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The first time a mathematician hears about “multiplicity” m,e Z* refers to an
m,-ple root of a polynomial f(x) or binary form ¢(x,, x,):

mr

Xq X
oy meZ, m 20

00) fx)=ay [] (x=r™ (xo,x)= []

reP(C) relPy(C)

o Ty

This paper is in final form and no version of it will be submitted for publication elsewhere.

(1



72 F. GAETA

Xo Xy
Fo Ty
r (with affine -or projective coordinates x(x,, x,) in the complex affine (or
projective) line). It is natural to ask whether or not this exponent is also the
natural intersection multiplicity of an irreducible component [ in the proper
intersection VA W (V, W irreducible a.v. in P,(C) = P(E)). An affirmative
answer is found in [vdW1] only for two irreducible plane curves. This idea of
the exponent intersection multiplicity is developed in this paper in the general
case by showing that the form

x—r {or ) 1s the trivial associate form (a.f) (cf. Def. 4.6) of the point

F,w=]IFr { proper irreducible component of ¥n W)

can be computed by restriction of the F, (associated to the join J(Vx W)
c P(E@E), see Def. 1.1, cf. [G1]) to the diagonal subspace (see § 1, 3)
Ac P(E®E). The method extends naturally to h (=2) av. VPV cP,,
j=1,...,h (. § 2) provided c=)c¢;<n (c;=codimV" in P,). The
geometric interpretation of F, in terms of the complex (V)
={P._, < P,|P._, nV°# @} leads naturally to an equivalence of the ex-
ponent multiplicity with van der Waerden’s theory (cf. § 10), [vdWl],
[vdW-ZAG].

Since ¢ = codimJ in P(E® ... ®E) (h copies of E) a natural discussion
arises also in the case ¢ > n. Then the old elimination theory (too much
discredited because of its heavy dependence on coordinates) can be replaced by
intrinsic constructions, cf. § 13, 14, Natural applications are made to Bézout’s
theorem as well to possible future relations with the “length multiplicity” (cf.
Vogel’s report here), [vdW-ZAG], [Gro 1, 2].

0. Introduction

Most of the algebraic varieties needed in this paper will be embedded in a fixed
complex projective space P, (C)=P(E,,,)=E—-{0}/C*, with E=E,
(n+ 1)-dimensional C-vector space. The projection P: E— {0} — P,(C) will be
denoted also by P although for a given ve E—{0} we write simply
P(v) =(v) = () (VAieC™).

Let V, W be two irreducible algebraic varieties of P,(C) meeting properly.
Let

0.1) Fypw= [l F¢&vo
C=CgcVnW
be the associate form (a.f) of the intersection cycle
(0.2) VW= Y i, w;,C)c,
C=Caqc=VnW

where F is the (irreducible) a.f. to the irreducible component C, of Vn W. The
intersection multiplicities i(V, W; C) are uniquely determined as the exponents
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in the prime factor decomposition of F ., ; this remark is useless if there is no
way of computing intrinsically F, ., in terms of V and W (i.e. F,, and F,). This
paper shows that actually F,., is uniquely and intrinsically determined in
a natural way by restriction to the diagonal space A < P(E®E) of the F,
associated to the join J=J(VxW)c P(E@E) of Vand W (§ 1), Def. 1.1.
More precisely we have

(0.3) Fyw=0"1(F,|4)
(cf. § 5) where 6: P, P(E®E) is defined by
(0.4) 8 (x) = ((x, x))

for any xeE—{0}, (x}) = P(x}eP(E), ((x, x))eP(E®E); & is the diagonal
injection and A = & (P,) is the diagonal space (cf. § 3). The af. F, of J(Vx W)is
actually intrinsically determined by standard methods (cf. § 6).

The construction can be extended in several ways:

(@) If Vn W is improper, (0.3) is meaningless since V- W is not defined as
a cycle, so F ., is not defined. However the right hand side of (0.1) is always
defined and we have

0.3y S"YWF,|A)=0, J=J({VxW))
iff VoW is improper. Notice that
Vo W improper <> J(Vx W)n 4 improper.

(b) The construction is valid also for finitely many irreducible varieties V¥
denoted sometimes also by

(0.5) V,=V9cP, ditci=n,j=1,2,..,h,

where we use a double notation V=V, = V*for an irreducible V < P, if there is
no ambiguity, where the subscript d indicates the dimension and the super-
script ¢ the codimension of V in P, (d+c = n).
The join

06) J=JVxVex .. . xV")ycP(E®..®E), (h copies of E)

(cf. § 1, Def. 1.1) is also irreducible of codimension ¢ in P(E@®...® E). This
ambient space of J can be identified with P(E® C" where the jth direct
summand (0, ..., E, ...) is identified with E®e;, where e;=(0,...,1,...,0)

1 on jth place.
The set-theoretic intersection

ves

.

-
Il
—

does always exist provided

0.7 c=c¢,+cy+ ... +c, <.
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(We shall assume (0.7) in the first part of Chapter I11.). Then we have

h
(0.8) codim () V9 < n
j=1

and this intersection is proper (i.e. its codimension equals c) iff J n A is proper in
P(E ® C"), because if C runs through the set of irreducible components of the
intersection, &(C) runs through the set of all irreducible components of J n 4
and dim C = dim é (C). Then (0.3), (0.3)' can be extended to an arbitrary h = 2
as indicated by the following:

TueoreM 1. We have 8™ '(F,|4) =0 iff the set-theoretic intersection

(Vi=1V is improper. Otherwise the intersection cycle I = V-V -V s
well defined in P, and we have
(0.9) F,=8"YF,4). A=45P,).

The associate form F, can be determined by V<, V2, ..., V* (ie. by F ),

¢;,j=1,2,..., h)in the standard way (cf. § 6) for any h as well as in the case
h =2

There are several versions of the associate forms attached to a given pure
cycle V¢ = P, (and for each one the restriction symbol F|4 appearing in (0.9)
has a natural meaning); on the other hand all of them lead to the same
intersection-multiplicities. But we shail use only the following three versions of
the af (cf. § 5,6):

0.10)  (x,, X5, ..., Xx)=>S8(x;, X5, ..., X)) (Cayley-Sever1), [C], [P], [S],

0.11)  (uy, uy, ooy uy )= Yy, uy, oo, Ugey)
(van der Waerden—Chow), [Ch-vdW],
(0.12) (D), Ugs vves Bypas X2 N0y, 05, o0y Dyigs X)

(Barsotti-Weil-Siegel), [Ba], [W], [Si]

where x;€E, ujeE=Homc(E, C) (cf. § 6) and they are defined up to
a proportionality factor A€ C*. It suffices to define them first for an irreducible
V¢ and then to extend to the general I'“ by “prime factor decomposition”. All of
them can be defined in terms of a complex defined as follows.

DEerFNiTION 0.1. The complex € (V¢) of (c— 1)-dimensional projective sub-
spaces attached to an irreducible V° i1s given by

(0.13) CV)={P,_, =P, |P,_,nV'£B} (cf. § 4,5).

In fact ©€(V°) is represented by an irreducible subvariety of codimension
one in the Grassmannian % (c— 1; n). Furthermore V* is recovered from € (V)
as the locus of singular points of €(V°) (cf. § 6).

The proof of our Theorem I is a consequence of the following fact: if
(\j=1V* is improper then the restriction of the complex €(J) attached to J

CU(Vx...x V") ={P._, cPEQCHP,_,~nJ*D)
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to the diagonal space 4:
(0.14) CWU)d = {P,_, < AP, cC ()}

is the full Grassmannian % (c—1; A) because if C° (¢’ < ¢) is an excedentary
irreducible component of the intersection {)4~, ¥ then every subspace P, _,
of A meets the diagonal image 3{C°).

If the previous intersection is proper the restriction ¢ (J)]4 is a proper
complex of ¥(c—1; 4) and 6~ '(€(J)|4) is a positive divisor €(J) of the
Grassmannian 4 (c—1; P,) attached to / = V- V- .-V in a natural way:

CNH=)iC[C)=>TI=}icC
where the sums are taken over C° < (i_, V¥ and i, = i([)i-, V%; CY).

The intersection muitiplicities i, equal the exponents of the corresponding
Fc's. In fact we recall in § 4 that all the F,, in (0.10), (0.11), (0.12) are defined in
terms of € (V) by means of conjugation conditions (cl. Def. 5.1, 5.2). It suffices
to assume first V irreducible. Namely: S, the Cayley-Severi form of V* (= V) is
the conjugation condition with respect to €(V°) of c points (x),j=
1,2, ..., c. Y, the original zugeordnete Form, now usually called Chow form of
V, (cf. [Ch-vdW1) is the conjugation condition of d+1 hyperplanes and the
Barsotti-Weil-Siegel form N (cf. [Si]), Siegel’s Normalgleichung of V,, is the
conjugation condition of d+2 hyperplanes (v))e P(E),j=0,1,....d+1, and
one point (x) with respect to € (V°). In terms of an exterior algebra: S, Y, N
vanish if the products
c d d+1

J

+1
Axp Nwp xd Ay,
j=1 =1 j=0

vanish, cf. [Bou]. If this is not the case any nonzero of these products
represents (in the well-known way) a projective subspace P._, < P,. Then
S=0 (resp. Y=0,N=0) iff such P,_,eC(V) (cf. § 4 for further details).

IfV =>mI>0then F,is defined by F, =[[ FT*(F =S, Y, N and [ is
irreducible of dimension d). In any case F, is well defined up to a factor e C”™.

In any case the restrictions S;|4, Y;|4, N,|4 are well defined taking in
0.9) (x)ed,uld,j=1,2,..., h

The condition ¢ < n of (0.7) — essential to define the previous restrictions
to the diagonal space — 1is not necessary in order to define the join
J=J(VY x ... x V™) of h irreducible varieties V' <« P(E),j=1,2,...,h In
the case ¢ > n the given varieties — in general position — do not meet but

when ¢,=¢,=...=¢,=1 the existence and discussion of a non epty
intersection

h
(0.15) NVY+0

ji=1

is precisely the goal of the old elimination theory! Accordingly we devote § 12
to such a problem also with arbitrary ¢;’s — but ¢ > 0. Under this hypothesis
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the compatibility condition (0.14), equivalent to J n 4 # @ can be expressed by
the following one:

THEOREM 1. The given h irreducible varieties VWV < P,,j= 1,2, ..., h with
¢ =Y"%-1c; > n meet iff the diagonal space A is singular for the complex €(J)
attached to J = J (V" x ... x V®) (e every P, _, satisfying A = P,_, belongs to
C ).

In particular for ¢ =n+1 we have:

The h varieties VP meet iff the diagonal space A belongs to the complex
C).

This condition implies a single equation in the coefficients of F, reducing to
R = 0 where R = R(f,, /3, ..., J,4+ ) is the resultant of the n+1 hypersurfuces
H,H,,...H, ,ifc,=c,=...=¢,y, =1L

In the case ¢ > n+ 1 the singularity condition of 4 can be expressed by the
identical vanishing of a covariant in agreement with Gram’s theorem of
invariant theory, [We], § 12.

In the last part of the paper I review some results of the Author (cf. [G2]
[G3]) regarding a replacement of the usual Kronecker elimination procedure
by the explicit computation of the Cayley-Severi forms S,(x,, x,, ..., x.)
attached to an irreducible component I = I° of codimension ¢ of the Zari-
ski-closed set represented by an arbitrary system

(0.16) fi=0 f,=0 f,=0

of homogeneous polynomial equations in the homogeneous coordinates
Xgs X1s---s X, in P,. The method rests on the fact that the “elimination of the
variables” x,, x,, ..., x; represents geometrically the projection of a variety
from a certain space of the projective coordinate frame to the opposite face. If
we replace these — indeed very particular projections — (essentially attached
to the coordinate frame) by appropriate generic projections we obtain the
indicated algorithm. But the easy transition form of § to the N forms gives
back the old Kronecker elimination theory with respect to a generic frame “¢
built in” in the formulas, (instead of mentioning it but never written as before).
I believe that this shows that the Barsotti-Weil-Siegel forms are the best
ones-although the Chow forms seem to be the most famous. This inclusion of
& is actually accomplished by means of an arbitrary basis u,, u,, ..., u, of
E acting as coordinate forms for points in P(E);

x> ((ug, XD, {uy, XD, ..., LUy, xD)EP(C"Y)

for a fixed projective frame with current coordinates functions (x,, x,, ..., X,).

In order to see that it sufflices to represent the projection center P,_,
defined in S, by x, A x; A ... A x, (with (x,) = (x) acting as a current variable
point of the projecting cone of a V° from P,_,) with hyperplane coordinates
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Ug, Uy, ..., Uy, In such a way that x, A ... A x,and x Juy A ... Auy,, are
dual, 1Le. they represent the same P,_,.
We try to use standard notations as much as possible.

Acknowledgments. The ruled join or join was introduced by the Author in
[G.1] trying to compare F,, F, with F,,, (or F,, when the intersection
cycle does exist) with the name prodotto rigato, but actually similar ideas were
frequent in the Italian School also in symmetric squares; for instance the
symmetric square of a smooth curve was represented frequently by the variety
of chords containing the tangential surface as representative of the diagonal.
But it was necessary also to recover lost properties of the “zweifach projektive
Réiume” P, , remarking that the “point” (v, w) ~ (4v, uw) of P, , is essentially
the same as the line 4A(v, 0)+ u(0, w) but certain natural subspaces, such as
A4 do not appear in P, .. Cf. § 1.2 for more details. This construction was also
used by Fulton [F1, [F-L] to illustrate his intersection theory and in the study
of the topology of algebraic subvarieties of P,. A few years ago Vogel [V.1],
[V.2], [F-V] tried successfully to recover the “length multiplicity” — rejected
previously for well-known reasons with a sort of reduction to the diagonal
using the double projective space P, . Kleimann — in a letter to Vogel [K]
recommended him to do precisely what 1 did in the join construction. As
a consequence I am coming back to his old technique. I hope to establish a link
of the exponent multiplicity (previously used by van der Waerden’s elementary
cases of Bézout’s theorem by means of resultants) with the length multiplicity.
The pleasant atmosphere and the kind invitation of the Banach Center of the
Polish Academy of Sciences is certainly a good encouragement in this
direction. .

The last part (of page 1095) is just sketched — although the methods are
very similar to those of {G.2], {G.3]. We shall come back to this with full
details in [G.3] with an application to the Schottky problem (where the Siegel
form appears in [SI]).

I am indebted to the wonderful facilities of the Max-Planck-Institute in
Bonn — in particular to the extreme patience of the typist Frau Wolf-Gazo
who did a beautiful job with them.

I. Generalities on joins

The reduction to the diagonal (cf. formula (1.1) below) introduced by C. Segre
and Severi (fixed points of correspondences) and widely used later in Topology
was applied by Weil [W] and others to local intersection multiplicity theories.
The global extension to varieties in a projective space has some difficulties due
to the fact that the diagonal X is not any more a linear space. 2 is a Segre
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variety:
T =P{x®n|xeE-{0}, neC"={0}},
c. § 1, 3. We show [G.1], § 1, 2, 3 that a naturally chosen generator
4G ZcPERC)
(10) 4=P{x®(0,1,..., Dlxe E-{0}} = P{(x, x, ..., x}|xe E—{0}}

plays the same role as in the affine case, although it is essential to introduce the
space P(E®C") instead of the “h-fuch projektive Raum™ of [vdW1],
[vdW-ZAG], [H-P]. The affine formulas (1.4) lead naturally to the (1.4Y
suggesting the definition of the join (cf. Def. 1.1) and the projective reduction to
the diagonal, cf. formuia (1.10) on page 80.

1. The “reduction to the diagonal”. A projective version

Let A4; # @,jh= 1,2,..., h be h nonempty subsets of an ambient set E.
Let [1 = ExEx .7. xE be the hth Cartesian power of E. We have:

h
(1.1) () A=A xA,x ... xA,n4
i=1

where 6: E < [T is the diagonal injection d(x) = (x, x, 2
A= d6(E) is the diagonal of I1.

This simple remark has many applications in algebraic geometry and it is
regarded as a “reduction” (in spite of the fact that II seems more complicated
than E) because of the following reasons:

., X), VxeE and

(a) If E is an algebraic variety and the A; are all subvarieties, IT is also an
algebraic variety and 4, x ... x 4, and 4 are algebraic subvarieties of IT with
4 independent of the 4.

(b) The subvarieties of [T are graphs of algebraic h-correspondences on E,
in particular they might be graphs of maps and 4 is the graph of the identity. If
we can “move” IT in an algebraic system, it is possible to move the 4; to generic
positions A;, j=1,2,...,h in such a way that we can predict geometric
statements on the original A/s by a subsequent specialization.

(c) In particular: if E is an affine space, /I is another one and 4 is a linear
subspace of IT with dimE =dim4. In this case d([) is an irreducible
component of 4, x ... x 4, n 4 iff I is an irreducible component of ()., A;.
Accordingly 1T~ 4 is proper iff ()}-, A, is proper. Since the definition of the
intersection multiplicities looks easier f one of the intersecting varieties is
a linear space the diagonal provides a way to define

(1.2) (A, ...~ Ay D) =i(IT- 4; 8(D)

i.e.: It suffices to know how to define i for I7- 4 (h = 2) and 4 a linear space. Cf.
[W], [F]. The affine case is sufficient for all the local theories.

If E is a projective space P,, IT and 4 are not projective spaces, but Segre
varieties, cf. [SE], [H-P]}. However, the explicit description of 4 in the affine
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case leas naturally to the “join construction” (cf. Introduction) as follows: Let
us assume h = 2. Then 4 1s characterized by the system of linear equations

(1.3) x—y;=0, j=12,...,n,

if (x,, ..., x,)and (y,, ..., y,) are current affine coordinates in the two copies of
E. I f;(x) = 0; and g;(x) = 0 are two systems of equations defining 4, 4, the
system

(1.4) [ix) =0, 4,(y)=0,

defines A, x A,. (1.4) and (1.3) together define IT N 4.

In the projective case the x, y can be regarded as absolute coordinates in
the C-vector space E = E, ., or as homogeneous coordinates in P, = P (E) and
(1.3) is replaced by

Ix. x|
(1.5) rank(xox""x")——-l = \x‘x’=0, 0<igj<gn.
YoVi---Vn Yi¥;
Then the (1.4) can be replaced by
(1.4 fi4x) =0, g,(uy) =0,

where all the f; and g, are homogeneous and 4, u are two independent non zero
proportionality factors. Moreover the equations (1.5) define the Segre variety
representing P (E) x P(C') (= locus of x® (4, u)e P(E® E) = P(E® C?). Cf.
§ 3 for further details.

Remarks. (1) We do not need the homogeneous equations f;(x) =0
¢;(x) = 0 anymore to establish (1.1).

(2) 4,, A, can be arbitrary empty subset of P(E).

(3) It suffices to define the two injections i, i,: P(E) s P(E®E) by

(1.6) i((x)=(x,0), i,(x)=(0, x).
i, i, have the following properties:

i (P(E)) = P(E®0) =P(E®(L. 0)).

(1.7) i, (P(E) = POO®E) = P(E®(0, 1)).
(18) iy (P(E) n iy (P(E)) = .
(1.9) 4=PE®(Q,1).

In other words the two copies of P(E) in P(E® E) = P(E® C?) do not meet;
accordingly any ordered pair (P, Q)e P(E)x P(E) can be represented by the
line joining i, (P) with i,(Q) and conversely any line joining one point of
P(E@®0) with another one of P(0@® E) represents a uniquely defined ordered
pair (P, Q). _

More generally we have the following formal definition of the join (used
already before).
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DerFIniTION 1.1. (4) The join of A4,, A,, denoted by J(A4, x 4,), 1s the locus
of all (always well defined!) lines joining points of i, (4,) with points of i,(4,).
In particular; J (P (E) x P(E)) is the subvariety of P(E® E) consisting of lines
joining points of P(E®0) and P(E&®O0).

(5) The following natural generalizations are possible

(B #)A, cP(E)|(@ #)A, = P(F)=>J(4,x A,) < P(E®F)

because i;: P(E)g P(E@F), iy: P(F)s P(E®@F) are still valid.

(6) We can consider any finite number # of nonempty subsets 4; = P(E;),
j=1,2,...,h

We shall consideg this general set up in § 2 in order to clarify the
relationship between the diagonal subspace 4 and the diagonal variety 2 in § 3.

The “reduction to the diagonal” in P(E) has finally the following
expression:

(1.10) 0{(A;xA,))=J(4, xA;)n 4

where 4,, A, are arbitrary nonempty subsets of P(E), 4 is the diagonal space
(cf. (1.9)), and & P(E)s P(EG@E) 1s defined by (0.4):

(1..1) S(x) =((x, x) =(x®(1, 1)) VxeE—{0}.

Remark. We see that in the formula (1.10) one needs the points of
P (E @ E), for instance those ((x, x))€ 4, not just the lines A(x, 0)+ x (0, y). This
justifies our preference for the join construction rather than the use of the
two-way projective spaces P, .; in P, , the previous line is the “point™

m,n?

(x, y) ~ (4x, uy), 4 #0, p#0.

n

2. Recall of the join of h varieties. Relation with the Segre model of the
product V1 x V@ x  xV®

Let P(E) = E;,—{0}/C*, j=1,2,..., h, be h (> 2) complex projective
spaces generated by the corresponding vector spaces E;. Let P(S) be the
quotient projective space ol the direct sum

2.1) S=E,®E,®..®F,

Let us call §;=(0,...,E;...,0),j=1,2,..., h. P(S) is the ambient
projective space containing copies P(S)) = i;(P(E)),j = 1, 2, ..., h of the given
spaces P(E)) satisfying the following properties (already checked for h = 2):

(a) For every ordered h-tuple (x,, X,, ..., x,)€ [ [}-, P(E) the correspon-
ding images i;(x;) (j =1, ..., h) are linearly independent.

(b) The §,_, =S§,_,(x,,..., x,) space spanned by the x; meet P(S))
precisely in the point x;:

S, nPE)=x; j=1,2,...,h

As a consequence we have:
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(c) There is a bijection of [[i-,P(E) with the subset ¢ (P(E,)x ...
. XP(E)c¥%h-1;PE S...®E,)) of the shown Grassmannian of
(h—1)-spaces defined by:
22) F=F(P(E)x...xP(E))

={P,_, cP(E;®...@E)|P,_, ni,(P(E))=(x), j=1,2,..., h}

for j=1,2,...,h # is closely related to J by

DeriniTioN 2.1 J = J(P(E,) % ... xP(E,)) is defined in terms of ¢ (cf.
(2.2)) by
23) J=J(PE)X...xPE)={P,_,<PE,®...QE)|P,_ € ¢}
is called the ruled join (or just join) of the given spaces P(E,), P(E,), ..., P(E,).
Def. 2.1 is the extension of Def. 1.1, page 80 for any h > 2.

A vector of § is regarded as an ordered h-tuple (v,, v,, ..., v,) with v,€ E,,
j=1,2,...,h Let i;: E;c S be the natural injection defined by

J
(2.4) i) =00,0,...,5...,0), veE,

where i,(P(E)) = P(Sj) =P(0, ..., E;, ..., 0). We shall use the same symbol i,
for the corresponding maps between projective spaces.

(2.5) i P(E)s P(S), §(P(E)=P(S), j=1,2,...,h

It is easy to check both conditions (a), (b) for the h copies
P(S,), P(S,), ..., P(Sy) of given projective spaces P(E)). In fact any ordered
h-tuple (x; x x, x ... xx,)€[[%=( P(E}) ((E;—{0}) defines an h-tuple of linearly
independent vectors i;(x)eS;=1,2,..., h (= AJ=1i;(x) # 0). They define
a subspace S(x,, X,, ..., x,) of dimension h—1 in P(S) — the projection in
P(S) of the h-dimensional vector space locus of points of the type

(2.6) (A, (1, 0,...,00+4,(0,v,,...,00+... +4,(0,0,..., 1))
in such a way that
2.7 SO, ., x )0 PS)=(xp), j=1,2,....,h

and conversely.

Another (yy) x ... x(y)€[]}=1 P(E;) (E;— {0}) defines the same h-tuple of
points in P(S,)x... xP(S,) and also the same §,_ iff y;=4;x; 4,eC”
j=1,2,...,h (e iff (x;,..., x) ~ (¥, ..., y,) 85 points of the h-way projec-
tive space of P, (cf. Introduction, {H-P}, [vdW1], [vdW-ZAG]); in other
words:

Sy, -0 X)) =8y, -y y;=4ix;,  j=1,2,..., h

This construction leads to two modifications of Def. 2.1 obtained taking
into account rather than the P,_, of 4 some set of points in P(E, ®...®E,).

6 — Banach Center t. 26, cz. 2
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DEerFINITION 2.1°. The pre-join
J,=J,(P(E))x...xP(E))

={((xy5 ..., x)))eP(E,®...®E)Ix; #0, j=1,2,..., h}
DeriNnmoN 2.2, The full join J is the Zariski closure of J:

2.3y .I=.Tp= U P,_,.
Pn-1ef
However, in spite of the differences between #,J,, J the context will

indicate without confusion which one we need, and we prefer the simplest
notation J.

Remark. The name ruled join (“prodotto rigato™) is clear since an h-tuple of
P(E,)x...xP(E,) is not represented by a point of another space but by
a P,_,, ie by a line for h =2 (cf. Introduction).

The product P(E,)x ... x P(E,) is represented also by the quotient set

2.7 Jj~=JJC" x...xC* = I (E,—{0})/C* x ... x C"

usually called the r-way projective space P, ,. .
[vdW], [vdW-ZAG]; see also [H-P].

Remarks. (1) Since there is a bijection between “points” (v,, ..., v,) of
P, ...n and (h—1)-dimensional subspaces of type S(v,, v,,...,v,), the
relation between J,, J,/~ =P, ,. . and J is very close (cf. Def. 2.1). The
reason of our preference of J over P, ,.  is due to the fact that in the
interpretation of the reduction to the diagonal (cf. § 1) we need J (rather than J,
or #) and the subset 4 c P(E®...® E) (which do not belong to P, ). In
other words the equivalence relation defining P, ., looses the points
P(E®....@®E) needed essentially in the reduction to the diagonal.

where n; = dimP(E) by

ExampLE. The product P, x P, = P(E) (dim E = 2) is represented by the
set (line congruence) J of lines joining pairs of points of P(S,) = P(E®0) and

P(S,)=PIE®D)

P(S,) = P(O®E)

Fig. 1
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P(S,) = P(0®E,). The two lines P(S,), P(S,) do not meet and conversely any
line of this congruence determines uniquely the pair of points (A, B).

The relation of the ruled model J (P(E,) x ... x P(E,)) with the usual Segre
model X, . is very simple. It suffices to show it for h = 2:

Let J(m,n)=J(P,xP,) be the join and let X, <« P(E;®E,) be the
Segre model; let us recall that X, is the image of the set of (# 0) monomial
elements x® y (xe E,, ye E,) in the tensor product E; ® E, by the canonical
projection E,®E,—->P(E,®E,) in such a way that the pair
(x)x(y)eP(E,)xP(E,) is represented by (x® y)e P(E, ® E,). The Grassmann
coordinates of the line joning (x, 0) with (0, y) arc the two-minors of the matrix

x°xt...x™0 0 ...0
2. .
(28) (0 0...0 y° y"...y"’)

where we choose a couple of bases in E, E, labelling the coordinates with the
indices 0, 1,...,m, 0, 1, ..., n; we have p’ = p’/ = 0 but

2.9 p¥ = x'y/ = coordinates of x®y.

In other words: the products x*y’ representing the coordinates of x® y in
a canonical basis represent also the essential Grassmann coordinates of the line
Jjoining (i, (x)) with (i, (y)).

Intrinsically: we can identify x®y with i,(x) A i,(y) inside E,®E,;
similarly we have for any h > 2

2.10) X, @ %y ® .. @ Xy <>y (X)) A g (X) A -or A Dy (X,)
in E,®E,®...@E,. Cf. [SG], [B], [H-P].

The join of k irreducible subvarieties V¥ < P(E)) is naturally defined by
restriction as follows:

DerinimionN 2.2, Let i;(VY) < P(S;) be the corresponding copies of the
h given subvarieties. The join J(VVx ... x V®) of VU, VB | . V™ s the
restriction of J = J(P(E,)x ... x P(E,_,)) to the P,_, subspaces of J joining
points of the #;(VV),j=1,2,..., h

JV B x ... x V™
={P,_,eJ(P(E)x...xP(E)IP,_, A8, =V?, j=1,2,..., h}.

We shall use the following properties of J(VV'x ... x V®):

(1) JVExVPIx...x V™ s irreducible if VY is irreducible (for
j=1,2,..., h). Moreover:

@2.11) dmI (VO VO x .. x V™) = d, +d,+...+dy+h—1
where d; =dim VY, j=1,2,..., h
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(2) J(V(” X...xV®)

= (h‘) J(P(E)X...xP(E,_ ) x VOxP(E;, ) X ... x P(E,).
j=1

(3) The codimension ¢ of J(VV x ... x V®) in P(E  ®...®E) is equal to
the sum of the codimensions ¢;=n—d;,j=1,2,..., h

(2.12) c=cy+C+ ... ¢
3. Case n, =n, =...=n, =n. The diagonals X, 4
The case E, =E,=...=E,=E, S=E®E®..®E, dmE=n+1is

particularly important in the intersection problems, because then we need to
consider the representation of the abstract diagonal

D={P,xP,x...xP,eP(EyxP(E)x...xP(E)|JP, =P, =... = P,}

in the abstract product. D is represented in the Segre model %, , . by
a Veronese variety V(D) (cf. [B])

(1) VD) ={A(x;®x,®...@x,)€Z,, .lx;=x,=...=x,#0}

In the join the image of (4; x) X (4, x)x ... x(4,x), 4;#0,j=1,2, ..., is
the subspace S(x, x, ..., x), thus the image of D is

(3.2) Zp=U{S(x;, X35 ..., X)X, = x5 = ... = X,}.
X = X, is a Segre variety model of P (E) x P(C"). In order to see that it is

convenient to introduce the following identifications:

h
(3.3) S=E®C, S,=E®u; S=@S,

i=1

S

=

where u;=(0,0,...,1,...,0), j=1,2,..., h

(3.4 (x4, %5, e x e e (x,Qu,, x,Qu,, ..., x,®u,)
(3.4) implies in the diagonal case x; =x,=...=x,=x#0
(3.9) (Ayxs A%, oy 440 x®@ (A, 4,5, ..., 4.

The generating spaces P(E)®(Ay, 45, ..., 4,), (44, ..., 4,))eP(C") and
(x)@P(C") are represented by

P{x®W,,..., ,)IxeE} and P(x®y, ..., A)l(Ay, ..., A4)eC

respectively. The latter is the image of the abstract diagonal point
(x) x(x) x ... x(x), i.e. by the span of the h copies of (x) in P(§)),j =1, 2, ..., h.
The former is a copy of P(E), the copy maps being

X))~ X))@, ..., 4).
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In particular we have the following distinguished copies
PS)=PE®u)cZ, j=1,2,...,h
A=PE®(,1,....,1)=P{x, x, ..., )|xeE} < £, c T(E®C.

4 is the diagonal space (cf. Introduction) not to be confused with 2.
The reduction to the diagonal for h arbitrary nonempty subsets 4,, ..., A,
of P(E) has the final form:

h
(3.6) (N A)=J (A x A% ... xA) " 4

i=1
where J is the full join: J (4, x ... x 4,) = {P),_,|P,_,€ F (A, x A, x ... x 4,)}.

Let us come back to our interesting case A; = VY irreducible algebraic
subvariety of P(E) of dimension d; and codimension c;. We know (cf. formula
(2.12)) that codJ in P(EQC" is equal to ¢c=c¢;+¢c,+...+¢c,. Then our
discussions lead naturally to the two cases ¢ <n and ¢ > n.

If ¢ <n then always (VP £#@=JVVx... xVW)n4£0.

If ¢>n, (VP =@ for the V¥ in generic position <> the diagonal space
A does not meet the join:

h
(3.7) JVVx...xVN)nda=0<« [ VV=0.

j=1

4. Joins and h-collineations

The h-way projective space P, , =]t (E;—{0})/C* x 2xcr
where dim E; = n;+ 1 was introduced by van der Waerden [Ch-vdW] to study
the correspondences in P, x P, x ... xP, (cf. also [H-P], Vol. I, Chapter V,
§ 10 and specifically Vol. II, Ch. XI). An irreducible correspondence in

I =P, x...xP,

A,N2,..., n

is an irreducible subvariety of this product. The natural way to study them is to
introduce the systems of homogeneous polynomial equations; a polynomial
feC[xY, x?, ..., x®] (where x¥ = (x{f!, x¢, ..., x{),j =1, 2, ..., h) is called
homogeneous of degree (m,, m,, ..., m,) iff

@.1)  f XD, A, XD, x®) = amaze am £, L x®),

In the interpretation of the points of P
J(P,, x...xP,) any subvariety of P,
nian subvariety:

nyma....ns 38 (h—1)-subspaces of
., Might be regarded as a Grasman-

e fP,x..xP,)c%h—1;PED...OE,)).
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The transition of # to J originates a ruled variety
(4.2) S= | P,_,.

Pr-1e&

We shall omit the easy transition of the language developed in [H-P] for
P, n,...n, to our “join”-interpretation with the exception of the h-collineations
among h copies of P (E) = P,: they have some special properties closely related
to the subspaces of P (E ® C") which will enable us in § 10 to show the equivalence
of the exponent multiplicity with van der Waerden’s.

Let us recall the following ones:

(4) Let P = (v,, vy, ..., v,)eP(E®C") be one point of P(J)) (<v; #0,
j=1,..., h). Then there is one and only one P,_, € #(P(E)x... x P(E))
containing P.

Let U = P(J,) be a J-unisecant variety <> U," does not contain two different
points belonging to the same P,_, € #(P,x.7. xP,). Then U represents in
a natural way the same h-correspondence that the ruled variety R locus of
P,_,e #(P(E)x... xP(E)) meeting U:

R = U P,_,.
Pr-1ef(P(E) % ... X P(EN|PL-1nU+9
Let 2 be the collineation group of P(E® C") in itself represented by
homogeneous diagonal matrices: diag(4d,..."* " .. 4,5 4,..." T . 4,,.
Ay..."*1.. 4, with h nonzero scalars 4,j=1,2,...,n
Then U and yU represent the same correspondence for any

.oy

v = Dlllz...lheg'

ExampLE. The diagonal space 4 has the two properties we want: 4e P(J))
and 4 does not contain two different points of the same P,_, of
J(P(E)x ... x P(E)). In this case R, = X- 4 and X represent both the diagonal
(<> “identity”) in the abstract product P(E)x ... x P(E).

However there are other linear spaces P(E ® C") having this property, for
instance those (replacing 4) obtained “moving” the h identifications) i;:
P(E) - P(S)). Let us replace them by h arbitrary nondegenerate collineations
7;: P(E)—=P(S),j=1,2,..., h. Then we have: The correspondence y, locus of
(1 (P), 72 (P), ..., 7 (P)), P = P(E) will be called a nondegenerate h-collineation.
It is represented by a Segre variety 2, (reducing to 2 fory =i,j=1,2,..., h)
whose vertical (h— 1)-spaces belong to J (P (E) x ... x P(E)). Any horizontal one
H#P(S)), P(S,), ..., P(S,) represents y, i.e. H = (J,): H has no two different
points in the same P,_, of the join and Ry, = X..

In the case h =2, 9,7 *(y, vz °) represents a collineation P(S,) — P(S,)
(or its inverse P(S,) — P(S,).

Let us see these properties more closely using a basis:

Let B,(ud, uf’, ..., u"), j=1,2,..., h be a basis of E (¢ /\;_ou{’ #0
j=1,2,..., h). Then we have:



ASSOCIATE FORMS AND AN INTRINSIC ELIMINATION THEORY 87

Such h bases define a nondegenerate h-collineation where (x,, ..., x,)
correspond if x; has the same homogeneous coordinates in B; for
j=1,2,..., h. But the h vectors

2 n
WP, u®, ..., W ed

are linearly independent and they define an S, = P(E®C"). The h bases
(4B,, 4B,, ..., AB,) define the same § for any A #0. Let 4,,4,,..., 4, be
h different nonzero scalars. Then (4, B,, 4, B,, ..., 4, B,) define a different
S, = DS, where D =D, ,. ,.But§, and S, define the same h-collineation.

ExaMpLE. For h = 2 we have: If (4, p) # (0, 0), (1B,, AB,) define a sub-
space S,_, representing the nondegenerate collineation (B,, B,). (4, i') defines
the same S,_, iff (A, u)=v(4, p).

(B,, B,) and (B}, B’) define the same collineation iff B;= B, T, B, =B, T
where T is a (n+1)x(n+1) matrix with det T # 0.

Then we can see that R; = R is a Segre variety.

Let us introduce back coordinate systems (x4, x4, ..., X,) in E as well as
(xg, ..., x{") in S; interpreted as homogeneous coordinates when needed. Then
for v,,v,,..., 7, nondegenerate we can assign to any set of h nonsingular
matrices G,, G,, ..., G, the n-subspaces S, of P(E ® C") generated by the n+ 1
rows of G, G;...G,. The nonsingularity condition det G; # 0 is equivalent to
the fact that S, n(5;) = @ where

4
S;=E...0...E.

J
Thus S, c P(J,)) < detG;#0 for j=1,2,...,n
(G,G,...G6,) and (G,T,G,T,...,G,T)

are two different bases of S, if detT # 0, and we can assume either one
G;=P, If 4;#0 for j=1,2,....n (4,G,, 4,G,,..., 4G, defines
D, ;.28 with D, . €9,

Let us forget now the condition det G; # 0 for some (or all j) but keeping
the fact that rank (G,, G,, ..., G,) = n+ 1. Then the condition S, = P (J ) fails
<> §, meets some P(S;). However we can assign to S, a correspondence I'(S,)
where (x,, x,, ..., x,) e I"iff the P, _, space {4, x, + u, x,+ ...+, x,} meets S,
(we cannot insure anymore that it meets in a single point).

ExampLE. Let S,, S; be two subspaces of P,. Then J (S, x §,) is a subspace
of dimension a+f+1 of P(E@E), but J(S,xS)nP(S,)=i(S),
J (S, x Sp) " P(S,) = i,(Sp); if (x)€S,, (V) €S, the whole line i(x, 0)+ (0, y) is
contained in J(S, % Sy).
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II. Generalities on the complex € (V)
attached to a V' c P,

We shall complete with appropnate references some of the information already
given in the Introduction. It is well known that not every complex in
%(c—1; n) is attached to a V. Such- particular complexes are indeed very
special; they will be called nucleated with nucleus V. The characteristic
nuclearity conditions for a € < ¥(c—1; n) can be expressed by a system of
homogeneous polynomials equations — the so called Chow equations (cf.
[Ch-vdW]) they are use; to prove that the set of positive cycles of codimension
c in P, is Zariski closed.

5. The complex €(V*) of P._,. Recall on Zugeordnete Formen

The word complex of subspaces P, in P, (0 < d < n) is used here in the
XIX-th century sense — namely as a synonym of Grassmann divisor (in 4 (d; P,)).
We identify € with its image ‘in the Grassmann embedding

d+1

(5.1) $=9(d; N P(\E,.) P,=PE,.,).

A P,(c P,) can be determined uniquely by d+1 linearly independent
points in P, or by n—d li. hyperplanes meeting in P,. Accordingly we define
the conjugation condition with respect to a complex € of d-spaces in P, as
follows:

DeriNniTioN 5.1, d+1 linearly independent points P, P,, ..., Py, of P,
are called conjugate with respect to € iff the unique S,3P,(j=1,2,...,d+1)
belongs to €.

DEerFINITION 5.2 n—d linearly independent hyperplanes H,, H,, ...
.., H,_4(= P,) are called conjugate with respect to & iff the unique
S,=H,nH,n...nH,_, belongs to C.

The conjugation condition of 4+ 1 points with respect to an irreducible
€ (= ¥%(d; n) (cf. Def. 5.1} can be determined by a single irreducible equation

(5.2) F(xl, xz,..., xd+l)=0

where F is a polynomial homogeneous of the same degree g with respect to
each one of the d+1 variable vectors x;eE,,, representing the points
P;j=1,2,...,h

Similarly we have another plurihomogeneous form G (with the same g for
the n—d variables v e E (dual of E,,,), such that

(5.3) G, u?, ..., u"" %) =0

characterizes the conjugation condition of the H; (= P(w)),j=1,2,...,n—d,
of Def. 42. F and G can be written uniquely as C-linear combinations of
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standard monomials p(S), q(X) of degree g (cf. [H-P] vol. II, Ch. XIV, page
377) in the Grassmann coordinates of P, (P)p"'>-4+1, (g, ; )

(3.4) F=%1p(8), G=)pq(2)
I

F and G are uniquely determined by € (up to a C™-factor). Accordingly
(Ay, 45, .. ) or (4,, 4,, ...) are well defined homogeneous coordinates represen-
ting €. The procedure is extended to arbitrary positive Grassmann divisors by
prime factor decomposition F = [ F}¥, G = [ [ G7“. Both expressions (4.4) are
not essentially different because of the well known identities between the p
and gq.

When € =C&(V) (d =c¢~1) (cf. Introduction, page 75 and page 73)
these conjugation conditions (5.2), (5.4) define the Cayley—Severi form (or the
Chow form respectively) of V = V= V,. We emphasize that the number of
vectors (<> belonging to E) in (5.2) is equal to the codimension ¢ of V*, thus it
gives back the equation of a V! (i.e. of a hypersurface), for ¢ = 1. The Chow
forms of V contain a number of covectors (belonging to E) equal to dim V+1.
Then (5.2), resp. (5.3) represent the characteristic condition for a § to meet
V (here S__, is uniquely determined by ¢ points, resp. as intersection of d + 1
hyperplanes).

In order to introduce the formal definition for nucleated complexes (Def.
5.5) we shall need to consider certain exceptional behaviour of points and
S-spaces (m > d) with respect to a complex of d-spaces.

DEerINITION 5.3. Let P be a point of P,. P is called singular with respect to
€ il every §,2P belongs to €.

DerFintTION 5.4. The subspace S,, (m < d) of P, is called singular with
respect to € iff every S, < §,, belongs to €. Cf [S].

We shall introduce now formally the complex €(V*) attached to an
irreducible subvariety V* of codimension ¢ in P,. It necessary to check first the
following property:

The set

(5.5) CV)={P._, cP,P._,AV #@} c%(c—1;P)

is an irreducible complex in ¢ (c—1; P,). The variety -V° is the locus of singular
points of € (V) (cf. [S] [H-P], vol. I, I); i.e. €(V°) is nucleated with locus V*.

DerinvitioN 5.5. The set € (V¢) defined by (5.6) is called the complex
attached to V*.

ExampLEs. (1) For ¢ = 1, €(V?) is just the set of points of the irreducible
V! cP,.

(2) For ¢ = 2, €(V?) is the set of lines meeting V2. For instance, if V2 =T,
is an irreducible curve of P,, €(I) is the complex of lines of P, meeting I
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DerinimioN 5.6. The conjugation conditions of points (or hyperplanes)
with respect to G (V) are called the Cayley-Severi form (or Chow form)
of V.

(5.6) S(xy, ..., x) =0.
(5.7) Y(u!, u?, ..., ') = 0.

Actually Y = 0 is the first systematic “zugeordnete Form” (cf. [vdW-ZAG1])
or associated form. In the case of an irreducible plane curve I the left hand side
of (5.7) is the resultant R (f; u, v) where f = 0 represents I' and u, v are linear
forms.

In the introduction we mentioned also the characteristic form (Weil) (or
Normalgleichung) (Siegel) (valid also for a non nucleated €) containing
dim V42 covectors and a single vector; it was also introduced by Barsotti
[Ba]. In the general case we have this “mixed” equation:

(5.8) N(ug, uy, ..., ugy;x)=0.

Remark. Severi pointed out in [S] that § = 0 is the real generalization of
the equation of an irreducible hypersurface V', since the number of vector
variables equals the codimension. But S = 0 was described by Cayley (as early
as 1860) for conics in P, of [C,], [C,]. If we keep fixed ¢—1 linearly
independent variables a,...a._, in S = 0 in such a way that {a, A ... A a__,)
does not meet V° then

(5.9) S@ay,...,a._;;x)=0

represents the projecting cone of V*° from P,_,; accordingly V* is recovered
[rom S =0 as the intersection of all the projecting cones of V° from the
P, ,((\ V' =0). If we replace a, A ... A a._, € /\°" ' E by the corresponding
Uy A... Ay, € \**?E we have the Barsotti-Weil-Siegel equation (5.8)

(5.10) Nu,uyy..cstiyyr;x)=0

representing V¢ = V, as the intersection of all the projecting cones from generic
spaces (u; A ... A u,,,) not meeting V*.

ExampLEs (for an irreducible curve I' in P,).
Sy, x)=0, Y, v)=0, N(ug,uy,u5;x)=0

represent I' via the complex @ (I') (cf. Fig. 2), where a line 1e € (') is defined by
.a couple of points (or of planes (¢ = 2, d = 1)). I appears as intersection of all
its projecting cones from outside points P = (a) = (ug A u,; A u,) given by
a single acE or as intersection of three lincarly independent planes

(o), (1), ().
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/ {xq) [x,)
] )|

<u,x>=0

<v,x>=0

P oz la) = lugau A,

Fig. 2

6. Review on associate forms

We shall recall here the main properties of the af needed subsequently
referring — for further details to the original papers [vdW-Ch], the Einfiihrung
[vdW 1] (with the 2-nd historical appendix), the Zag book, [H-P II], Ch. X, § 6,
7, 8 and Severi’s comments in his paper on Grassmanmans [S]. First of all
there are uniquely defined linear combinations of the standard power products
of Grassmann coordinates p'“* (or p;; ;) of X, Ax,A...A X, (or
ug Ay A ... Ay in AE (or A**1E) such that

(6.1) S(xys X35 ooy x)=8S(x; A ... A X)
(6.2) Y(ug, g, ...oug) = Y(ug Auyg Ao Ay

and the transition between the right hand sides of (6.1), (6.2) is given by the
well-known formulas of type

Sp(Xys Xgseees X ) =800y, %5, ooy Xe kb _pyy... b))

where S, is the Cayley—Severi form of the projecting cone of V from the
S, _,-subspace represented by (b,_, ., A...Ab) with §,_ nV =0. The
identical vanishing takes place iff S,_ NV # @.

In particular for k = c—1 we obtain back the original Cayley’s idea of
representing V' as intersection of all its projecting cones from S,_, projecting
centers not meeting V.

The fact that V is the locus of singular points of the complex € (V) gives
risc to a canonical system of equations of V expressing the fact that for a point
(a)e V the equation of the projecting cone from (a) vanishes identically < (a) is
a singular point of €(V).

In order to get the properties of the Barsotti-Weil--Siegel form (charac-
teristic form = Normalgleichung) it is convenient to represent the projection
center S._, (nV =) as a complete intersection of d+2 hyperplanes

(“0), (u1), ceey (u4+1)(EP(E))-
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This will give us an identity of type:
(6.4) S(x; x5, 000, %)= Nug, 4y, ..., Ugy s X).

We shall give a more explicit expression of (6.4) using the fact that we can
write:

(6.5) Vg AU Ao AU =X _lug Aty Aol Aty

(cf. [Bou]) if we normalize conveniently x, where the point (x) belongs to the
intersection of the d+2 linearly independent hyperplanes (u;, x> =0,
j=0,1,...,d+1, namely

(64)I S(xs Xgseees xc) = N(“O’ Upy oo Ugygs x)= N(éo’ él’ S 6“‘*’1)'
(6.6) Ei=<upxd>=Y uyx, j=0,1,...,d+1.
1=1

The form N contains coefficients depending on u,, u,, ..., u;,, that can
be determined explicitly. (6.5) has the following remarkable geometric inter-
pretation:

Let P(E/E._,) be the quotient projective space of E with respect to the
subspace E__, represented by x, A ... A x.€ /\°”? E (which is also represented
by (o A ... Avygy,y) EA?TZE).

(6.7) dimE/E, , =d+2<>dimP(E/E,_,) =d+1.

The d +2 forms u; linearly independent of E can be regarded also as forms
in E/E._, because E._; is defined by (u;, x> =0 for, j=0,...,d+1:
Cup x) =y x+y) VyeE .

As a consequence: the d+2 forms §; (j=0, 1, ..., d+ 1) are homogeneous
coordinates in the quotient projective space P,,, = P(E/E__)).

The equation:

(6-8) N(ém ﬁzv “ees éd+1) =0

cf. (6.4) represents a hypersurface model of ¥V, lying in P,,, = P(E/E,_))
whose points are naturally mapped to the generators of the projecting cone of
V from P(E,_,).

Since E,_, can be any vector subspace of E such that P(E._)nV =0
we have a refinement of Cayley’s idea in the sense that given one of those
Cayley’s projection centers P(E,_,) (nV =) (6.8) defines an ordinary
equation of a hypersurface H; | model of V, for every choice of forms u;
(i=0,1,...,d+1) defining E__,.

The points of this hypersurface correspond bijectively with the P__,
generators of the Cayley cone of center P(E,_,). For a generic choice of
P(E,_,) the generic generator of this projecting cone contains just one peint of

V, the exceptional ones correspond bijectively with the singular points of Hy__,.
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In particular if d=dimV =n—1 the n+1 linearly independent forms
Ug, Uy, ---, 4, in E define a coordinate system in E = a projective system in P, ;
thus in this case

(6.9) N (Cug, x>, gy X, ..., {u,, xy)=0

with (uj, x> = ZLO U, x* defines the equation of the hypersurface V in this
coordinate system, or in the language of invariants:

(6.9) represents all the possible equations of the hypersurface V for all the
choices with uy A ... A, #0.

ExampLEs. In the case of Fig. 2, page 91, any triple of linearly independent
linear forms uy, u,, u, define a projective coordinate system with (u)
(f=0,1,2) as coordinate planes and (uy+u, +u,) as the unit “line” in the
abstract plane P(E,/E,), where P = P(E,) is any point of P, = P(E,) outside
V intersection of the three planes Cu;, x> = 0. The equations

N(éo, 615 52)=O, N(<u0,x>, <u1a x>9 <u2,x>)=0
represent a model of V in P(E,/E,) or the projecting cone of V with vertex P.

Remark. The explicit computation of N in terms of S can be achieved
expressing (6.5) in coordinates, replacing p™* by

(6.15) ploit-id = 3 xi gifoir...ia

where g/ot+J4+1 are the coordinates of x Juy A u; A ... A u,,, leading to

{ugy X Upiy Up;, Upig
(6.10) pioit-wia — Qup, Xy, Uiy Uyig
QUgp 1> XD Ugiqiy Ugarg, - Basiig

III. Applications

The construction of J = J(VVx ... x V®) YO <P, j=1,2,..., h has two
natural applications depending on the codimension of J in P(E® C"). Cf.
(2.12), page 84, if ¢ < n the h given varieties V' always meet in P, («> 4 always
meet J in P(E® C"). If ¢ > n the given varieties do not meet (<+ 4 nJ = @) if
they are in generic position, but the discussion of their meeting gives a new
form to the old “elimination theory” which can be mage intrinsic. We divided
the paper in two parts according to both possibilities:

In Part I, page 94, § 7, 8, 9, 10 we deal with the case ¢ <n. If SeC(J),
J=J(VWx ... x V®) since dim S = ¢—1 < n, it makes sense to introduce the
restriction to the diagonal space 4 in P(E®C" (cf. § 3, page 84). Such
a restriction is trivial (<> €(J)|4 = ¥ (c—1; 4) iff the intersection ()i-, VY is
improper. Otherwise, there is a well defined complex € (J)| 4 whose pull-back
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to P(E) by 6! gives the natural definition of € (I), where [ = V- 2. ™ jg
the intersection cycle. The prime factor decomposition gives the intersection
multiplicity as the exponent of either one of S., Y. or N (any two of them
agree) for any irreducible component C of I. See our main definition Def. 7.1,
page 95. In particular, we can prove Beézout’s theorem since degJ
= []%=1deg V? can be proved with a rigorous degeneration method using the
characteristic transversality condition for multiplicity one.

The announced equivalence of the exponent intersection multiplicity with
the original one of van der Waerden follows easily from the interpretation of
the S, subspaces of P(E® C" as representatives of h-collineations cf. § 4.

First part
The exponent intersection multiplicity

7. Restriction to the diagonal of C(J (V' x VP x ... x V™M) c<n

Let us come back to the constructions of § 0, 1. Let J = J(V x ... x V™)
be the join of the h shown irreducible varieties of codimensions c; in P,
satisfying (0.7). Let us consider the complex €(J) of (c— 1)-dimensional
subspaces of P(EQ C") = P,,,,,-, attached to J:

(7.1) €N ={P._,cPEQCHIP._ nJ#B}cF(c—1; h(n+1)—-1)
then, since ¢ < n the restriction to the n-dimensional diagonal space 4:
(7.2) C)|%(c—-1,4)

makes sense. We shall distinguish two cases:

() If (\'=, V¥ is improper <> if there is at least one excedentary
irreducible component X <>cod X < n then

5(X)AP._, #@, VP._,c 4.
(2) On the contrary: If (-, ¥ is proper we can construct some subspace
P._, c 4 satisfying
3\ V)P, =0.

It suffices to take the diagonal image of a P._, of P, not meeting (-, V¥
In other words, we have proved the following:

LemMa. The diagonal space A of Pyw+1y—1 (cf- § 3) is a singular space of
C(J) iff (\i=1 V? is improper. Otherwise the restriction of €(J) to A defines the
complex (7.4) below which will be attached to the intersection cycle I by the
formula

(7.4) CH= (5-1(C(J)|A)
where [ = VWV y@.  .y®W
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MAIN DEFINITION

DEerFiNITION 7.1. The complex of S,_, subspaces of P, defined by (7.4) is
called the complex attached to the (well-defined) intersection cycle
1=yWm.y@. . VY® of the h given properly intersecting varieties.

Remark. Thé effective restriction € (J) = 6~ (€(J)| 4) can be achieved by .
means of either one of the associated forms discussed in § 6, namely:

We know that the Severi form §, attached to J contains ¢ covariant vector
variables x,, x,, ..., x,. It suffices to take x;ed for j=1, 2, ..., ¢ to get the
desired restriction. For Y, there are d+1 hyperplane variables representing
a P._,eC€(J) where d=h(n+1)—1—c. The corresponding number of
aP,_,cd4is n—c+]1. The difference (n+1)—(h—1) equals the number of
equations of type

(7.5) P—x=0, r=2,...,hj=01,...,n

defining A. Thus, we shall define a P,_, < 4 with forms containing the (7.4).
The rest define the same P,_, as a subspace of 4.

Similarly, the Barsotti-Weil-Siegel form suffices to restrict the generic
projection center of dimension c—2 — in the ambient space of J — to the
diagonal subspace 4.

In the three cases we have prime factor decompositions of S|4, Y|4, N| 4
with prime factors S, Y., N attached bijectively to all the proper irreducible
components C .of [\!=, V¥ and equal exponents i:

(7.6) S, =TISk. Y, =[]¥e, N,=[]Nk

Such equality is indeed a consequence of the transformation formulas
between S,, Y;, N, studied in § 6.

MAIN DEFINITION 2:

DEerFiNITION 7.2. The positive integer i well defined by either one of the
(7.5) in an intrinsic way is called the exponent intersection multiplicity of C in
I (cf. (7.4)).

8. Computation of F,. Bézout’s theorem

The computation of the Chow form Y, on any irreducible V < P, is based
on the theory of the u-resultant (cf. [H-P], I). It can be applied to J = J(Vx W)
when we give any two systems of equations in (x), (y) to represent ¥V and W.
From Y, we can construct S, and N,. A direct computation of any S, with
cod ¥V = ¢ can be obtained by

(8.1) 8,(x, X3, ..., x)=hecd.(..,R,,..)

where the R, are resultant forms with respect to 4,, ..., 4. in the equations

fa(_zc:l Ax;) =0



96 F. GAETA

obtained by the specialization x— Y-, 4 ;X; in the equations ...f,(x) = 0...
representing V.

Remark. It is remarkable, very simple and essentially “new” (since the
N-form is not widely used in the literature) that the equation

(8.2) N(Y wx)=0, j=0,1,...,d+1,
k=0

can be obtained immediately observing that the transcendence degree of the
projecting cone I (V) of V is equal to d + 1. Accordingly: The d + 2 restrictions

( Z ujkxk) | I (V),
k=0

j=0,...,d+1, are algebraically dependent.

For instance, let V be an irreducible algebraic curve in P,. Then we write
immediately an irreducible equation

(8.3) F(Cuys X3, g,y X3, Chy, x3) =0

representing V as intersection of all the projecting cones from P, _ ,-subspaces,
complete intersections of the three hyperplanes

(8.4) {uj x) =0, j=1,2,3,

where {uy, x) =Y R-oty X, = 0.

In particular, if V is a canonical curve — non hyperelliptic — of genus g in
P,_, we can take three generic holomorphic differentials to define the
Barsotti-Weil-Siegel form. We shall apply elsewhere this remark to the
Schottky problem, cf. [{G.4].

Remark. The following natural question arises; let F; be associate forms (of
the same kind S, Y, N) corresponding to h algebraic irreducible V) = P,. Can
we compute F, in terms of the F;? (where J = J (V" x ... x V™). If the V' are
all hypersurfaces: ¢;=1 and ¢=h<n, the answer is positive, because
F, = Resultant form with respect to 4,, 4,, ..., 4. of the ¢ equations

(8.5) Fi(Ayx +, %5+ ... +4,x)=0, j=1,2,...,¢c.

If h=c=2 a good improvement can be made remarking that then the
resultant of the two binary forms in (4,, 4,) has the explicit well-known
Sylvester form. Since the S and N af. represent a given irreducible V as
complete intersection of projecting cones we can try to reduce the computation
of F, with J = J(V'x W)in terms of F, and F, to the previous case as follows:
Let P, _, and P, _, be two generic projection centers for V', W lying in
P(E, 0) and P(0, E), respectively. Let S,_, = J(S,, ., x S.,-,) be their join with
dimS,_, =c—1, ¢=c¢;+c, with §S._,>P,_,, S,_, 2P, , and S._,
o J(S,, -2x8,,_3) =X, 5. Then we can compute the equation of the projec-
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ting cone of J (V' x W) from any P, _, joining X, _, with any point (x) by means
of a Sylvester determinant D:

g Gy .. a,
0 ag ......... a,
B O a,
(8.6) D=y b, b,
by by oo b,
b, b, b

where f=degV, g=degW, and F(ix+uy) =Y -0a;p/™/, G(Ax+py)
=Y4_ob; A’ u/ 7/ where F(x) = 0, G(x) = 0 are the equations of the projecting
cones of V(W) from P,._,(P,,_,), respectively. An immediate consequence of
this property is the following:

The degree of J (V' x W) is equal to the product of degrees of J (V), J (W)

(8.7) degJ(Vx W) =degV-deg W.
The intersection J n 4 has the same degree; accordingly we have:

Btzours THEOREM. Let V- M be the intersection cycle of two irreducible
algebraic varieties V, W, meeting properly. We have

(8.8) deg V- W = deg V-deg W
as a consequence of (8.7).

9. On the proof of the Theorems

In the expository part of the introduction and in the exposition of the
adaptation of the reduction to the diagonal in the projective case (§ 1, 2, 3) we
gave already all the necessary ingredients to prove Theorem I but — since
there we lacked some technical tools, for instance the relation between the
diagonal space 4 and the diagonal Z (cf. (9.1), below), the more precise recall on
associate forms, etc.:

(9.1) X = Segre variety = P{x®(4,, ..., 4,)|x€E, (4, ..., 4,)eC"}

with 4 = P(E®(!, 1, ..., 1)} — it is convenient for the reader to have now
a complete version of the proof. On the other hand with the same procedure we
shall prove also Theorem II, although we shall come back to it, in § 12.

Proof of Theorem 1. If the set-theoretic intersection (\i-, V* with
c=3Y4-1c;<n is improper there is at least one excedentary irreducible
component X of codimension less than c; as a consequence every P,_, < P,

7 — Banach Center t. 26, ¢z. 2
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meets [; this is equivalent to the fact that every P,_, — 4 meets 0 ({); 1.e. 4 is
a singular space for (E(J(C)), where

FO)L<%(c—1;, PERCH).

cf. Definition 5.4, page 89.

On the other hand, iff ()4-, ¥ is proper it is always possible to find
a P._, < P, such that P__, n([ -, V¥) = @. This implies that there exists
some P,_, = 4 which do not meet J (V! x ... x V™); in other words, we have
a proper restriction to 4 of the complex € (J) attached to J iff » is proper; such
restriction can be effectively computed by restriction to 4 of either one of the
equivalent form S,, Y,, N;. The prime factor decompositions determine
uniquely the exponents of the irreducible factors C (cf. § 5, 6); each irreducible

factor has the form S., Y. on N, appearing with the same well defined
exponent

HERTUA AL AN 4L i1

10. Equivalence of the exponent multiplicity with van der Waerden’s theory

The exponent multiplicity theory enables an easy transition (in both
directions) between the so-called static and the dynamic multiplicity theories,
(cf. [F]) roughly speaking it is equivalent to move the intersecting varieties V,
W or to move the diagonal space A. But A belongs to % (n; 2n+1) and such
motion 1s quite well understood. On the other hand a generic S, c P(E® E)
represents a nonsingular collineation y in P, (where S,, S, represent the same
collineations iff they are equivalent under the group 2) of collineations of
P(E®E) in itself (cf. § 4).

The original van der Waerden’s multiplicity theory (cf. ZAG-papers, the
historical survey [vdW2] and [H-P] (vol. II)) relies precisely in a motion of the
pair (V, W) of irreducible subvarieties in P, to (y, V, y, W) by means of generic
collineations y,, y, < PGL(E). (y,V, y, W) gives essentially the same as
(yy, V. yy, W) where ye GL(E), thus we can consider also (V, yy 'y, W) or
(y2 'y,, V, W) (with the inconvenience of a subsequent need of a proof of the
symmetry of i(I; V- W) when we permute V' and W. Anyway the intersection
multiplicity i (/; V' W) (for I irreducible component of V' W) is defined in vdW’s
theory by specialization when (y, y'} — Identity.

The equivalence of the exponent multiplicity with van der Waerden’s
appears naturally when we replace the motion of y with the (equivalent)
“motion of A”. We shall make explicit this equivalence:

We recall that a nonsingular collineation y: P,—>P,(P,=P(E)) is
uniquely defined by a pair of bases B, B where y = P(L), Le GL(E) and L is
uniquely defined by B’ = LB. Let us construct the n+1 vectors

(10.1) (b, ¥)eE®E, j=0,1,... n.
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They form a basis of the subspace E® E. The bases (4, B,, 4, B,),
Ay, A, € C* define another subspace D, , L representing the same collineation
y=P(L)as L. D, , L=Liff i, = 4,.

Two points P = (x), P' = (x') correspond in y iff

(102) x=YAb, x=

o=

A,b;

with (4, 4, ..., 4) # (0,0, ..., 0); (x, x)eL.

Conversely any point (# 0). (x, x)e L defines a pair of corresponding
points (x), (x) in P,.

The set-theoretic intersection L nJ (Vx W) can be interpreted as the set
of pairs (x)x (xYe Vx W with (x') = y(x). The specialization y — id, will give
back 4 nJ(Vx W) leading to the natural definition of the intersection cycle
A W.

The precise nature of the equivalence between the exponent multiplicity
and the original VdW’s can be retraced quoting the following paragraph of
the historical survey [vdW] or the Einfihrung [vdW] (page 276): “Applying
a projective transformation”. ... “therefore 1 proposed in 1928 to bring V and
W into a generic relative position by applying to one of them a projective
transformation T with indeterminate coefficients. The transformed variety
T intersects W in a finite number of points. If T is specialized to the identity,
the points of intersection of TV and W specialize to points of intersection of
Vand W. If V and W meet in a finite humber of points, each of these appears
with a certain multiplicity, which may be defined to be the intersection
multiplicity ...” .

In order to adapt vdW’s words to our procedure with the join in P(E® E)
let us assume now dim V- W = 0<>c = n. Then to the projective T let us
associate the S, < P(E® E) defined by the n+ 1 points of the (n+1)x2(n+1)
matrix:

(10.3) (1,41 T)

where 1,,, 1s the (n+ 1) x(n+1) unit matrix. The specialization T — ldentity
specializes (10.3) to (1,,,1,,,) defining the diagonal space.

In the general case for any ¢ < n, the intersection of J (V' x W)-§,_ reduces
the problem to J(V-S. x W-S,) < S, where V-S, < §,, WS, < S, and we have
again the previous case: dmV-W = 0.

In the discussion with the complex &(J/), we need to consider a variable
S._,. The same reduction to V-S,_, xW-S,_, <« P(E.®E) (S._, = P(E)
leads to a case discussed in Part I1 of this paper, because now for the varieties
in generic position V-S._, nW-S__, =9 and codJ(V-S,_;xW-§,_,) in
P(E,@E) is equal to ¢ =dimS,_,; +1.
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11 Bézout’s Theorems with a new degeneration method

The original discovery of the property
(1L.1) digF-G=fg, f=degF, g=degG

of the intersection cycle F-G of two irreducible algebraic curves in P, was
obtained in a pure heuristic — nonrigorous way — by degeneration of F, G in
generic sets of f(resp. g) different lines-intersecting together in fg simple points.
I do not believe that anybody thought of this remark as 4 proof, but it has been
always interesting to know whether this can be transformed indeed in a proof.
We shall show here that by means of a certain degeneration (not of F, G, but of
a secant space of complementary dimension) we can prove that

(11.2) degJ (Vx W)=degV- -deg W

where V, W are again two irreducible varieties V < P(E,), W < P(E,). In fact,
it is well known that we can choose subspaces L < P(E,), M < P(E,) such that
the intersection cycles consist of different simple points:

(113) V-L=P 4P, +...+P;,, W-M=0,+0,+...+0,,

f=degV, g=degW, P, #P;, O, #Q,;, i #].
On the other hand, the join J(Lx M) is a subspace of P(E,®E,) of
dimension equal to cod V' +cod W + L. The set-theoretic intersection consists of

fg lines J(P;xQ)):
(11.4) J(VxW)nJ(LxN)= UJ(PxQ) i=1,2,...,f,j=12,...,9.

The transversality criterion for multiplicity one in each P; or Q; implies the
transversality condition for the line J(P;x Q). As a consequence we have:

(115) JWxW)-J(LxN)=YJ(P;xQ), i=1,2,..fj=12,.

In the same way we can see that we can choose a hyperplane
Yu, x,-+20j y;=01in P(E, @E,) transversal to each fixed J(P;x Q) because
the opposite implies

(11.6) A(Z”k fg))"‘ﬂzl’j'ﬂj)) =0
where i=1,2,...,degV, j=1,2,...,degW.

Second part: ¢ > n

Let us consider now the case ¢ > n. Then if the given irreducible V¥ c P, are
generically located the intersection is empty, i.e. we have

h
(11.7) NV =@aJ(VUx ... xV®)nd=0.

i=1
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The complex € (J) consists then of spaces of dimension ¢—1 = n and our
task is just to express the exceptional behaviour:

h
(11.8) NV #BsInd =0
j=1

in terms of associate forms.

The extreme case ¢ = n+ | appears in our treatment because then a P, _,
is a P, and in particular the alternative (11.7) or (11.8) is equivalent to the
diagonal space A does not belong to & (J) iff the intersection is empty or A€ € (J)
iff i1 VO £ 0.

For ¢ > n+1 the property 4 nJ # O implies that every P._, containing
4 meets J:

P_,24=>P_ nJ#0
but the converse property is true:

If every P._, o A meets J then A meets J (equivalently, if AnJ =@ it is
possible to find a P._, o 4 such that P._, nJ = Q).

This property leads naturally to express the condition J n 4 # @ by the
identical vanishing of a covariant, as indicated in the Introduction.

12. A geometrical theory for resultant systems

In the particular case ¢, = ¢, =...=c¢, =1, h = ¢ > n we come back to
the compatibility conditions of a system of h = ¢ > n homogeneous polynomial
equations

(12.0) F,=0, F,=0, ..., F,=0

of degrees m;, m,, ..., m,.
It is well known that in the extreme case ¢ = n+1 = h the compatibility
conditions are characterized by the vanishing on a single equation

(12.1) R=0

where R is a polynomial homogeneous of degree m/m; in the ("*,”) indeter-
minate coeflicients of a generic form of degree m; where

(12.2) m=m,m,...m,,,

R = 0is equivalent to AnJ # & where J = J(H, x ... xH,_,) as before and
F; =0 defines the irreducible hypersurface H;, j=1,2,...,n+L

Thus in the general case c¢=n+1, the characteristic condition
JnA# Q< H;el(J) is a generalization of the equation R =0.

In the case ¢>n+1 we checked already in the introduction that
A nJ # @ is equivalent to the identical vanishing of the Cayley—Severi form S,
(see Def. 5.6, page 90) for Uy, U,,....,U,, X, X,;,..., X._ where

n—1
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h .
U;=(u;,u;, 7.,u)ed, j=0,1,...,n and the x; are arbitrary vectors of
E®CH1=1,2,...,c—n—1, ie.

(12.3) S,(Ug, Uy, ..., U X1, Xy, .0, X2 ) =0
iff (V=1 VP#20=JVVx..V®)n40.
In particular, in the “elimination case” again ¢, =c,=...=¢, =1,

h = ¢ > n+1 the condition (12.2) is a covariant in the coefficients of the forms
F, of degree m; containing c—n—1 arbitrary series of variables
X,,X;, ..., X__,_,. The coefficients of the power products in these X’s give
a system of resultant forms. We hope to study in the near future the relation
between this invariant-theoretic approach and the classical ones.

An intrinsic elimination theory

13. Historical approach

The elimination theory has been completely “eliminated” from algebraic
geometry! I believe that the main reason is that it was not intrinsic enough; as
a matter of fact it was always presented in relation with a coordinate system.
For instance, the Henzelt—-Noether sophistication of the Kronecker elimination
method was presented as follows ([H-NJ).

Let m< K[x,,...,x,] be a polynomial ideal. We can associate to
m a “resultant form™

(13.1) R,=RW(x,,...,x)...R?(x;, ..., x,)...R™(x ) = O(m)

in such a way that R vanishes for all the solutions of m and only for them. If
nom and R, =R, then m=n. .

We can appreciate that the x; are explicitly used in the statement and in
a given order.

The geometrical meaning of the RY is clear. R'Y represents the irreducible
components of V = V(m) of dimension equal to one precisely if

(13.2) R = [ Fm

the hypersurface F,, =0 is an irreducible hypersurface contained in the
solution variety ¥V = V(m) and conversely any such hypersurface appears as
a prime factor of RV, R@ (x,, ..., x,) = 0 represents the projection in the
hyperplane x, = 0 of the locus of irreducible components of codimension two,
... and

R(i)(xi, xi+2, ey xn) = 0

appears as the projection in the coordinate space x, =0, x, =0,...,x;,_, =0
of the locus oﬂ,@treducible components of V' = V(m) of codimension equal to i:
i=1,2,...,n More precisely, if we want to deal again with projective
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varieties in P, we need to introduce the homogeneous coordinates
Xg, X5 ..., X, and to assume that m is homogeneous. Besides it is necessary to
assume that the projective frame of reference is generically located with respect to
V. If this is not the case it is necessary to apply previously a generic projective
transformation to achieve this goal. We emphasize that: Such generic projective
coordinate changes were never written in the notations; as a consequence they
did not appear in the formulas; accordingly the results are wrongly applied
when the reference frame is badly located with respect to the variety defined by
(12.0) and again the results are misleading.

The fact that the homogeneous R” = R(x;_,, ..., x,) appear as a projec-
tion from the coordinate space joining the vertices P,, P,, ..., P,_, (assumed
previously as “well-located”) suggests naturally the idea of projecting the locus
'™ of irreducible components of V of codimension equal to i from a generic
P;_,. But this is Cayley’s idea! As a consequence the Author in the two papers
[G2], [G3] replaces the origina! problem of “elimination” by the following one:

Let
(13.3) F.=0, j=1,2,...,r

J
be an arbitrary basis of the homogeneous ideal m. We shall compute the
Cayley-Severi forms S of T, i=1,2, ...,
(134) SM(x)=0, SPx,x,)=0, ..., $Px,,....,x)=0,...
Jollowing the same steps as the traditional Kronecker elimination method.

The first step is obvious; §; = hed(F,, F,, ..., F,), 1e. the hypersurface
component appears in the same way as in the Kronecker method. The
elimination of one variable (which one?) depends on the choice of
a well-located (<> not belonging to I'?) vertex of the projective frame. If we
choose a generic projection center (y) we are reduced to the first step again
because such a cone has codimension one. This can be achieved in an
elementary way writing F; = §'" G;, then G; = G;(Ax+uy) and a resultant
system in (4, p):

(13.5) Gy(x, =0, k=1,2,...,r,.
Then
§? = hed (G,, G, ..., G,).
In such a way — by induction we construct associate systems of equations
Folxy, %y, 0.0, x)=0, k=1,2,...,r,

where F,, = F,,r, =r. Then S, = hcd(F,...).
With this procedure we can attach to any system (13.3) the associate forms
to the ', i=1,2,...,n. The prime factor decomposition of S_(x,, ..., x,)
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gives all the Cayley-Severi forms of the irreducible components of codimension
¢ of V with a certain intrinsic exponent depending only on m.

We refer to [G2], [G3] for more details. There is a curious paradoxon in
this procedure pointed out already in [G2]: instead of decreasing the number
of coordinates by successive “elimination” of x4, x,, ..., X, we increase by n+ 1
homogeneous coordinates of (x,, x,, ..., X,, ...) in every step. However, let us
recall that there exists an expression

Sc — Sc (, piﬂ'z...l'c, . )

unique if we assume that all the power products of the p are standard. Let us
specialize the projection points—coming back to the elimination theory,
assuming them to be the vertices of the projective reference frame P,, P,
(assuming again that they are well-located to avoid identical vanishing ...).
Then we have the coordinate matrix

- N

00 ..0
0190 ..0 0 ...0

o
o

0 00 ...1 0 ...0

(X0 X1 X3 «v Xeq Xo oo X
and we remark that then nonzero Grassmann coordinates are X., X, 1, «--» Xp-
The x4, Xy, ..., X, are “eliminated” again.

Since the three types of associate forms can be transformed among them it
is not difficult to compute the Chow or the Barsotti-Weil-Siegel forms. We are
definitely interested in the latter because we shall prove in [G4] (cf. § 14 for
a short Introduction) that the computation of these forms is equivalent to use the
Kronecker elimination method with generic projective coordinate systems exp-
licitly given in the formulas by means of basis uy u; ... u, of the dual vector
space E

The generic coordinates

¢ =Au, xp = Z upx, Jj=0,1,...,n,
k=0

of any vector x € E can be interpreted as the projective coordinates of the point
(x) (whenever x # 0). The elimination of the generic vanables ¢, £,, ..., ¢,
leads naturally to forms of the type

N(éi! §i+1’ ey Cn)
and we know that the &}, represent actually homogeneous coordinates in the
more sophisticated projective space P(E/E,_) where E, _, is defined by
Cuj, xp) =0 for j=0,1,...,i—1 cf. § 6. Actually the projection on the
coordinate space opposite to E,_; is not needed. The genericity insures that

PE,_)nVm)—TP-_rd_  _ri-b-g
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14. Intrinsic elimination theory using Barsotti-Weil-Siegel forms

Let us replace the Cayley-Severi forms by the corresponding Bar-
sotti-Weil-Siegel ones using formulas of type:

(14.1) Sc(x, Xgy ooy Xemn) = N_(Ug, Uyy ..., Uy X)
= N(<u05 x>i L <ud+1, x>)

where xe E— {0} is regarded as variable in the cone S(x, x4, ..., X._,) = 0 of
vertex P,_, spanned by (xo), (x,); ...; (x._,) (<> intersection of the d+2
hyperplanes (u)), j =0, 1, ..., d+1). The variables ; = Cu;, x) are again the
homogeneous coordmates in the abstract (d + 1)- dlmensmnal space P(E/E._))
where P(E,_,) =

If we take the n+1 forms ug, u,, ..., u,€ E dual to x,, x,, ..., x,€E,
x; #0, u; # 0, we have the following sequence of Weil-Siegel forms:

S;(x)=N;(x;ug, g,y ..., ) =N, (&g, Epy o205 )
S,(x; x9) = Ny(x; uy, upy, ooy t4,) = Ny (&, .00, &),
(14.2) S3(x; xg, X1) = Ny(x; uy, ..oy u)) = N3 (&5, ..., &)y
Sc(x;XO’xl’""xc—Z)ch(X;uc—l’uc"‘ u)_ (éc—ls"’ﬂ )’

We remark that formally, when we read the (14.2) from top to bottom we
have:

(14.3) Nttg, g, -..r thy; X) = N(&g, &y, oy ) =0

as the equation of the hypersurface (or better, of the divisor attached to I''")
written in the projective coordinate system  ({ug), (uy), ..., (1,);
(4o +u, + ... +u,)) which can be regarded as “indeterminate™ more precisely, if
we write

n
Cuj, x;) = kZO Uj X g,

we have the (n+1)x (n+1) matrix (uy) representing the preventive coordinate
“system” cf. Introduction but written in the formula instead of being ignored.
If we write the system (13.3) in this “invariant way”:

Fy=Fi(x;ug, 4y, ..., u,) = F;(Kug, x>... Uy, X))
we can perform equally the first step of Kronecker’s elimination method:

N5 g, g, oy ) = Ny (G, Er oo .
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The next step i1s to divide each F, by N,, F, =N, G,  Then we can
“eliminate ¢,” (but within the generic projective frame (u), (u,), ..., (4,);
(Ug+ ... +u,)). The new system

Gj(x; u09 u1, sers un) = Gj(éoa 615 reey in)

represents the variety V—T"" of codimension two which is not contained in
¢, =0. Let us cut V—-T''" with this hyperplane; we shall have only the useful
“generic” variables ¢,, ¢,, ..., &, 1.e. we have a system of type:

GJ(X, ula u29 Ly un) = Gj(éla 625 trry in)

representing the projecting cone of V—I"") from the intersection point of the
n hyperplanes (u;, x> =0, j=1,2,..., n (of vertex P, in the corresponding
generic projective frame). Then hcd of the G;(£1, ..., &) will give us back the
Barsotti-Weil-Siegel form attached to I''"), ie. to the cycle of codimension
2 represented by m.

In other words, we can prove the announced result:

The systematic computation of the Barsotti-Weil-Siegel forms
N, €., &....,¢) for c=1,2,...,n is equivalent to the old Kronecker
elimination method but with the preventive projective coordinate system built
in the formulas.

Remarks. (1). We emphasize the use of the quotient projective spaces
P(E/E,_,) corresponding to coordinate spaces P (E,_,) instead of the projec-
tion or the face opposite to P(E,_,).

(2). In order to check all the necessary cautions we follow [vdW1] IV Kap.
§ 31, page 116; as well as the second edition of vdW’s Algebra.

The first steps are possible because we know, that the coefficient of the
highest power of each x; is # 0 (because the corresponding projection space
never met the projecting variety. The resultant systems of relative prime forms
cannot be identically zero). The coefficient of x% for a Weil-Siegel form is
equal to

+Y(ug, .- Uy ooty ) #F0

for i=1,2,...,etc.), cf. Remark, § 6, page 93, formula (6.10).
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