, k) of open subsets of X such that the following
conditions are satisfied:

() every Ve ¥(m, k) is contained in some U

(d) if ord(x, #*)=m and ord(x,%,)=k for some n < w, then
xe{J{Vev (m, k)|(m, k) < (m, k)}, where (m', k') < (m, k) if either
m<morm=mand k' <k

Note that once this claim is proved it follows that ¥ = U {# (m, k)|
0O<m<w 0<k<w}is a og-dissectable open refinement of %.

In order to verify Claim A we proceed by induction. Assume that m = 1
and k = 1. For each r < w and for each je I(r) define E(1, 1,r, j) = () {X\U,|i
eI\ {j}} n Y {X\Un)|new\{r}}. Then E(1, 1,1, j) < U, for each jeI(r) and
UinE(1, 1, r, j) = whenever ieI(r) and i % j. Since it is easily seen that
&(1, 1, r)=(EQ, 1, 1, }))jesiny Is discrete, it follows from (vi) that for each r < w
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there exists a dissectable collection ¥7(1, 1,r)=(V(l, 1, 7, ))jery Of open
subsets of X such that E(1, 1,r,j)e V(I,1,r,j)c U, for each jel(r). If
¥ (1, )={J{¥ (1, 1, N|r < w}, then ¥ (1, 1) satisfies conditions (c) and (d).

Now let (1, 1) < (m, k) and assume that for each (m’, k') < (m, k) a o-dissec-
table collection ¥"(m', k') of open subsets of X satisfying (c) and (d) is already
defined. For each Ne[w]™ reN, and Je[I(r)]* define

E(m, kN, 1, J) = ({X\U,lie I(\I} A () {X\U() |ne o\N)
N{X\V|Ve¥ (m', k), (m', k) < (m, k)}.

As in the proof of Theorem 4.8, (i) implies (ii), it is easy to show that every
&(m, k, N,r) = (E(m,k, N, r, )))jerey» is discrete. Since E(m, k, N, r, J)
< (N {U;lieJ} and (\{U,lieJ'}nE(m, k, N, r, J)= D whenever J'e[I(r)]*
and J # J, it follows from (vi) that for each Ne[w]™ and for each reN
there exists a dissectable collection ¥'(m, k, N, r) = (V(m, k, N, r, J)) o1
such that E(m k, N,r,J)cV(mk N,r,Jyc ({U;lieJ}. I ¥ (m k)
= J{# (m, k, N, r)| Ne[w]™, reN}, then ¥ (m, k) satisfies (c) and (d), which
completes the induction.

(vii) implies (viii): Let # be an open cover of X. Assuming (vii) there
exists an open refinement ¥ ={J,<,¥, of # such that every
¥y = (V (1 D)iereny is dissectable. Let D,: I(n) x w —#(X) be a dissection of ¥,
If xelJ{D,G, k)liel(n)}, there exists an open neighborhood U(x, n, k) of
x such that U(x,m k)<= (\{V(n Dliel(n), xeD,( k)} and U(x, n, k)
< N{X\D,G, Kliel(n), x¢D,(,k)}. Set UV, n, k) = Va(X\J (D, k)|
iel(n)}) for each Vey™ and define

Un, k) ={U(x, n, k)| xe(J{D,(i, k)| ieIm)}} u{UV, n, k)| Ver}.

Clearly, every #(n, k) is an open cover of X which refines ¥~ Moreover, the
following holds:

B. If B =(#(n, K)muew e then int,¥V=V for each Ve~

Note that once this claim is proved it follows that every % (n, k) refines int,%,
hence % is kernel-normal by virtue of Lemma 2.12.

In order to verify Claim B consider an arbitrary Ve¥” There exists an
n<w such that V=V(n, i), icl(n). Since it suffices to show that
V(n, i) cinty V(n, i), consider "an arbitrary point xe V' (n, i). By property (D.1)
of the dissection D, (5.1) there exists a k < w such that xe D, (i, k). Claim B is
proved as soon as we have shown that St(x, Z(n, k)) < V(n, ).

From the definiton of Uf(n, k) it is clear that

St(x, %(n, k)) = {U(, n, k)lyeJ {D,G, k)|ieI(n)}, xeU(y, n, k)}

so that it suffices to show that U(y, n k)< V(n i) whenever
yelJ{D,( k)liel(n)} and xe Uy, n, k). Now, if ye|J{D,(, kliel(n)} and
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xeU(y, n, k), then {jel(n)|xeD,(j, k)} = {jel(n)yeD,(, k)}, for otherwise
there would exist a j,eI(n) such that xeD,(j,, k) but y¢D, (j,, k), ie.

xelJ{D,U, K)|jel(r), y¢D,U, k)} =« X\U(y, n, k),
contradicting the fact that xe U(y, n, k). It follows that
Uy, n k)= ({V(n j)jeln), yeD,(, n)}

< N{V®, )ljeln), xeD,(j, n)}
< Vin, i),

which completes the argument.

(viti) implies (i): Assuming (viii) it follows from Lemma 2.11 that for a given
open cover % of X there exists a developable topology v = 7= and a v-open
cover ¥ of X which refines #. If Y is the space obtained from (X, ') by
identifying all points which have identical closures, then Y is a developable
T,-space and the natural quotient mapping defines a %-mapping from (X, 1)
onto Y. Consequently X = (X, 1) is D-paracompact. =

Clearly every developable space and every fully normal space (Tukey
[1940]) is D-paracompact, hence every paracompact Hausdorff space. Every
D-paracompact space is D-normal (compare Theorems 5.4 and 4.8). It was
known for some time that every perfectly metacompact space (2!) is sub-
paracompact (Hodel [1970]). Quite recently J. Chaber has proved that, in fact,
such a space is already D-paracompact [1983a]. Following (Brandenburg
[19857) we will now show how Chaber’s theorem can be derived from Theorem
5.4.

5.5. COROLLARY (Chaber [1983a]). Every perfectly metacompact space is
D-paracompact.

Proof. Consider a point-finite open cover % = (U),,; of a perfectly
metacompact space X. By virtue of 5.4 it suffices to show that % is dissectable.
Since X(n) ={xeX|ord(x, %) > n} is open, there exists a sequence
(X(n, K)k<o of closed subsets of X such that X(n)=|){X(n k)|k < w}
whenever O<n<aw Set ¥mk)=%u{X\X(n, k)} and A(x, n, k)
= {X\U|Ue%(n, k), xeX\U}. If m—s(n(m), k(m)) is a bijection from w on-
to (w\{0})x w and

D(i, m) = ) {A(x, n(m), k(m))| xe U;n X (n(m), k(m)), ord(x, %) = n(m)}
for each pair (i, m)el x w, then it is easily seen that (i, m)—D(i, m) defines
a dissection of %. =

Concerning the relationships between metacompactness and D-paracom-
pactness in normal T)-spaces C. M. Pareek has asked whether every normal
D-paracompact T;-space is metacompact, and whether every metacompact

(®") A topological space is said to be perfectly metacompact, if it is perfect (2.1(iv)) and
metacompact.



§ 5. D-paracompact spaces 49

normal Tj-space is D-paracompact (Pareek [1972], Problems 6.2 and 6.3).
Both questions have negative answers. In fact, R. H. Bing’s example F [1951]
can easily be seen to be a counterexample to the first question, while in [1974]
D. K. Burke has given an example of a metacompact normal T;-space which is
not even subparacompact.

In view of Corollary 5.5 one might wonder whether every perfectly
subparacompact space (4.15) is D-paracompact. However, this possibility is
ruled out by the following example from (Brandenburg [1985]).

5.6. ExaMPLE. A completely regular perfectly subparacompact T,-space
which is not D-paracompact. Let S be the Sorgenfrey line, i.e. the reals supplied
with the topology generated by all half-open intervals [xq, x,), X < X,. It is
known that S x S is perfect (Heath and Michael [1971]) and subparacompact
(Lutzer [1972]). Originally S was introduced as the first example of a paracom-
pact Hausdorff space whose square is not paracompact (Sorgenfrey [1947]).
We will now show that $x S is not even D-paracompact.

To this end let U(x) =[x, x+1})x[—x, —x+1) for each xeR and
U = R*\{(x, —x)|xeR}. Then # = {U(x)|xeR}u{U} is an open cover of
S x S. Suppose that S xS is D-paracompact. Then there exists a #-mapping
ffrom S xS onto a developable T,-space Y. Let (¥",),<. be a development of
Y and define #,={f"'[V]|Ve?,. Moreover set f=(¥)<, and
H = {(x, y)eR?|(x, y)eint,U(x)}. Then the following holds:

A. H is of the second category with respect to the Euclidean topology
of R

For suppose that H is of the first category in R2. Then, by a theorem of K.
Kuratowski and S. Ulam (e.g. see Kuratowski [1966], p. 247) there exists an
xo € R such that H(x,) = {ye R|(x,, y)e H} is of the first category in R. Since
fis a %-mapping, (xy, —X,)€int,U(xy). Hence there exists an r > 0 such that
[xo, xo+7)x[—xy, —Xo+7) is contained in int, U(x,), for int, U(x,) is open in
S x S. It follows that [ —x,, —x,+7) is a subset of H(x,) which is of the second
category in R. However, since every subset of H(x,) must be of the first
category in R, we arrive at a contradiction which proves Claim A.

Now H=|J{H,In< o}, where H,={(x, y)eH|St((x, y), %,) = U(x)}
for each n < w. Hence there exist an n < w, a point (x, yY)e R?, and an ¢ > 0
such that (x—g, x+4€) X (y—¢, y +¢) is contained in the Euclidean closure of H,.
Moreover, there exists a point (u, v)e H, and a 4 > 0 such that

(u, u+6)x[v, v+0) = (x—¢, x+€&) x(y—e, y+&)NSt((y, v), %,).

If (s, )e(u, u+d)x(, v+6)nH, then St((s, 1), %,) = U(s). Since (u, v)
e St((s, 2), #,), it follows that s < u, contradicting the fact u < s. Hence Sx§
cannot be D-paracompact. m
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Perfectly subparacompact spaces were characterized internally by H.
Junnila [1980] and J. Chaber-and P. Zenor [1977]. A slight modification of
their argument yields the following characterization of perfectly D-paracom-
pact spaces. (*?)

5.7. THEOREM. For a topological space X = (X, t) the following conditions
are equivalent:

(i) X is perfectly D-paracompact.

(i) For every open cover ¥ = (Up)y<. of X there exists a countable
kernel-normal collection B of open covers of X such that %epf and
min{a < %|xeint,U,} = min{a < x|xeU,}.

(iii) For every open cover (U,),<. of X there exists a dissectable open cover
(Va<x of X such that UNJ{U,ly<a} cV,c U, for each « < x.

Proof. (i) implies (ii): Consider an arbitrary open cover % = (U,), <, of X.
Assuming (i) there exists, for each a < x, a sequence (A4 (%, n))o<n<o Of closed
sets such that ( J{A(x, n)|0 <n < w} = (J{U, |y <«}. Moreover, inductively
we can find, for each (ny,...,n.-1)eS (*%), an open cover #(ny,..., nx—y) of
X such that the following conditions are satisfied:

(@) #%0)=% and %(n) refines %(0) for each n < w;
(b) BO) = (#(M)s<o and Blng,...,m—1) = {U(ng,..., M)} {¥(ny, ...
wosMy-1, M0<n<w} are kemel-normal whenever (ng,...
ey M-, NES, 0 < 1 < w;
() %(ng,...,m ) refines #(ngy,...,n,_,) and
(Ua\‘(A(ai nk—l)UCl{z|St(z’ %(nO)" vy nk—Z)) = U {Uyly < a}}))¢<x (24)
whenever (n,,...,m.-;)€S and k> 1.
Then B =J{B(mo:..,m~1)l(g,....,m—1)€S} is a countable kernel-normal
collection of open covers of X containing %. Suppose that there exists an xe X
such that
(%) oy = min{x < x| xeint,U,} > min{a < %|xe U,}.
Then there is an (1, ..., n-1) € S such that St(x, #(n,, ..., n,_,)) is contained in
U,, Because of (a) we may assume that (n,,...,m—,) #(0). It follows that
(»¢)  xecl{z|St(z, %(ng,....m—1)) = {J{U,|y < «}} whenever a> a,.

Moreover, from (x) we conclude that xe A(«,, n(x)) for some 0 < n(x) < w. Since
(b) implies that intg, . m_, ) %(R,.... M1, n(x)) covers X there are
a Ued(ng,...,m-1,n(x)) and a k(x) < w such that

(%xx) St(x, % (g, - .., M1, k(x))) = U.

(*?) A topological space is called perfectly D-paracompact, if it is perfect and D-paracompact.
(**) For the definition of S see § 1.
(3*) Note that this is an open cover of X.
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By virtue of (c) there is an « < » such that

U < U\A(e n(x)ocl{z|St(z, #(ng,...,m—- )} = J{U,|7 < a}}).
Now (#++) and (+) imply that o < . Since x € A(ag, n(x)), & = &, is impossible.
Therefore a < a, which, however, contradicts the definition of ag, for (++) implies
that xemt U, Consequently min{x < x|xeint,U,}= min{a <x|xeU,} for
each xe X.
That (ii) implies (iii) follows from Lemmas 2.11 and 5.3. Moreover, 54
shows that (iii) implies (i), which completes the proof. w

In [1972] C. M. Pareek claimed that the following property of a T,-space
X characterizes S-paracompact spaces, where S is- the class of semi-metrizable
spaces (2.1 (ii)).
(f) For every open cover % of X there exists a sequence (¥ ,,)n<o Of Open
covers of X satisfying the following conditions:

(i) # =%, and %,,+, refines ¥, for each m < w;

(ii) for each xeX there exists an m(x) <w such that

ord(x, %,) = 1 whenever m = m(x);

(iii) (}{St(x, %,)|m < w} is closed for each xeX.
However, as J. E. Mack [1974] already pointed out in his review of Pareek’s
paper, this characterization is of doubtful validity because its proof is
supported by dubious lemmas. In fact, following (Brandenburg [19857) we will
now show that a certain space X considered by D. K. Burke [1970a] for
another purpose satisfies () without being S-paracompact.

5.8. ExampLE. The underlying set of X is w, xw. The topology of X is
defined by specifying a basic system of neighborhoods for each point
(a, n)ew, x w as follows. If « > 0 and n > 0, then (o, n) is isolated. Additionally
the point (0, 0) is isolated. For each n > Olet H, = {(a, )]0 < « < w, }, and for
each « > 0 define V, = {(a, n)|0 < n < w}. Basic neighborhoods of a point
(0, n), n > 0, are of the form U(0, n, E) = {(0, n)} U(H,\E), where E i is a finite
subset of H,. A basic neighborhood of a point («, 0), @ > 0, is of the form
U, 0, F) = {(a, 0)} U(V,\F), where F is a finite subset of V.. The resulting
space X is locally compact and Hausdorff,

In order to show that X satisfies (1) consider an open cover % of X.
Without loss of generality we may assume that % is of the form

U = {0, 0)} U{{(e, M}0 <2 <w,, 0<n<w}
u{U@©,n, E)|0<n<wlu{U(0, F,)|0 <a<w,},
where E, c H, and F, < V, are finite. Now if
@, = {(0, 0} L{U(O, n, )]0 < n < w}u
{{les M} (2, m)€E,, 0 <n<w}u{U( 0, F)\{le. )|0 <n<m}|0<a<eo}

for each m> 1 and %, = %, then it is easily verified that (%,).<. satisfies
conditions (i)-(iit) of (t).
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To prove that X is not S-paracompact note first that every S-paracompact
space is D-normal (e.g. use Theorem 4.2). Hence it suffices to show that X
is not D-normal. To this end consider the disjoint closed subsets
A={0,n)]|0<n<w}and B={( 00 <a<w} of X. Suppose that there
exists a closed Gy-set F in X such that AcF and FnB=@. Then
F=){F(k)|0<k<w}, where every F(k) is open in X. For each
n>0 k>0 there exists a finite subset E(n, k) of H, such that
U(0, n, E(n, k)) = F(k). If afn, k) = max{a|(z, n)eE(n, k)} and «y=
sup{a(n, k)|n >0, k >0}, then ay+1 < w,. Since every neighborhood of
(2941, 0) intersects F, it follows that (x,+1, 0) is contained in clF = F,
contradicting the fact that Fn B = @. Consequently, X cannot be D-normal.

In view of the preceding example it remains an open problem to find
internal characterizations of S-paracompact spaces. We conjecture that every
S-paracompact space is D-paracompact, i.e. that the two notions coincide. This
would be the case if the following question could be answered affirmatively.

ProBLEM . Is every semi-metrizable space, or, more generally, every
semi-stratifiable T,-space D-paracompact?

We consider Problem 1. to be the most important of all research problems
mentioned in this paper. Note, for example, that an affirmative answer would
also yield an affirmative answer to Problem F, for it is easily seen that every
D-paracompact space with G;-diagonal is subdevelopable. There are two recent
partial results concerning Problem I

5.9. THeorem (Chaber [1984]). Every semi-stratifiable meta-Lindelof
space (*%) is D-paracompact. m

5.10. THEOREM. Every semi-stratifiable orthocompact space is D-paracom-
pact. (*6) »

Let us mention another interesting problem concerning D-paracompact-
ness.

PrROBLEM J. Let X be a completely regular T-space such that X x fX is
D-normal. Is X necessarily D-paracompact?

Our next theorem characterizes those T,-spaces which belong to the
paracompactness hull of the class of second countable developable T,-spaces.

(**) A topological space is meta-Lindeldf, il every open cover has a point-countable open
refinement.

(**) For the definition of orthocompactness see footnote (5). That every semi-metrizable
orthocompact space is D-paracompact was first shown by R. W. Heath [1984]. The present
generalization was suggested by the referee who pointed out that Theorem 4.8 of (Junni'a [1978])
can be used to show that every interior-preserving open cover of a semi-stratifiable space is
dissectable.
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5.11. THEOREM. For a T,-space X = (X, 1) the following conditions are
equivalent:
(i) For every open cover 4 of X there exists a #-mapping from X onto
some second countable developable T,-space.
(i) X is a D-normal space with the property that each y-sequence (xge<q in
X, y = w an ordinal, which satisfies (¥) has a cluster point:
(#) for every countable kernel-normal open cover ¥ of X there exist
a cofinal subset A of y and a U e ¥ such that x,€ U whenever £ € A.
(i) X is a (weakly) D-completely regular Lindeldf space.

Proof. Obviously, (i) implies that X is D-paracompact and therefore
D-normal. Let (xg)s<,, ¥ > @, be a y-sequence in X without cluster point. Then
every xeX has an open neighborhood V, such that x,e X\V, whenever
¢ > &(x), where for each xe X £&(x) is an ordinal such that £(x)+1 < y. By (i)
¥ = {V,|xeX} has a countable kernel-normal open refinement %. Since
{x;|£e A} ¢ U whenever A —y is cofinal and Ue%, it follows that (x,);<,
does not have property ().

(i) implies (iii): (>”) In 4.3 (ii) we have shown that every D-normal T,-space
is D-completely regular. Suppose that X is not Lindelof. If » = min{|#||% is
an open cover of X without countable subcover}, then w < ». Let (U ), <, be an
open cover of X without countable subcover. Note that F,= X\
U{U,|B < a} # @ for each & < x. Let <, be a well-order of F, and consider
the set F = {(F,, x)|a <%, xeF,}. Since F is well-ordered by the relation

“(Fg x) <(Fy, y) if either a < B or « =4 and x <,)",

there exists gn ordinal y and an isomorphism f; y —+(F, <). Observe that y > .
Let g: F—X be defined by (F, x)€ Fox = g((F,. x)) and set x, = gof ({) for
each £ <y. Then the following holds:

A. The y-sequence (x;);<, has no cluster point in X.

For suppose that xe X is a cluster point of (xy¢<, Then xe U,y for some
a(x) < ». Moreover, there exists a cofinal subset A of y such that {x,|&
€A} c Uy, In particular, there is a £€ A such that f(§) > (Fyy) y), where
y € Fo( is an arbitrary point. It follows that x; = g(f (&) e F, for some a > a(x).
On the other hand x,e U, < |J {UylB < a} = X\F, — a contradiction!

Assuming (ii) we conclude from A that there exists a countable ker-
nel-normal open cover ¥~ of X such that {xgléeB} ¢ V whenever Bc y is
cofinal and Ve ¥~ Moreover, using Lemma 2.11 it is easily seen that there is
a developable topology ' — 7 such that w(X, 7)< w and {int,V|Ve?'}
covers X. We claim that the following holds:

B. J{X\c|, F,la < x}=X.

(3") This proof is a modification of an argument due to N. R. Howes [1980].
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Suppose that B is false, ie. that there exists an xe(){cl.F,|a < x}. Then
xeint,V for some Vey" We obtain a contradiction by showing that
B = {{ <y|x,eint, V} is cofinal in y. To this end consider an arbitrary n < y.
Iff (1) = (F,, y), choose a f§ such that & < f < . There exists a zeint,. VA Fj. If
& <y such that f(&) = (F;, 2), then x, = gof (§) = zeint. Vand f(n) < f (&), ie.
¢eB and n < ¢, which completes the argument. Since (X, 7) is a Lindelof
space, it follows from B that there is a countable subset C of x such that
J{X\cl.F,JaeC} = X. For aeC let (F(a, n))s<» be a sequence of closed
subsets of X such that () {F(a, n)|n < w} = X\cl, F,. By the definition of
x there exists, for each pair (x, n)e C x w, a countable subset C(a, n) of a such
that F(a, n) = (J{U,1B8eC(a, n)}. But then {U,|fe|) {C(a, n)[(x, W)e C x w}}
is a countable subcover of (U,),<. Which contradicts our choice of (U,)s<y-
Consequently X must be a Lindelof space. .

(iif) implies (i): Observe first that if X is a weakly D-completely regular
Lindeldf space, then X is D-paracompact. For every open cover of X has
a countable open F-refinement i.e a g-dissectable open refinement. Therefore,
if 4 is an arbitrary open cover of X there exists a countable kernel-normal
open refinement ¥~ of % (5.4). As in the proof of the previous implication it
follows that there is a second countable developable topology 7’ < t such that
(U {int.¥|Ve ¥’} = X. If Y is the space obtained by identifying points which
have identical closures in (X, 7), then the natural quotient mapping from
(X, 1") onto Y defines a #-mapping from (X, ) onto Y. Since Yis a developable
T,-space of weight w, the proof is complete. m

ProsLEM K. Let X be a D-normal T;-space such that every y-sequence
(xdi<y in X, y > w an ordinal, with property ([J) has a cluster point:
(O) for every kernel-normal open cover # of X there exists a cofinal subset

A of y and a Ue% such that x,eU whenever (e A.
Is X necessarily D-paracompact?

5.12. Remarks. (a) C. M. Pareek [1972] has shown that a topological
space X is D-paracompact if and only if for every open cover % of X there exists
a sequence (%)< Of open covers of X satisfying:

G) % =%, and U, refines U, for each n < w;

(ii) for each n < o and for each xe X there'exist a k < w and a Ue%,
such that St(x, %,) < U,

(tii) for each n < w and for each x€ X there exists a k < w such that for
epery yeSt(x, U,) there is a k(y) < w such that St(y, ¥y, < St(x, %,,).
This characterization can be easily deduced from Theorem 5.4.

(b) It is worth mentioning that a topological space X is D-expandable if
and only if every weak f-cover of X is kernel-normal.

(c) In [1984] J. Chaber has introduced the notion of a collectionwise
D-normal space and shown that a topological space is D-paracompact if and only
if it is collectionwise D-normal and 0-refinable. He has also obtained a charac-
terization of D-paracompact meta-Lindel6f spaces.
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(d) There is an interesting relationship between D-paracompact spaces and
para-uniform nearness spaces (2.10(ii)): A topological nearness space (Herrlich
[1974]) is para-uniform if and only if its induced topology is D-paracompact
(Brandenburg [1988]).

(e) An example of a D-paracompact space which is neither developable nor
paracompact can be obtained as follows. Take a T,-space X in which points
are G;-sets but which is not first countable. Then the Pixley-Roy hyperspace
PR(X) (e.g. see van Douwen [1977]) of X is perfectly metacompact, hence
D-paracompact (5.5% But PR(X) is not developable. If in addition X does not
have an antisymmetric neighbornet in the sense of (Junnila [1978]), then PR(X)
is not paracompact (e.g. see Tanaka [1982]).

(f) Let us call a topological space X countably D-paracompact if for every
open cover (U,), <, of X there exists a dissectable open cover (V)< of X such
that V, < U, for each n < w. Using slight modifications of previous arguments
it can be shown that each of the following conditions is equivalent to the
countable D-paracompactness of X:

(i) X is countably subparacompact(*®) and D-normal.

(i) X is countably metacompact and D-normal.

(i) Every countable open cover of X is kernel-normal.

(iv) Every countable open cover of X has a countable open F,-refinement.
(v) X x Y is D-normal for every compact metric space Y.

(vi) X x [0, 1] is D-normal.

(vii) X x(w+1) is D-normal.

(g) D-paracompactness is additive, but neither hereditary nor productive.
However, normally situated subspaces (4.18(¢)) of D-paracompact spaces are
always D-paracompact (Brandenburg [1985]). Clearly, quotients of D-paracom-
pact spaces need not be D-paracompact. m

In [1984] J. Chaber has shown that even perfect preimages of developable
spaces need not be D-paracompact, thereby dlsprovmg a conjecture of C. M
Pareek [1972]. But the following problem is still open.

PrOBLEM L. Are perfect images of D-paracompact spaces always
D-paracompact?

Furthermore, nothing is known concerning the final problem in this section.

ProBLEM M. Characterize Q-paracompact spaces, where Q is the class of
quasi-metrizable T,-spaces.

§ 6. Some characterizations of developable spaces

During the last twemty-five years a great variety of characterizations of
developable spaces involving many different concepts appeared in the literatu-
re. These results are too numerous to cite here. In particular, for regular or

(%) A topological space is countably subparacompact, il every countable open cover has
a ag-discrete closed refinement.
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completely regular T,-spaces there are several interesting factorizations of
developability in terms of G,-diagonal concepts, (generalizations of) p-spaces,
O-refinability, (generalizations of) semi-stratifiability, quasi-developability or
symmetrizability. Probably the most interesting among the internal charac-
terizations of arbitrary developable spaces is the basic theorem of H. H. Wicke
and J. M. Worrell, Jr. [1965] which expresses developability essentially as
a combination of a base property (i.e. base of countable order) and a weak
covering property (i.e. f-refinability; see footnote (20)).

Every characterization of developable spaces yields a (not always sig-
nificant) metrization theorem by simply adding collectionwise normality (Bing
[1951]). On the other hand one may ask whether some basic metrization
theorems have counterparts in the theéory of developable spaces. The above
mentioned theorem of Wicke-Worrell, Jr., for instance, generalizes a me-
trization theorem of A. Arkhangel’skii [1963] which itself is an improvement of
the Aleksandrov-Urysohn metrization theorem [1923]. Similarly, the following
result may be viewed as an analogue, for developable spaces, of the Naga-
ta-Smirnov metrization theorem.

6.1. THEOREM (Brandenburg [1978], [1980]). A topological space is
developable if and only if it has a o-dissectable open base.

Proof. It follows from Lemma 5.3 that every open cover of a developable
space is dissectable. Hence every development of a developable space forms
a o-dissectable open base. For the proof of the reverse implication consider
a topological space X with a o-dissectable open base & = | J,<,%,, Where
R, = (B())icrem for each n < . Let D,: I(n)x w—2P(X) be a dissection of 4,
For each pair (n, k)e ® x @ we construct an open cover % (n, k) of X as follows.
If xeX(n k) =) {D,(, k)|ieI(n)}, there exists an open set U(x, n, k) con-
taining x such that

Ux,n k)= ({BG)|iel(n), xeD,(, k)}
and
U(x, n, ) = X\ {D,(, k)| ieI(n), x¢D,(, k)}.
We define
U(n, k)= {X\X(n, )} u{U(x, n, k)|xe X (n, k)}

and claim that (#%(n, k))yueoxo IS 2 development of X.

To prove this assertion consider an arbitrary point x in X and a neighbor-
hood Vof x. Since 4 is a base of X, there exists an n < w and an i, € I(n) such
that xeB(i,) = V. Furthermore there is a k < such that xeD,(i,, k). It
remains to prove that St(x, #(n, k)) is contained in V. Since

St(x, «(n, k) = | J{UW, n, k)| yeX(n, k), xeU(y, n, k)},
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it suffices to show that for each ye X (n, k) with xe U(y, n, k) the set U(y, n, k)
is contained in B(iy). To this end consider a fixed yeX(n, k) such that
xe U(y, n, k). For every jeI(n) such that xe D,(j, k) we have yeD,(j, k), for
otherwise we would have
xeD,(j, k) = U {D,(i, k)|iel(n), y¢D,(i, k)} = X\U@, n, k),
which is impossible. Hence
Uy, n, k) = (Y{B(i)licI(n), yeD,(, k)}
< () {B(|iel(n), xeD,(i, k)} = B(iy),
which completes the proof. m

6.2. COoROLLARY (Brandenburg [19807]). Every topological space with
a locally countable base consisting of open F ,-sets is developable.

Proof. If a space has a locally countable base consisting of open F,-sets,
then it has a o-locally finite base consisting of open F,-sets (Charlesworth
[1976]), i.e. a o-dissectable open base. u

Our second characterization of developable spaces is motivated by
Nagata’s so-called “double sequence metrization theorem™ (Nagata [1957]).

6.3. THEOREM (Brandenburg [1980]). A topological space X is developable if
and only if for every point x in X there exist two sequences (U(x, n))p<, and
(V(x, n, K))mprecrxa 0f neighborhoods of x such that

(i) (U(x, n)p<o is a neighborhood base of x, and for each n < w U(x, n) has
a decomposition U(x, n)= (J{U(x, n, k)| k < w} such that

@) y¢U(x,n, k) implies V(y, n, kynU(x, n,k) =B, and

(iii) yeU(x, n, k) implies V(y, n, k) € U(x, n).

Prool. Let (#",).<. be a development of X, where ¥", = (V(i))ier(n For
each n < o there exists a dissection D,: I(n) x w —+2(X) of ¥", (5.3). For each
x € X and for each n < w choose a fixed i(x, n) € I(n) such that x € V(i(x, n)). We
define U(x, n) = V(i(x, n)) and U(x, n, k) = D,(i(x, n), k) for each n, k < .
Moreover we put
Vix, n k)= {V()liel(n), xeD,(, k)} N (X\U {D,(i, k)|ieI(n), x¢D,G, k)}).

Evidently, the so-defined sequences of neighborhoods of x satisfy (i}iii).

For the proof of the reverse implication define

Wi(x,n k)=Ux, nnV(x,nk) and % (n k)= (W(x, n k))eex
for each pair (n, k)ew x w. Since it is easy to see that (# (1, k)mmeoxw 18
a development of X, the proof is complete. »

For a topological space X let expX be the set of all nonempty closed
subsets of X supplied with the Vietoris topology, i.e. with the topology which
has as a base all sets of the form (Ul,,..., Uy-,), where Uy,..., U, are open
subsets of X and

Ugyerey Ug— )
={AdeexpX|AcUyqu...uU;_;, AnU,; #@ for each i <k}.
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Following A. N. Dranishnikov [1978] a mapping ¢ from X xexp X into the
nonnegative reals is called an annihilator for the closed sets of X, if
A={xeX|p(x, A) =0} for each AecexpX. It is called monotone, if
A, BeexpX and A < B implies ¢(x, B) < ¢(x, A) for each xe X. In [1976] P.
Zenor has shown that a T,-space is metrizable if and only if it has a continuous
monotone annihilator for the closed sets. Our third characterization of
developable spaces is obtained by weakening the continuity condition in
Zenor's metrization theorem.

6.4. THEOREM (Brandenburg [1986]). A T,-space is developable if and only if
it has a monotone upper semicontinuous annihilator for the closed sets.

Prool Let (%,).,<. be a development of a T,-space X such that
U, refines %, for each n < w. If ¢: X xexpX - R is defined by

0 if xed,
o(x, A) = {1/2""‘"‘) if xeX\A, where n(x, A)
=min{n < @|St(x, %,) < X\A4},

then it is easily seen that ¢ is a monotone annihilator for the closed sets of X.
We claim that ¢ is upper semicontinuous. In order to verify this claim let ¢ be
a real number such that 0 < ¢ < 1(*®) and consider a pair (x, A)e X xexpX
such that ¢(x, 4) < ¢ If ny = max{n < w|c < 1/2"}, then xeSt(4, %,,), for
otherwise we would have St(x, #,)c X\A and therefore 1/2" < ¢(x, A)
< ¢ < 1/2"™. Consequently, there exists a Ue®%, containing x such that
UnA #@. Since U x (St(4, %,), U) is an open neighborhood of (x, A) in
X xexpX,~ it suffices to show that ¢(y, B)<c whenever (y, B)e
Ux<{St(4,%,), U>. To this end consider an arbitrary (y, B)e
U x {84, %,,), U). Since UnB +# @, it follows that ye St(B, %,,) and hence
(no matter whether yeB or not) that ¢(y, B) < 1/2". Therefore, by the
definition of n,, @(y, B) < c.

To prove the reverse implication assume now that X is a T,-space with
a monotone upper semicontinuous annihilator ¢ for the closed sets. If
d: X x X - R s defined by d(x, y) = @(x, {y})+ ¢(», {x}), then d is a symmetric
distance function such that d(x, y) =0 if and only if x =y, ie. d is a semi-
metric on X. We show that d is compatible with the topology of X, i.e. that for
each subset 4 of X, xeclA if and only if d(x, A) =0 (see 2.1(ii)).

To this end suppose first that d(x, 4) = 0 but x¢ cl 4. Then ¢(x, cl4) > 0.
Hence there exists an ae A such that d(x, a) < ¢(x, cl4). On the other hand

@(x, cl4) < o(x, {a}) < o(x, {a})+ ¢(a, {x}) = d(x, a)
by the monotonicity of ¢ — a contradiction! Therefore d(x, A) = 0 implies
xecl A. Conversely, if xecl 4 and ¢ > 0, choose an n such that 0 < n < w and

(*%) Evidently, ¢~ '(«, ¢} is open if ¢<0 or 1 <c.
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1/n < /2. Since ¢(x, {x}) = 0, there exists an open neighborhood U of x such
that ¢(y, B) < 1/n whenever (y, B)e U x(U). Moreover, there exists an
aeUnA. Since (x, {a})eUx (U) and (a, {x})e U x U, it follows that

d(x, a) = @(x, {a})+¢(a, {x}) < l/n+1/n <&,
which implies that d(x, A) = 0.
So far we have shown that X is semi-metrizable. By a folklore result in

developability theory it follows that X is developable provided that d has the
following property:

(») Whenever xeX and (x,), (y,) are sequences in X such that
lim(d(x,, x)) = lim(d(y,, x)) = 0 it follows that lim(d(x,, y,)) = 0.

In order to show that d has property (») consider two sequences (x,), (y,) in
X such that lim({d(x,, x)) = lim(d(y,, x)) = O for some point xeX. Suppose
that the sequence (d(x,, ¥,) = (@(x,, {¥.})+ @, {x,})) does not converge to
0eR. Then, without loss of generality, we may assume that ¢(x,, {y,}) does not
converge to 0e R. Hence there exists a ¢ > 0 and a cofinal subset N of @ such
that @(x,, {y,}) > ¢ for each neN. On the other hand, since o(x, {x}) =0,
there exists an open neighborhood U of x such that @(y, B) < c whenever
(», B)e U x (U). Moreover, there exists an ny, <w such that (x,, {y,})e
U x (U) for each n > n,. Therefore, if ne N and n > n,, then ¢(x,, {y,}) <,
contradicting the fact that ¢(x,, {y,}) > c. It follows that lim(d(x,, y,)) = 0. =

By virtue of Lemma 5.2 we can reformulate Theorem 6.1 so that we get
another characterization of developable spaces in terms of upper semicon-
tinuous real-valued mappings.

6.5. THEOREM (Brandenburg [1986]). A topological space X is developable if
and only if there exists a compatible(*°) g-equi-upper semicontinuous(*') family
F = Un<w#, of mappings from X into [0, 1] which has the following property
(D). '

(D) Whenever xeX, F' < %, n<w, such that F'[X]={f(x)|feF'}
< (a,1], a> 0, there exists a neighborhood V of x such that F'[V]
={fW)fe#, yeV}=(0,1] =

Note that this theorem is the analogue, for developable spaces, of a nice
metrization thgorem due to J.-I. Nagata [1957] and J. A. Guthrie and
M. Henry [1977]. Let us call a family & of upper semicontinuous mappings
from a topological space X into [0,1] sup-complete if for every subfamily & of
Z the mapping sup{f|fe %'} is upper semicontinuous. Since it is easily seen
that every equi-upper semicontinuous family of mappings into [0, 1] is
sup-complete, we ask:

(*°) Compatibility means that {f~'(0, 11|fe #} is a base lor the open sets of X.
(®) This means that every &, is equi-upper semicontinuous (5.2).
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ProBLEM N. Let X be a topological space which admits a compatible
family & = ( J,<o& , of upper semicontinuous mappings into [0, 1] such that
every %, is sup-complete and & satisfies condition (D) in Theorem 6.5. Is
X necessarily developable?

That the somewhat odd looking condition (D) in Theorem 6.5 cannot be
dropped follows from our next theorem which shows that otherwise a charac-
terization of o-spaces (2.1(i)) is obtained.

6.6. THEOREM (Brandenburg [1986]). For a topological space X = (X, 1) the
following conditions are equivalent:

(i) X is a o-space.

(i) There exists an equi-upper semicontinuous family F = (fy;: X
= [0, 1)y, of mappings such that fi7'[{0}] = X\U for each Uer.

(ili), There exists a compatible o-equi-upper semicontinuous family
F = Un<o#, of mappings from X into [0, 1].

Proof. (i) implies (ii): Let # = U,,<,,,£,, be a g-closure preserving closed
network of X. For each Uer define a mapping f,: X —[0, 1] by

0 if xeX\U,
fulx) =< 1/2"U=  if xeU, where n(U, x)
=min{n <w|xe(){Be®,v...uB,|Bc U}}.

Then & =(fy: X ~[0, 1])ye. is equi-upper semicontinuous and fy; '[{0}]
= X\U for each Uer.

Obviously, (i) implies (iii). If # = | J,<»%, is a compatible -equi-upper
semicontinuous family of mappings from X into [0, 1], then
U/ 01/2", 11] Ife #,} In < w} is a a-closure preserving closed network
of X which shows that (iii) implies (i). =

Interestingly, a characterization of orthocompact (see footnote (5)) develop-
able spaces is obtained if simultaneously condition (D) in Theorem 6.5 is
replaced by a more natural (but stronger) condition and the equi-upper
semicontinuity is weakened to sup-completeness.

6.7. Tueorem (Brandenburg [1986]). For a T,-space X the following
conditions are equivalent:

(i) X is developable and orthocompact.

(i) There exists a compatible family F = | ), <%, of upper semicontinuous
mappings from X into [0, 1] such that every &, is sup-complete and the following
condition (1) is satisfied:

() Whenever xeX, F' < #,,n < w, such that F'[X] < (0, 1]
there exists a neighborhood V of x such that #'[V] < (0, 1].

Proof. (i) implies (ii): If X is developable and orthocompact, there exists
a development (%,),<, of X consisting of interior-preserving open covers. By
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virtue of Lemma 5.3 every %, is dissectable. Hence every #,, induces a family
%, of upper semicontinuous mappings as in the proof of Lemma 5.2. It is easily
seen that & =  J,<o»%, has the desired properties.

(i) implies (i) Let & =|J,<,%, be a compatible family of upper
semicontinuous mappings from X into [0, 1] such that every #, is
sup-complete and (I) is satisfied. If 8, = {f"'(0, 1]|fe #,} for each n < w,
then (I) implies that every 4, is interior-preserving, ie. # =) <o#®, is
a o-interior-preserving open base of X. Since every semi-stratifiable T,-space
with a o-interior-preserving base is developable and orthocompact (e.g. see
Fletcher and Lindgren [1982], Chapter 7), it suffices to prove that X is
semi-stratifiable (2.1(iii)). To this end let ni—(k(n), m(n)) be a bijection from
w onto wxw. For each open set U in X and for each n < w define

Un = d{f_l(l/zk("): 1] Ifeym(n) » f—l(l/zk("H-I, 1] < U}

Evidently, every U, is closed, and U, < V, whenever U, Vare openand U = V.
In order to verify that U = ( ) {U,|n < ®} consider an arbitrary point xeU.
Since & is compatible, there exists an m <w and an fe#, such that
xef 10, 1] = U. Hence, if k < w and n < w are chosen in such a way that
1/2* < f(x) and (k(n), m(n)) = (k, m), then xeU,. Therefore the proof is com-
plete once we have shown that U, < U for each open set U and for each n < w.
But the latter is an immediate consequence of the inclusions

UL/ 71725, 101 /e Py, £71 12441, 1] < U}
< (Sup{feF S 1 (1/2M* 1 [ < U}')"(I/Z""", 1]
< (Sup{fe F i |f 1 (1/25"*1, 1] = UY)TI[1/2"™, 1]
c {12, ife Fu, 7124 1] UL e U,
for the sup-completeness of %, implies that

(sup{fe Fpm|f "1 (1/24"*1, 1] c U}~ [1/2"", 1]
is closed. u
The proof of the preceding theorem and a recent characterization of
stratifiable spaces by C. R. Borges and G. Gruenhage [1983] suggest the
following question.

ProBLeEM O. Is a topological space semi-stratifiable if and only if it has
a, compatible family & = ( Jn<,%, of upper semicontinuous mappings into
[0, 1] such that every &, is sup-complete?

Let us close this section by mentioning yet another characterization of
developable spaces which actually was the first result of this type we ever proved.

6.8. THEOREM. A topological space is developable if and only if its topology is
induced by a nearness structure which has a countable base. m

For a proof of this theorem we refer to (Brandenburg [1978], 2.2.1) or to
(Carlson [1980]), where it was obtained independently.
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6.9. Remarks. (a) A characterization of orthocompact develop-
able spaces similar to Theorem 6.1 was recently proved by T. Mizokami
[1987].

(b) In [1988] S. Romaguera has characterized quasi-metrizable develop-
able spaces (= strongly quasi-metrizable spaces) in terms of upper semicon-
tinuous mappings.

§ 7. On inverse limits of developable spaces

In [1939] J. Dieudonné has shown that a completely regular T,-space X is
homeomorphic to the limit of an inverse system of metrizable topological
spaces if and only if the fine uniformity on X is complete. Since then inverse
limits of metrizable spaces are called topological complete ot Dieudonne
complete spaces. By combining results of B. A. Pasynkov [1968] and T. Shirota
[1952] it follows that inverse limits of second countable metrizable spaces are
precisely the realcompact spaces as introduced by E. Hewitt [1948]. By
Shirota’s theorem [1952] a completely regular T;-space is realcompact if and
only if it is a Dieudonné complete space in which every closed discrete
subspace is of nonmeasurable cardinality. These classical results motivate our
procedure in this section, i.e. we intend to characterize those topological spaces
which are limits of inverse systems of (second countable) developable T;-spaces.
In this way we obtain a natural generalization of realcompactness which has
not been studied before. In particular, it will turn out that the resulting class is
nothing but the epireflective hull of the class of (second countable) developable
T,-spaces in a suitably chosen subcategory of the category of all topological
spaces (see 7.19(a)). All results in this section-are new and appear here for the
first time.

As Theorem 2.13 indicates, para-uniform nearness spaces will have to play
the role of uniform spaces. However, while there is a natural concept of
completeness for uniform spaces, the situation is essentially different as soon as
one considers non-regular nearness spaces (see Bentley and Herrlich [1979]).
Both completeness properties for nearness spaces which have been studied
most, ie. Herrlich completeness (= cluster completeness; Herrlich [1974]) and
ultrafilter completeness (Carlson [1975]), turn out to be not suitable for our
purpose. What we need is the following notion which we attribute to K. Morita
[1951].

7.1. DEFINITION. A nearness space (X, p) is called Morita complete, if
(\{clF|Fe #} # @ for every strong Cauchy filter # on X, where a filter # is
called a strong Cauchy filter if for every % €y there exist a Ue %, an Fe %, and
a ¥ eyu such that St(F, ¥) < U.

Before we can formulate the first main theorem of this section we need to
introduce some more terminology.
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7.2. DEFINITION (Mrowka [1957]). For a subset 4 of a topological space
X the set

cl?A={xeX|GnA+#D for every Gyset G in X containing x}

is called the G;-closure of A in X. A is said to be G,-closed in X if cl’4 = A. A is
called G-dense in X, if cl’4A = X,

7.3. DEFINITION. (i) If 4 is a collection of subsets of a set X which is closed
with respect to finite intersections, a nonempty collection # < £ of nonempty
sets is called a %-filter if the following conditions are satisfied:

(F.1) FnGe#% whenever Fe % and Ge %,
(F2) If Fe# and Ge4 satisfies F = G, then Ge#F.

A A-filter # is said to be a B-ultrafilter if Ge B and GNF # @ for each Fe #
implies that Ge #.

(i) For every topological space X we denote by 2(X) the collection of all
D-closed subsets (1.3) of X,

For the definition of (limits of) inverse systems of topological spaces we
refer to (Engelking [1977]). We can now prove:

7.4. THEOREM. For a D-completely regular space X = (X, 1) the following
conditions are equivalent:
(i) X is homeomorphic to the limit of an inverse system qf developable
T,-spaces.

(i) X is homeomorphic to a Gs-closed subset of a product of developable
T,-spaces. 3

(iii) X is homeomorphic to a G,-closed subset of a product of D-paracom-
pact T,-spaces.

(iv) X has a Gy-base A for the closed sets, closed with respect to countable
intersections, such that {X\F | F € #} is kernel-normal whenever ¥ is a #-ultra-
filter with cip(®*?) and (\{F|Fe#} =

(v) {X\F|Fe#} is kernel-normal whenever # is a 2(X)-ultrafilter with
cip and (\{F|Fe#} =

(vi) (X, u,) is Morita complete (see 2.13).

Proof. (i) implies (ii): Suppose that there is an inverse system

( f,' X, — X))i jer;1<; of developable T;-spaces such that X is homeomorphic to

= hm(ff X; = X )i jer,i<- It suffices to show that X' = [ ;e X, is G,-closed.

So consider a point xe[[i.rX,\X". There exist i,jel such that i <j and

Ji /opj( ) # pi(x), where p,;, p, are the projections from [TierX, onto X, respec-
tively X, But then

= (flop) ™ L{/’p,)} 10 i [{p:(x)}]

(3*) & has the cip (countable intersection property), if N{FIFe#'} #@ for -each
Fe[F]
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is a Gyset in [];X, containing x such that GnX' = @.

Evidently, (i1) implies (iii).

(ii)) implies (iv): For simplicity we assume that X itself is a G;-closed
subspace of a product [ ] Y; of D-paracompact T,-spaces Y. For each ie] let
%, be a G,-base for the closed sets of Y. Then the collection & consisting of all
countable interséctions of finite unions of sets of the form (p; | X)~'[B], Be %,
iel, is a Gybase for the closed sets of X which is closed with respect to
countable intersections. Consider a &-ultrafilter # on X with cip such that
N{FIFeF}=0.1{9 ={GeB,|(p,| X)"'[GleF} for each iel, then the
following holds:

A {G|Ge¥}=@ for some iel

Note that once we have proved Claim A it follows that
{(p;t X)"'[Y\G]|Ge¥%,} is a kernel-normal open cover of X (5.4 (viii)) which
refines {X\F|Fe#}. Hence {X\F|Fe%} is kernel-normal itself.

Suppose now that Claim A is false, i.e. that for each iel there is
a y,€(){G|Ge¥%,}. Then:

B. ¥ ={Ge#|yeGCG} for each iel.

In fact, if Ge%,; contains y,, there exists a sequence (G,),<, in &, such that
YAG = J{G,In<w} and (p;|X)"'[G,]¢F for each n <w. Since F is
a -ultrafilter, we can find F,e & such that F,n(p;[ X) '[G,] = @ for each
n<w. By the cip of & it follows that (\{F,In <w}e#. Since [\{F,|
n<w}c(p;}X)"1[G], we see that Ge ¥,

Now consider the point y = (y)s in [ ]ier ¥;; We claim that ye X. In order
to verify this assertion it suffices to show that every G,-set in HIE, Y; containing
y meets X, for X is G,closed in [ [ ¥.. So let (U,),<. be a sequence of open
subsets of [ [;; ¥; such that ye U = () {U,|n < w}. For each n < w there exist
a J,e[/]1°® and open sets U(,n)cY, for each jeJ, such that
ye(\{p; '[UG. n)]ijeJ,} = U,. For each n <w and for each jeJ, we can
find a G(j, n)e®; such that y,eG(j, n)c U(j, n). By virtue of Claim B,
(p;1 X)"'[G(j, )]eF whenever n < w and jeJ, Hence there exists an
xe(V{p;1 X)"'[G(j,n]|n < w, jeJ,}. In particular, xe Un X. Tt follows that
yeX.

Now ({F|Fe#} being empty, there must be an Fe# such that
ye X\F. Therefore there are a Je[I]*“ and open sets ¥V, c Y, for each jeJ
such that ye () {(p;! X)"*[V;]ljeJ} = X\F. Moreover, there exist G,e%,
satisfying y,eG;cV, for each jeJ. It follows from B that
ﬂ {(pj PO (Gllje J} e Z, contradicting the fact that F e #. Therefore Claim
A must be true.

(iv) implies (v): Assume that & is a G,-base for the closed sets of X, closed
with respect to countable intersections, such that {X\G|Ge¥} is ker-
nel-normal whenever ¢ is a #-ultrafilter with cip and (| {G|Ge %} = @. Let
F be a P(X)-ultrafilter with cip such that ({F|Fe#}=@. By Zorn’s



§ 7. On inverse limits of developable spaces 65

Lemma there exists a -ultrafilter % contajning {Ge®|F < G for some
Fe#}. Suppose that there is a ¥'e[#]%° such that ({G|Ge¥'}=0.
For each Ge ¥’ choose a B;e[#]°® such that X\G = | | {B|Be%}. Then
X =) {B|Be| {#;]Ge¥'}}. Moreover, there exist a Goe ¥ and a Bye B,
such that B, e #, for otherwise we could find Fpe # such that Fyn B = @ for
every Bel){#;|1Ge¥'}. Since () {Fy|Be|){#;|Ge¥'}} =, this would
contradict the fact that # has the cip. It follows that both B, and G, belong to
& — a contradiction, since Byn G, = . Therefore 4 has the cip. Since it is
easily seen that ¥ # and (({G|Ge¥} =0, {X\G|Ge¥) is a ker-
nel-normal open cover of X which refines {X\F|Fe%}. Hence {X\F|Fe %}
is kernel-normal itself.

(v) implies (vi): Let 4 be a strong Cauchy filter on X with respect to
(X, uy). By Zorn’s Lemma there exists a 2(X)-ultrafilter # on X containing
{Fe2(X)|G = F for some Ge¥}. Now the key observation is:

C. There is no #' c & such that {X\F|Fe#'} is a kernel-normal open
cover of X.

For suppose that {X\F|Fe#'}eu, for some #' = #. Then there exist an
Fe#', a Ge¥%, and a % ey, such that St(G, %) = X\F. Without loss of
generality we may assume that % is a kernel-normal open cover of X. Let
v <t be a developable topology such that int % = {int,U|Ue%} covers
X (2.11). Then H = X\St(F, int_.4%) is a D-closed set in X such that G = H. It
follows that He %, hence HN F # @ — a contradiction! Since every countable
cover of X consisting of D-open sets is kernel-normal, it follows from C that
# has the cip. But then (v) and C imply that (| {F|Fe#} # @. Hence
({clG|Ge¥} # QD which proves the implication.

(vi) implies (i): Obviously, T= {t’ < 7|(X, 7') is developable} is directed by
set inclusion, i.e. ' < " if and only if ' = 1”. For each 7' € T let Y, be the space
obtained by identifying points in (X, 7') which have identical closures and
denote by g, the corresponding quotient mapping from (X, ) onto Y.
Whenever 7, t"eT and 7' < 1" let f5: Y,»— Y, be the unique continuous
mapping for which the following diagram commutes:

id
[ X,7") - %% {x,71

-] Qs

Yeir

Yot = riy
[#)

Then (f¥": Y, — Yo)orver; <o is an inverse system of developable T;-spaces.
We claim that X is homeomorphic to Y= lim (ff": Y» = Y) ver;e <o Since

the family (g.: (X, ')> Y,))..er of continuous mappings separates points from
closed sets, the unique mapping e: (X, 1) []Jver ¥, for which the diagram
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(X7

> ey Yo
)

Pe!
q

Yet

commutes for all 7'eTis an embedding, where p,. is the natural projection.
Thus, in order to verify our claim it suffices to prove that e[X] =Y.
If xeX and 7, "€ T such that " < t”, then

j;E"Opr"(e(x)) =.f;5”(qt”(x)) = Qt‘(x) = pr‘(e(x))’

which shows that e[X]c Y.
For the proof of the converse inclusion consider an arbitrary ye Y. We
show that

F = {q",l[Fr”r'ET,' p-(y)eF c Y.}

is a strong Cauchy filter with respect to u,. In fact, # is a nonempty collection
of nonempty subsets of X, and every subset of X containing an element of
& belongs to F. If q;'[Fle # and q;'[G]e %, there exists a 7"'e T such
that 7' < v and 1’ < 1. Since ye¥, p.-(y)eH =(fF ") '[FIn(f") " '[G],
ie. got[H]e#. But ¢q;-![H] = q7'[F1nq:*[G], which proves that F is
a filter on X. Furthermore, if Zep,, there exists a t'eT such that
int.% = {int,. U| U e%} covers X (2.11). In particular, p..(y)eint, U for some
Ue%. Hence, if (%,),<. is a development of (X, 7), then St(p.-(y), ¥,)€int, U
for some n < w. Since %,€u,, this shows that # is strongly Cauchy with
respect to u,. Assuming (vi) it follows that there is an x € X which is contained
in every element of &. Suppose that e(x) # y. Then q,.(x) = p.(e(x)) # p.(y) for
some 7' € T, i.e. xéq; [{p.-(y)}] although ¢ ' [{p-(y)}] € F — a contradiction !
Consequently, y = e(x)ee[X], which completes the proof. m

Of course, every Dieudonné complete space satisfies the conditions of the
preceding theorem. Moreover, it follows from 5.4 (viii) and 7.4(v) that every
D-paracompact T-space is an inverse limit of developable T,-spaces, in
particular every perfectly metacompact T;-space (5.5). Clearly, none of these
implications can be reversed.

Our next aim is to characterize those topological spaces which are
homeomorphic to the limit of an inverse system of second countable developa-
ble T,-spaces. For this purpose we need some preparations.

7.5. LEMMA. Every Lindelof subspace of a D-completely regular space X is
Gj-closed in X.

Proof. Let A < X be a Lindeldf subspace and consider a point xecl® 4.
Then (J{GNA|Ge2(X), xeG} #@, for otherwise the open cover
{A\(GNA)|GeD(X), xeG} of A would have a countable subcover
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{A\(G,nA)|G,e2(X), xeG,. n <w}. Then ) {G,|n < w} would be a G; set
in X containing x which would not meet A, contrary to the fact that xecl® 4.
Since X is D-completely regular,

N{GNnA|Ge2(X), xeG} =An [} {Ge2(X)|xeG} = An{x}.
Therefore xe 4, which shows that cl’A=A. =

Let # be a o-algebra on a set X. A measure(®?) v: #—[0, —) is called
2-valued if v(X)=1 and v(B)e!{0, 1} = 2 for each Be #. It is called a Dirac
measure if it is 2-valued and there is a point x € X such that v(B) = 1 if and only
if xe B. A cardinal x is said to be Ulam-measurable if there exists a 2-valued
measure v: 2#(x)—2 such that v({a}) =0 for each a <» If X =(X, 1) is
a D-completely regular space, #,(X) is the ¢-algebra generated by 2(X), while
Z(X) denotes the o-algebra of all Borel subsets of X, Obviously,
B5(X) c #(X). A measure defined on £, (X) will be called a #(X)-measure on
X, whereas a measure with domain #(X) is called a Borel measure on X.
A Borel measure v on X is said to be regular if

v(B) = inf{v(U)| B = U, U open} = sup{v(4){A = B, A closed}
for each Bore!l set B in X. It is called z-additive if
v(U) = sup(v(V)| Ve ¥}

whenever Uet and 7 is an upwards directed(**) collection of open sets such
that U =) {V|Ve7"}. In analogy, a #p,(X}-measure v on X will be called
t-additive if

v(U) = sup{v(V)| Ve ¥’}

whenever U < X is D-open (1.3) and ¥ is an upwards directed collection of
D-open sets such that U = J{V|Ve*}.

Finally, the support of a %p(X)-measure v on X is the set
supp(v) = {xe X | v(U) > 0 for each D-open subset U of X containing x}. We
can now prove:

7.6. THEOREM. For a nonempty D-completely regular space X = (X, 1) the
Sfollowing conditions are equivalent.

(i) X is homeomorphic to the limit of an inverse system of second countable
developable T,-spaces.

(1) X is homeomorphic to the limit of an inverse system of D-completely
regular Lindeldf spaces.

(1) X is homeomorphic to a Gs-closed subset of a product of D-completely
regular Lindeldf spaces.

(*" For basic facts concerning measure theory we refer 1o (Cohn [1980]).
(**) A collection ¥ of subsets of X is called upwards directed, if for every (¥, V,} e[/ ]?
there is & V,e ¥ such that V,ul, c V..
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(iv) X is homeomorphic to a Gs-closed subset of *D, for some cardinal x.

(v) There exists a Gy-base B for the closed sets of X, closed with respect
to countable intersections, such that every B-ultrafilter & on X with cip is fixed,
ie. {FIFeZF}+0.

(vi) Every 2-valued %,(X)-measure on X is t-additive.

(vii) For every 2-valued #,(X)-measure v on X there exists a unique
t-additive Borel measure v' on X such that v =V |%,(X).

(viii) X is closed-complete(*®) and every 2-valued B (X)-measure on X has
a regular Borel extension.

(ix) Every 2-valued #(X)-measure on X has a nonempty support.

(x) Every 2-valued #,(X)-measure on X is a Dirac measure.

(xi) Every 2(X)-ultrafilter # on X with cip is fixed.

(xi) X has no closed discrete subspace of Ulam-measurable cardinality and
{X\F|Fe#} is kernel-normal whenever F is a 9(X)-ultrafilter with cip and
({FIFeZ}=0.

(xiii) (X, u,) is Morita complete (see 2.13).

Proof. Evidently (i) implies (ii). That (ii) implies (iii) can be shown 4s in
the proof of Theorem 7.4 “(i) implies (ii)”.

(iii) implies (iv): Let X be homeomorphic to a G,-closed subspace of
a product [ Y; of D-completely regular Lindeldf spaces Y, For each iel
there exists a cardinal »(i) such that Y] is homeomorphic to a subspace Y; of
*@p, (2.2). By virtue of Lemma 7.5 every Y is G;-closed in *®D,. Hence X is
homeomorphic to a G,-closed subspace of *D,, where » = Z:a%(i)-

(iv) implies (v): For simplicity we assume that X itself is a G,-closed
subspace of *D, for some cardinal ». For each a < » denote by p, the natural
projection from *D; onto D,. Let € be a G,-base for the closed sets of D,. If
% consists of all countable intersections of finite unions of subsets of X of the
form (p, [ X) " ![C], « <%, Ce%, then B is a G,-base for the closed sets of
X which is closed with respect to countable intersections. That every
Z-ultrafilter on X with cip is fixed can be shown by some obvious maodifica-
tions of the argument used to prove that (iii) implies (iv) in Theorem 7.4.

(v) implies (vi): Assume that there is a G,-base # for the closed sets of X,
closed with respect to countable intersections, such that every #-ultrafilter with
cip is fixed: Let v be a 2-valued #(X)-measure on X. A straightforward
application of Zorn’s Lemma yields a #-ultrafilier # on X such that

{Fe#|AcF for some Ae 2(X) with v(4) = 1} cF
Assume for a moment that the following claim is true.
A. % has the cip.

(**) A topological space X is called closed-complete (Blair [1977]) or a-realcompact (Dykes
[1970]) il every closed ultrafilter on X with cip is fixed.
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Then we may argue as follows. Suppose that there is a @-open subset U of
X and an upwards directed collection ¥ of D-open sets such that
U =J{VIVe??} and v(U) # sup{v(V)| Ve ¥'}. Then v(U) =1 and v(V) =0
for each Ve ¥" If (4,)n<, is a sequence in D (X) such that U =) {4,|n < @},
there exists an n, < w such that v(4,) = 1. Since 4 is a base for the closed sets,
there is a subcollection #' of # such that 4, = () {B|Be4%'}. Hence

(\{FIFe#} < (\{B|Be#'} =4, cU.

By virtue of A there isan xe | {F|Fe#} < U. Moreover, there exist a B, &
and a V,e¥" such that xe X\B, c V.. Since v(X\B,) =0, it follows that
B.e#, hence xe B, — a contradiction which proves that (v) implies (vi).

It remains to verify Claim A, To this end assume that there is an
F'e[#]%° such that (| {F|Fe %'} = . Since # is a Gy-base, we can find, for
each Fe#', a #-e[#]°° such that X\F = | ) {B|Be%;}. It follows that

X =U{X\FIFeF} = ) {BIBe{%;| FeF'}).

Since | ) {#F| F e #'} is countable, there exists an F,e %' and a B, € %, such
that v(B,) = 1. But then B,e & such that BjnF, = &, which is impossible.
Hence Claim A must be true.

That (vi) implies (vii) follows from a general measure extension theorem
due to K. P. Dalgas ([1982], Theorem 3.7), and that (vii) implies (viii) becomes
obvious in view of the following facts.

B. Every t-additive 2-valued Borel measure on X is regular.

C. X is closed-complete if and only if every regular 2-valued Borel measure
on X is r-additive.

D. If v and v are regular 2-valued Borel measures on X such that
vIBp(X) =V 1%p(X) and v is 7-additive, then v ="

We omit the routine verifications of B and D and refer to (Dalgas [1978], 2.2.6)
for a proof of C.(*°)

(viii) implies (ix): Let v be a 2-valued #,(X)-measure on X. If
N ={Uc X|U D-ppen, v(U) = 0}, then

¥ = {V|there exists an A" e[A#]°® such that V={J{U|UeA"}}

is an upwards directed collection of open sets such that X\supp(v)
=J{VIVe¥'}. Assuming (viii) there exists a t-additive 2-valued Borel
measure v' on X such that v' [ %,(X) = v. Since V(X \supp(v)) =0, it follows
that supp(v) # @.

(x) and (xi) are equivalent by a general result due to W. Adamski ([1976],
Theorem 2.1). Therefore we proceed by showing that (ix) implies (xi). To this
end consider a 2(X)-ultrafilter & on X with cip. If

(3¢) For Hausdorfl spaces, C was proved by R. J. Gardner [1975].
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(B) = 0 whenever F = X\B for some Fe#,
VB = 1  whenever F < B for some Fe#%#,

for each Be #,(X), then v is a 2-valued %, (X)-measure on X. Assuming (ix)
there exists an xesupp(v) < [ {F|Fe#}.

(xi) implies (xi1): Evidently, (xi) implies that every closed discrete subspace
of X is realcompact. Hence X has no closed discrete subspace of
Ulam-measurable cardinality (Gillman and Jerison [1960], 12.2).

(xii) implies (xiii): Suppose that there is a strong Cauchy filter 4 with
respect to (X, p,,) such that () {clG|Ge¥} =@. Let F be a 2(X)-ultrafilter
containing {Fe2(X)|G < F for some Ge¥}. # has the cip, for otherwise
there would be an #'e[#]<“ such that {X\F|Fe %'}epu, and hence a Ge ¥,
a ¥ ep,, and an Fe %' such that St(G, ") < X\F. By virtue of Lemma 2.11
we could find a developable topology t(¥”) = t such that {int,y, V| Ve 7?7} is
a covering of X. Since clyG < St(G, ¥’), it follows that cl,y,Ge% and
wclyGNF =@, which is impossible.

Assuming (xii) it follows that {X\F|Fe %} is kernel-normal. Applying
Lemma 2,11 there exist a developable topology © = 7 and a t"-open cover
¥ = (Up)res such that Up = X\F for each Fe#. Moreover, since (X, 7') is
subparacompact, there is a sequence (%,),<, of 7-open refinements of
% satisfying
(¥) for each xe X there is an n(x) < w such that ord(x, %)) = 1

(Burke [1970]). For each n< w define %, ={Ue%,|A(U) # O}, where
AU) =X\ J{Ve#,|V+ U}. Then it is easily seen that each {A(U)|Ue%,} is
closed and discrete with repect to . Hence X(n) = | J{A(U)|Ue%,} e 2(X)
for each n < w. We show that N = {n < w| X(n)e #} is nonempty. Suppose
that X (n)¢ & for each n < w. Then there are F e # such that X(n)nF, =0
for each n < w. Since # has the cip, () {F,|n < w}e# But this is impossible,
because property (%) implies that

N{F.In < w}c {X\X(M)In < 0} = X\J{XM)In <o} =0.

For each Ue U {#,|n < w} choose an x,eA(U). Then every A(n)
={x,|Ue,}, n < w,is a closed discrete subspace of X. By Zorn’s Lemma
there exists, for each neN, an ultrafilter %, on A(n) such that
{G(F,n)|FeF} < ¥, where G(F, n) = {x,€ A(n)| FnA(U) # 9}.

E. ({G|Ge¥,} =@ for each neN.

For suppose that there is an neN and an x,eA(n) such that
xy€(){G|Ge¥%,}. It follows that X\U ¢ %, for otherwise x, e G(X\U, n)e%,,
hence (X\U)n A(U) # @, which is impossible. Since .7 is a 2(X)-ultrafilter,
(XNU)nFy = @, for some Fye#, ie. F, < U. On the other hand %, refines
{X\F|Fe%}. Hence F, € U < X\F, for some F, e #, contradicting the fact
that & is a 2(X)-filter.
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By virtue of (xii) and (Gillman and Jerison [1960], 12.2), every subspace
A(n), neN, is realcompact. Therefore E implies that for each ne N there is
a 9,e[%9,15° such that (| {G|Ge¥,} = @. Moreover, the following holds.

F. For each neN and for each Ge%¥, there is an F(G, n)e # such that
F(G,n)c|J{Ue,|xyeG}.

To prove this suppose that there exist an neN and a Ge¥, such that
FrnX\UJ{Ue%,|x,eG}) # @ for each Fe#. Then X\|J{Ue%lx,
eG}eZ and therefore G(X\| | {Ue#,|xy€G}, n)e¥,, contradicting the fact
that Gn(X\|J{Ue,|x,eG}) = 2.

Now, for each mew\N let F(m) be an element of # such that
F(m)nX(m) = @. Since # has the cip, there exists an

xe(V{F(G, n)|neN, Ge%,}n () {F(m)|mew\N}.

By virtue of property () there is an n(x) < w such that x e X (n(x)). It follows
that n(x)e N. If U(x) is the only member of %, such that xe A(U(x)), then
Xy & G, for some G, €%, . Consequently, x¢| ) {U €%y |x,€G,}. On the
other hand, F implies that x € F(G,, n(x)) = { J{U € ¥py|xy€G,} — a con-
tradiction which completes the argument.

Finally, that (xiii) implies (i) can be shown as in the proof of the
corresponding implication in Theorem 7.4. m

Let us call a topological space X D-complete if it is D-completely regular and
satisfies one — and therefore all — of the conditions in the preceding theorem.
Evidently, every D-completely regular Lindeldf space is D-complete. Moreover,
it follows from Theorem 7.6 that the following implications hold:

realcompact = D-complete =closed-complete.

Clearly,D, is D-complete, but not realcompact. The well-known Is-
bell-Mrowka space ¥ (see Gillman and Jerison [1960], 5.I) is an example of
a completely regular D-complete space, in fact a Moore space, which is not
realcompact. However, for normal spaces, D-completeness and realcompact-
ness coincide.

7.7. COROLLARY. A normal T;-space is realcompact if and only if it is
D-complete.

Proof. It is easily seen that in a normal T,-space the collection of
D-closed subsets coincides with the collection of zero-sets. Therefore, for
normal T,-spaces condition (xi) in Theorem 7.6 is a characterization of
realcompactness. m

Observe that w, is a normal T,-space which is not D-complete. As P.
Simon [1971] has shown, the Dowker space constructed by M. E. Rudin
[1971] is an example of a normal T,-space which is closed-complete but not
realcompact, hence not D-complete. By virtue of Theorem 4.4 the collection of
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all closed subsets of a topological space X coincides with 2(X) if and only if
X is perfect. Hence a perfect T;-space is D-complete if and only if it is
closed-complete. But this observation can be slightly improved.

7.8. COROLLARY. Let X be a D-completely regular space satisfying

(&)  Whenever (A,),<. i a sequence of closed subsets of X such that
Ane1 < A, for each n< @ and [\{4,In < 0} =0, there exists
a sequence (F )y« in D(X) such that A, = F, for each n < w and
N {F.ln <o} =0. )

Then the following conditions are equivalent:
(i) X is D-complete.
(i) X is closed-complete.

Proof. It suffices to show that (ii) implies (i). To this end consider
a 9(X)-ultrafilter & such that [\ {F|Fe %} = @. According to condition (xi)
in Theorem 7.6 we have to show that & does not have the cip. By Zorn's
Lemma there exists a closed ultrafilter 4 on X containing % Since
({G|Ge¥} = B, there exists a sequence (G,)s<,, in ¥ such that G, , = G, for
each n < w and () {G,|n < o} = @. By property (A) we can find a sequence
(F <o in 2(X) such that G,  F, for each n<w and ({F,|n<ow}=0.
Since F,e % for each n < w, the proof is complete. w

7.9. COROLLARY. Let X be a T,-space which has no closed discrete subspace
of Ulam-measurable cardinality. Each of the following conditions implies that X is
D-complete:

(i) X is developable.
() X is a o-space.

(ili) X is semi-metrizable.
(iv) X is semi-stratifiable.
(v} X is D-paracompact.

(vi) X is perfectly subparacompact.

(vii) X is D-normal and O-refinable.

Proof. If X is 6-refinable, then our assumption on X implies that X is
closed-complete (Blair [1977]). If in addition X is assumed to be D-normal,
then X is countably D-paracompact (5.12(f)). Since every countably D-paracom-
pact space has property (A) of the preceding corollary, we see that (vii) implies
that X is D-complete. But (vii) is the weakest of the above properties. »

Our next theorem which is motivated by recent work of A. V. Arkhan-
gel’skii [1983] and V. V. Uspenskii [1983], shows that an entirely different
condition on a D-completely regular space also implies its D-completeness.

7.10. THEOREM. Let X be a D-completely regular space satisfying

(V) A mapping ¢: C,(X, D,)— D, is continuous(*?) if and only if for each

é" C,(X, D,) is the space obtained by supplying the set C(X, D,) of all continuous
mappings from X into D, with the topology of pointwise convergence.
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Fe[C(X, D,)]=° there is a continuous mapping @r: Cp(X, D)= D,
such that @p[F = @.
Then X is D-complete.

Proof. Denote by C. the set of all continuous mappings from C,(X, D)
into D ;. By virtue of conditions (iii) or (iv) in Theorem 7.6 it suffices to verify
the following claims.

A. X is homeomorphic to a G,closed subspace of C.
B. C is a Gyclosed subspace of the product space “*:Pip

For the proof of Claim A note first that the correspondence xe X—e(x)eC
defines an embedding of X into C, where e(x)(f) =f(x) for each xe X and for
each feC (X, D,). Thus, we only have to prove that e[X] is G,closed in C.

Suppose there is a ¢ e C such that gpeclée[X]\e[X]. Let a, b be two
distinct points in D,. If c,, ¢,eC,(X, D,) are the constant mappings which
map X onto {a} respectively {b}, then the following holds:

Al o) =a
A2 Every open neighborhood G of ¢, in C,(X, D,) contains an fg; such that
o(fg) = b.

Once we have proved these claims we obtain a contradiction as follows. There
exists an open neighborhood V of ¢(c,) = a in D, such that be D,\V. By the
continuity of ¢ and A.2 there must be an f,-ipye@ '[V] such that
¢(fp-1) = b, contradicting the fact that be D \V.

In order to verify Claim A.1 suppose that ¢(c,) # a. Then there is an open
neighborhood U of ¢(c,) such that a¢ U. Since peclie[X] and ¥ = {y
eC|y(c,)eU} is a Gyset in C containing ¢, there exists an xeX such that
e(x)e ¥. It follows that a = c,(x) = e(x)(c,) € U, a contradiction which proves
Claim A.l.

For the proof of Claim A.2 consider an arbitrary open neighborhood G of
¢, in C,(X, D,). There exist an 4e[X]““ and an open subset U, < D, for
each xe A such that

c,eF ={feC X, D))|f(x)eU, for each xe A} = G.

Since ¢ ¢e[X], we can find a D-closed subset I' of C such that ¢ eI’ and
I'ne[A]=0.If B={xe X|e(x)el}, then B is a nonempty closed subset of
X such that A "B = @. By virtue of 2.2 there exist disjoint D-closed subsets A’,
B’ of X such that 4 < A’ and B c B/, for A is finite. Using 1.6 we can find
an feC,(X, D,) such that f[A'] < {a} and f[B] < {b}. Since f(x)=a
= c,(x)e U, for each xe 4, it follows that fe F = G. We claim that ¢(/f) = b.
For otherwise there would be an open subset W of D, such that ¢(f)€ W and
b¢ W. Then I" = I'n{y e C|¢(f) e W} would be a G;-subset of C containing ¢.
Hence we could find a ze X such that e(z)eI” < I'. But this is impossible, for
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ze B and therefore b = f (z) = e(2)(f) € W, contradicting the fact that b ¢ W. This
contradiction completes the proof of Claim A.(*®)

For the proof of Claim B consider an arbitrary ,€ “*®YD \C. By virtue
of property (V) there exists an Fe[C(X, D,)]%° such that [ F # [ F for
each yeC. If h: €XPUD FD s defined by

Y e®XPOD S h(y) =y | Fe'D,,

then 4 is continuous and h(y,)¢ h[C]. Since *D, is developable, it follows
that h™'[{h(¥y)}] is a Ggset in *PYD, containing Y, such that
R~ [{h(o)}]NC =0, ie. Yoécl’C.

ProBLEM P. Characterize internally those D-completely regular spaces
which have property (V) of Theorem 7.10. Does every D-complgte space have
this property?

In the remainder of this section we will show that there are analogues, for
D-completely regular spaces, of the Hewitt realcompactification respectively
the Dieudonné completion of a completely regular T;-space. For this purpose
we need the following extension theorem.

7.11, PROPOSITION. Let f be a continuous mapping from a Gs-dense subspace
A of an arbitrary topological space X into D,. If clyf~'[F1nclyf~'[G] =0
for each pair F, G of disjoint closed subsets of D, then there is a continuous
mapping g from X into D, such that gl A =f.

Proof.(®®) Let m: D—D, be the Ty-reflection and define a mapping
E from § into the closed subsets of X by

E(ng,.... m—y) = Cle—l[n[A(”o,---’ "k—l)]]

for each (ny,..., m-() in §, where o = {A(ng,..., m-()|(ng, ..., m—1)€S} is
the canonical subbase for the closed sets of D. Evidently, E has property (E.2)
of Lemma 1.2. In order to prove that E has property (E.1), consider an
arbitrary (ng, ..., m-1)€ S\{(0)}. We have to show that

(%) X\(EQYUE(ng,..., m-1)={J{EMg,..., 1, n|0 < n < w}.
Suppose that there is an xeX\(E(OQ)UE(ng,..., m—;) such that
x¢(J{E(ng,..., m-1, n)|0 < n < w}. Then

H = X\(E(Q)UE(®ng,..., - ) [V {X\E(ng,..., m—y, )]0 < n < w}

is a Ggset in X containing x such that HnA =@, contradicting our

(**) Note that we have not yet used property (V), i.c. Claim A holds for every D-completely
regular space.
(®®) See § 1 for the relevant definitions.
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assumption that 4 is G;-dense in X. Consequently, in (+) the inclusion < holds.
For the proof of the converse inclusion note that

n[Amg, ..., M-y, W]N(m[AOJUn[A(ng,..., —y)]) = O
whenever 0 < n < @. By the property of f it follows that
E(ng,..., m—1, ) = X\(E(Q)UE(n,, ..., n,))

for each n such that 0 <n < w, ie. that (*) holds. Since the remaining
case ((ng,..., k1) = (0)) can be treated in the same way, we conclude from
Lemma 1.2 that there is a continuous mapping f;: X =D such that
Je '[Ang, ..., m—1)] = E(ng,..., n,_,) for each (n,,...,m_,) in S. Then
g = nof is a continuous mapping from X into D, such that g|A =f. =

7.12. COROLLARY. For a Gg-dense subspace A of a D-completely regular
space X the following conditions are equivalent:

(i) A is D-embedded in X.

(1) For every continuous mapping f from A into a D-complete space Y there
exists a continuous mapping g from X into Y such that gl A =1,

(iii) cly (V{F,In < w} = (\{cIyF,|n < o} for each sequence (F,)n<. in
2(A).

(iv) ({clxF,In<w} =0 for each sequence (F,) <, in D(A) with
(N {F.,In<ow}=0.

(v) cly Fncly G = D ‘whenever F, G are disjoint D-closed subsets of A.

Proof. (i) implies (ii); Let f be a continuous mapping from A into
a D-complete space Y. By virtue of Theorem 7.6(iv) we may assume that Yis
a G;-closed subset of *D, for some cardinal ». Assuming (i) there exists, for each
o < %, a continuous mapping ¢, from X into D, such that g,[A = (p,[ Y)of,
where p,: *D, — D, is the natural projection. If g(x) = (¢,(x)), <, for each xe X,
then g is a continuous mapping from X into *D, such that g[|A =f The
observation that g[X] = g[cl°A] c cl’g[A] = cl¥ [A] = cl*Y = Y completes
the argument.

(i) implies (iii): Let (F,),<. be a sequence in 2(A). By virtue of Proposition
1.4 there exist a point be D, and continuous mappings f, from 4 into D, such
that F, = f,” '[{b}] for each n < w. Another application of the same proposi-
tion yields a continuous mapping h from “D, into D, such that
h™'[{b}] = {(b)n<w}> Where b, = b for each n < w. Let f: A—> D, be defined
by x+f(x) = h((/,(*))n<e). Assuming (ii) we can find continuous mappings ¢,
from X into D, such that g,[A=j, for each n<w Then
x+—=g (x) = h((g,(x)s<,) defines a continuous mapping ¢: X —» D, such that
gl A =7 Since it is easily seen(*?) that

(*®) Use the fact that ¢~ '[B] = cly(¢ [ A)~ ' [B] for cach continuous mapping ¢ from X into
D, and for each closed sel B in D,.
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cly(V{Faln < w} = clyf "' [{b}] =g~ '[{b}]
= (V{gx '[{b}1In < @} = ({clyF,|n < o},
the implication is proved.
Obviously, (iii) implies (iv), (iv) implies (v), and (v) implies (i) according to
the preceding proposition. m
Based on these preparations we can now prove:

7.13. THEOREM. For every D-completely regular space X there exists
a D-complete space 6X and a continuous mapping iy: X — 06X such that the
Jollowing conditions are satisfied:

(i) X is homeomorphic to iy[X].

(i) ix[X] is Gs-dense in 6X.

(iii) Whenever fis a continuous mapping from X into a D-complete space Y,
there exists a unique continuous mapping of from 6X into Y such that §foiy = f.

(iv) 6X and iy are unique, in the following sense:. Whenever jy is a conti-
nuous mapping from X into a D-complete space nX such that the analogues of (i)
—(ili) are satisfied, there exists a homeomorphism h: 6X —»nX such that
hoiy = jy.

Proof.(*!) Let X* be the Wallman-Frink compactification of X with

respect to 2(X), ie. X* is the set of all 2(X)-ultrafilters supplied with the
topology which has the collection {F* | Fe2(X)} as a base for the closed sets,
where F* = {F e X*|Fe #}. It is wellknown that X* is a compact T;-space
and that the correspondence xiiy(x) = {Fe2(X)|xeF} defines an embed-
ding of X into X* (e.g. see Steiner [1968]). We claim that §X = {# € X*| & has
the cip} has the desired properties. In order to verify this we prove first:
A X = clyeiy[X].
In fact, if edX and (G,).<o, is a sequence in 2(X) such that
F e () {X*\G¥|n < v}, then there exist F, e & such that F,nG, = @ for each
n< . Since # has the cip, we can find an xe(){F,|n < w}. But then
iy(x)e (Y {X*\G¥|n < w}, which proves that # ecly+i,[X]. Conversely, if
F e X*\0X, there is an F'e[#]° such that [\ {F|Fe#'} = . For each
Fe %' there exists a ¥ [2(X)]<° such that X\F = | ] {G| Ge %;}. It follows
that () {X*\G*|Ge| ) {¥:|Fe #'}} is a G;-set in X* containing & which has
an empty intersection with iy[X], thus proving that & e X*\clé~i,[X].

If F,Ge2(X) are disjoint, then F*nG* =@. Therefore i,[X] is
D-embedded in 6X (7.12), a fact which immediately implies (iii). (For it is easily
seen that for a given continuous mapping f from X into a D-complete space
Y there is at most one continuous mapping &f from X into Y satisfying
dfoiy = f) Since it is a matter of routine to verify (iv), it only remains to prove
that 6X is D-complete. We do this by showing that # = {F*néX |Fe 2(X)} is

(*) Tlie easiest way to prove this theorem -would be to consider the G,-closure of the image
of X under the natural embedding of X into ¢*-PYD . But we prefer another approach which
provides more insight into the structure of 6X.
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a G,-base for the closed sets of 6X with the property that every #-ultrafilter
with cip is fixed (7.6(v); evidently & is closed with respect to countable
intersections).

To this end consider an arbitrary Fe2(X). There exists a sequence
(Fpn<o in 2(X) such that X\F = | ) {F,|n < w}. Obviously, | J {F¥néX|n
< w} < X\F*. Conversely, if #edX\F*, there is an n <o such that
F eFyndX, for otherwise there would exist a Ge # and G,e# such that
GNF =@ and G,nF, = @ for each n < w. But then Gn (" {G,In < w} = G,
contradicting the fact that % has the cip. It follows that 6X\F*
= [J{F¥ndX|n < w}, which proves that # is a G,-base.

Now, if #* is a HB-ultrafilter with cip, then # ={Fe2(X)|F*
NéX e H*} is a D(X)-ultrafilter with cip such that Fe (") {H|He#*}, which
completes the proof. w

If X is a D-completely regular space, we will henceforth not distinguish
between X and iy[X], i.e. we will always assume that X itself is a G;-dense
subspace of 6X. 6X will be called the D-completion of X. Since for a normal
T,-space the collection of D-closed subsets is identical with the collection of
zero-sets (7.7), the proof of the preceding theorem yields:

7.14. COROLLARY. For a normal T,-space X, 6X is identical with the Hewitt
realcompactification vX of X.

However, the Isbell-Mrowka space ¥ (Gillman and Jerison [1960], 5 I)
shows that for a completely regular T;-space X it may occur that X # vX. But
there is always a continuous mapping from éX into vX leaving the points of
X fixed.

Our pext theorem clarifies under which circumstances the D-completion is
compact.

7.15. THEOREM. For a D-completely regular space X = (X, 1) the following
conditions are equivalent:
(1) 6X is D-compact.
(i) Every countable D-open cover of X has a finite subcover.
(iii) (X, p,) is totally bounded(*?) (2.13).
(tv) Every @(X)-ultrafilter has the cip.
(V) There exists a D-compact space oX and a continuous mapping
Jx: X = aX such that j[X] is Gy-dense in a X, X is homeomorphic to j,[ X ], and
the following condition is satisfied:
(@)  Whenever f is a continuous mapping from X into a D-compact
space Y, there exists a unique continuous mapping of from o X
into Y such that afoj, =7.
Proofl. (i) implies (ii): Suppose there is a D-open cover (U,),<, of
X without finite subcover. Then {cl;x(X\U,)|n < w} is a collection of closed

(*2) A nearness space (X, y) is said to be totally bounded, if for each % €y there is a finite
¥ eu which refines %.
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subsets of X with the finite intersection property such that () {clsx(X
\U)In < w} =0 (7.12), contradicting our assumption that 6X is compact.

(ii) implies (iii) Consider an arbitrary % epu,. There exists a countable
kernel-normal open cover ¥~ of X which refines %. By virtue of Lemma 2.11 we
can find a developable topology ©' < t such that {int,- V| Ve ¥"} is a cover of X.
Assuming (ii) there is a ¥ e[#7]°“ such that {int,. V| Ve ¥} covers X. Since
{int,. V| Ve ¥"} belongs to p,, the argument is complete.

(iii) implies (iv): Let % be a 2(X)-ultrafilter. If there were an F'e [F]%°
such that (\{F|Fe#%'} =@, then {X\F|Fe#'} would be a member of y,
without finite subcover.

If X satisfies (iv), then the proof of Theorem 7.13 shows that dX = X*,
where X* is the Wallman-Frink compactification of X with respect to Z(X).
Hence aX = X has all properties mentioned in (v).

(v) implies (i): By virtue of 7.13(iv) it suffices to show that for aX and j,
condition (ii1) of Theorem 7.13 is satisfied. To this end consider a continuous
mapping [ from X into a D-complete space Y. We may assume that Y
is a subspace of a D-compact space Y’ (2.8). Assuming (v) there exists a unique
continuous mapping of from aX into Y’ such that ofoj, =f It follows
that

of [aX] = of [clixjx[X]] < clf-af [jx[X]] = cl§- S [X] = cl- Y.
Since a slight modification of the argument used to prove Lemma 7.5 shows
that cl}. Y=Y, the proof is complete. m

We call a D-completely regular space D-pseudocompact if it has one — and
therefore all — of the properties in the preceding theorem.

7.16. COROLLARY. (i) A normal T,-space is D-pseudocompact if and only if it
is pseudocompact.

(i) Every countably compact D-completely regular space is D-pseudocompact.

(ili) A countably D-paracompact T;-space (5.12(f)) is D-pseudocompact if
and only if it is countably compact.

(iv) A D-completely regular space is D-compact if and only if it is
D-complete and D-pseudocompact. m -

Let us mention without proof a characterization of those D-completely
regular spaces for which the D-completion is Lindel6f.

7.17. THEOREM. For a D-completely regular space X the following conditions
are equivalent:

(i) 6X is a Lindelof space.

(i) For every &(X)-filter # with cip there exists a @ (X)-ultrafilter G with
cip such that ¥ <%. m

Our final theorem provides the analogue, for D-completely regular spaces,
of the Dieudonné completion.

7.18. THEOREM. For every D-completely regular space X = (X, 1) there
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exists a space eX and a continuous mapping iy: X —&X such that the following
conditions are satisfied:

(i) eX is an inverse limit of developable T,-spaces.

(ii) X is homeomorphic to iy[X].

(iii) ix[X] is Gy-dense in eX.

(iv) Whenever [ is a continuous mapping from X into an inverse limit Y of
developable T,-spaces, there exists a unique continuous mapping &f from eX into
Y such that efoiy =f.

(v) eX and iy are unique, in the following sense: Whenever nX is an inverse
limit of developable T,-spaces and jy: X —nX is a continuous mapping such that
the analogues of (ii}(iv) are satisfied, there exists a homeomorphism h: eX —-nX
such that hoiy = jy.

Proof. As in the proof of Theorem 7.13 we consider the Wallman—Frink
compactification X* of X with respect to 2(X). Our plan is to show that the
following subspace of 6X = {# € X*|F has the cip} has the desired proper-
ties:

eX = {F esX|(\{F|IFeF} @} u{FesX|(\{F|FeF} =0
and {X\F|Fe%} is not kernel-normal}.

Of course, we let iy: X —¢eX be the natural embedding of X into X*, ie.
ix(x) = {Fe2(X)|xe F} for each x e X. By the proof of Theorem 7.13 it is clear
that ¢X is D-completely regular and that (i) and (iii) above are satisfied.
Since it is a matter of routine to verify (v), it only remains to prove (i) and
(iv).

For the proof of (i) recall that # = {F*neX | Fe 2(X)} is a G,-base for the
closed sets of eX which is closed with respect to the formation of countable
intersections, where F* = {# e X*|Fe #}. Let #* be a #-ultrafilter on X
with cip such that ﬂ {H*| H* € #*} = @. By virtue of 7.4(iv)it suffices to show
that {eX\H*|H*e#*} is kernel-normal. To this end note that & = {F
e2(X)|F*neXes#*} is a D(X)-ultrafilter with cip. Since [){H*|H*
e#*} = @, it follows that # € X \eX. Hence {X\F|Fe #} is kernel-normal.
By Lemma 2.11 there exists a developable topology 7' — 7 and a t"-open cover
{Up| Fe&} such that U, = X\F for each Fe&# Let m (X, 7)— X' be the
Ty-reflection of (X, t'). There exists a unique continuous mapping g = é(n)
from 6X into X' such that goiy =iyom, where 6X' is the set of all
Z(X')-ultrafilters with cip, considered as a subspace of the Wallman—Frink
compactification of X’ with respect to 2(X’) and iy.: X' —6X" is the natural
embedding (7.13(iii)). It is easily seen that

9% = {Ge2Z(X) | ' [Gle¥} for each %€eéX.
Moreover, the following holds:
A gleX] < iy [X].



80 Separation axioms, covering properties, inverse limits

For suppose that there is a %eeX such that g(9)¢iy.[X']. Then
{n"'[X'\G]|Ge2(X'), n '[G]e¥} is a kernel-normal open cover of
X which refines {X\G|Ge ¥}, contradicting the fact that ¥eeX.

Because of A, % = {g~*[iyon[Ug]]neX|Fe#} is a kernel-normal
open cover of ¢X. Hence the proof of (i) is complete once we have shown that
% refines {eX\H*|H*e#*}. For this purpose it suffices to show that
g~ [iyon[Ugl] neX = 6X\F* for cach Fe# Suppose there is an Fe & and
a Yeg[iyon[Ug]] neX such that ¥e F* Then there is an xe Uy such
that

{Ged(X)|n" 1 [Gle ¥} = {GeD(X")|n(x)eG).

On the other hand, Fe%, X'\n[Ugle2(X'), and F <« X\U imply that
n(x)e X'\n[Ug] — a contradiction!

For the proof of (iv) consider a continuous mapping f from X into a space
Y which is an inverse limit of developable T,-spaces. Let df: 6X — Y be the
unique continuous mapping satisfying dfoiy = iyof (7.13(iii)), where again we
assume that §Y is the subspace of the Wallman-Frink compactification of
Y with respect to 2(Y) consisting of all 2(Y)-ultrafilters with cip, and i, is the
corresponding embedding of Y into 4Y. Then

(%) ={Aec2(Y)|f '[A]e¥)} for each YeiX.

An obvious modification of the argument used to prove Claim A shows that
Of [eX] = iy[Y]. Hence & = (i)~ 'odf | ¢X satisfies efoiy = f. Since it is easily
seen that there is at most one continuous mapping from X into Y with this
property, the proof is complete. m

7.19. Remarks, (a) The main results of this section have a nice categorical
interpretation. Let us call a topological space X a G,-Hausdorff space if for
every pair x, y of distinct points in X there exists a pair G,, G, of disjoint
G,-sets such that xeG, and ye G, Moreover, let G,-HAUS be the full
subcategory of the category TOP of topological spaces consisting of all-
G;-Hausdorlf spaces. By an obvious modification of the well-known argument
used to characterize the epimorphisms in the category HAUS of Hausdorff
spaces it can be shown that a morphism f: X—>Y in G,~HAUS is an
epimorphism if and only if f[X] is G,-dense in Y.(**) Therefore Theorem 7.4 is
nothing but a characterization of the objects of the epireflective hull of the class
of developable T;-spaces in the category G,-HAUS, i.e. the spaces belonging to
EHg,naus(D). And Theorem 7.6 shows that the epireflective hull of the class of
second countable developable T,-spaces in G,-HAUS is simply generated by
D, and consists of all D-complete spaces. Moreover, Theorems 7.13 respec-

{**) For background in category theory respectively categorical topology we refer to
(Herrlich [1968], [1971], [1983]).
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tively 7.18 provide descriptions of the corresponding epireflections. We find it
interesting to note that in this context the well-known characterization of
realcompact spaces due to Mrowka [1957] shows that the class of realcompact
spaces is the epireflective hull of the class of compact Hausdorff spaces in

G,-HAUS, ie. we have:

E

EH, 15 ()

EH; yaus(E)

EH 1o (B)

compact Hausdorfl
spaces

compact Hausdorfl
spaces (Tikhonov
[1930])

realcompact spaces
(Mréwka [1957])

completely regular
T,-spaces (Tikhonov
[1930])

[0, 1]

compact Hausdorff
spaces

realcompact spaces

completely regular
T,-spaces

R

realcompact spaces
(Hewitt [1948])

_realcpmpact spaces

completely regular
T,-spaces

metrizable spaces

Dieudonné complete

Dieudonné complete

completely regular

spaces (Dieudonné spaces T,-spaces

[1939])
developable - Theorem 7.4 D-completely regular
T,-spaces spaces (Theorem 2.2)
D, — D-complete spaces D-completely regular

(Theorem 7.6) spaces

(b) It is worth mentioning that Proposition 7.11 can be used to prove that
every D-compact space of weight » is a continuous image of some G,-closed
subspace of *2.

(c) Note that a D-completely regular space X is an inverse limit of
developable T,-spaces if and only if for each xedX\X there is a continuous
mapping f from X into some developable T,-space which cannot be con-
tinuously extended to Xu{x}. =

We conclude by mentioning three interesting problems.

ProBLEM Q. Characterize internally those D-completely regular spaces
X which have the property that 6(X x ¥) = 6X xJY for each D-completely
regular space Y, where §(X x Y) = 6X x §Y means that X x Yis D-embedded in
0X x8Y.

ProBLEM R. Characterize internally those D-completely regular spaces
X which have the property that g(X x ¥) = eX x &Y for each D-completely
regular space Y.

ProBLEM S. Characterize internally those topological spaces which are
homeomorphic to the limit of an inverse system of quasi-metrizable spaces.

6 — Dissertationes Mathematicac 284
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