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Abstract. This paper provides isomorphisms of a space of analytic functions onto spaces of
functional R-shifts introduced by the author in [13]. The space contains all functions analytic in
a ring {h ∈ C : 0 < |h| < ρ}, 0 < ρ ≤ +∞, do not having an essential singularity at the origin.
The results obtained include and extend some of those in the author’s works [5], [7].

0. Let X be a linear space over the field C of the complex numbers. Denote by
L(X) the set of all linear operators with domains and ranges in X and by L0(X)
the set of those operators from L(X) which are defined on the whole space X.
An operator D ∈ L(X) is said to be right invertible if there exists an operator
R ∈ L(X) such that DR = I. The set of all right invertible operators belonging
to L(X) will be denoted by R(X). For an D ∈ R(X) we denote by RD the set
of all its right inverses. In the sequel we shall assume that dim kerD > 0, i.e. D
is right invertible but not invertible, and that the set RD ⊂ L0(X). An operator
F ∈ L0(X) is said to be an initial operator for D corresponding to an R ∈ RD if

F 2 = F, FX = kerD and FR = 0.

This definition implies that F is an initial operator for D if and only if there is an
operator R ∈ RD such that F = I−RD on dom D. The set of all initial operators
for a given D ∈ R(X) is denoted by FD. One can prove that any projection onto
kerD is an initial operator for D. If we know at least one right inverse R, we can
determine the setRD of all right inverses and the set FD of all initial operators for
a given D ∈ R(X). The theory of right invertible operators and its applications
is presented by D. Przeworska-Rolewicz in the book [18].
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Here and in the sequel we admit that 00 := 1. We also write N for the set of all
positive integers, N0 := {0} ∪ N and H(G) for the class of all functions analytic
on a set G ⊂ C.

For a given operator D ∈ R(X) we shall write (cf. [18]):

(0.1) S :=
∞⋃
i=1

kerDi.

If R ∈ RD then the set S is the linear span P (R) of all D-monomials, i.e.

(0.2) S = P (R) := lin{Rkz : z ∈ kerD, k ∈ N0}.
Evidently, the set P (R) is independent of the choice of the right inverse R.

1. In this section, Ω will stand for a ring Kρ := {h ∈ C : 0 < |h| < ρ},
0 < ρ ≤ +∞. A non-empty set K ⊆ Ω is arbitrarily fixed. Write:

(1.1) H⇐(Ω) :=
{
f ∈ H(Ω) : f(h) =

∞∑
k=−n

akh
k for all h ∈ Ω

}
, n ∈ N,

i.e. if f ∈ H⇐(Ω) then f not does have an essential singularity at the origin.
Suppose that a function f ∈ H⇐(Ω) has the following expansion:

(1.2) f(h) =
∞∑

k=−n

akh
k for all h ∈ Ω,

where n ∈ N0.

Definition 1.1. Suppose that D ∈ R(X),dim kerD > 0 and R ∈ RD is
arbitrarily fixed. A family TK = {Th}h∈K ⊂ L0(X) is said to be a family of
functional R-shifts for the operator D induced by a function f ∈ H⇐(Ω) and R if

(1.3) Thx :=
∞∑
k=0

akh
kDkx+

n∑
k=1

a−kh
−kRkx for all h ∈ K, x ∈ S,

where S, f , are determined by Formulas (0.1), (1.2), respectively.

We should point out that by definition of the set S, the last sum has only a
finite number of members different than zero.

Some fundamental properties of functional R-shifts for right invertible oper-
ators are given in the author’s work [13]. Functional R-shifts which are induced
by functions analytic on the set Ω∪{0} have been called functional shifts (cf. [4],
[5]). The theory of functional and sequential shifts induced by a right invertible
operator is presented in detail in the author’s works [1]–[12]. Evidently , the
definition of functional shifts for D ∈ R(X) is independent on R ∈ RD. Shifts
induced by the function eh for right invertible operators have been investigated
by D. Przeworska-Rolewicz: [17]–[22]. Note, that properties of functional R-shifts
induced by functions analytic in a ring having an isolated essential singularity at
the center are recently studied by the author [14].
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Proposition 1.1 (cf. [13]). Suppose that D∈R(X) and R∈RD. Let Tf,K =
{Tf,h}h∈K be a family of functional R-shifts for the operator D induced by a
function f ∈ H⇐(Ω) and the operator R. Then

(i) The operators Tf,h (h ∈ K) are uniquely determined on the set S.
(ii) If X is a complete linear metric space, S = X and Tf,h are continuous

for h ∈ K. Then Tf,h are uniquely determined on the whole space.
(iii) For all h ∈ K the operators Tf,h commute on the set S with the operator D.

Theorem 1.1 (cf. [13]). Suppose that D ∈ R(X) and dim kerD > 0, F is an
initial operator for D corresponding to an R ∈ RD and a family TK = {Th}h∈K ⊂
L0(X) is given. Then following two conditions are equivalent :

a) TK is a family of functional R-shifts for the operator D induced by the
function f and R ∈ RD,

b) ThRkF =
∑k+n
j=0 ak−jh

k−jRjF for all h ∈ K, k ∈ N0.

Example 1.1 (cf. [13]). Let X = H(U) and K = U\{0}, where U is the unit
disk. If TK ={Th}h∈K is a family of functional R-shifts for the Pommiez operator
D ∈ L0(X):

(Dx)(t) =
x(t)− x(0)

t
for x ∈ X, t ∈ U,

where
x(t)− x(0)

t

∣∣∣∣
t=0

:= x′(0),

induced by the function f(h) = 1/h(1− h) ∈ H⇐(K) and the operator R ∈ RD:

(Rx)(t) = tx(t) for x ∈ X, t ∈ U.

Then the operators Th (h ∈ K) are uniquely determined on X by the formula

(Thx)(t) =

{
t2x(t)−h2x(h)

h(t−h) for t 6= h,
d
dt [t

2x(t)]
∣∣
t=h

= 2hx(h) + h2x′(h) for t = h,

where t ∈ U . The operators Th(h ∈ K) are continuous.

Let TK be the set of all families of functional R-shifts for an operator D ∈
R(X) induced by an R ∈ RD and by the members of the set H⇐(Ω), i.e.

(1.4) TK := {Tg,K : g ∈ H⇐(Ω)}.

Let Tf,K , Tg,K ∈ TK , where f, g ∈ H⇐(Ω) have the following expansions:

(1.5) f(h) =
∞∑

k=−n

akh
k, g(h) =

∞∑
k=−m

bkh
k for all h ∈ Ω, n,m ∈ N0.
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If n = m = 0 then on the set S (cf. [5])

(1.6) Tf,hTg,h = Tg,hTf,h = Tfg,h for all h ∈ K.

In general, the equalities (1.6) do not hold. For an example, let Ω = K = K1 and
let

f(h) = h2 + h−1, g(h) = h+ 1 + h−2, h ∈ K.
Then by the definition we have on the set S

Tf,hTg,h = (h2D2 + h−1R)(hD + I + h−2R2)
= h3D3 + h2D2 + I +RD + h−1R+ h−3R3,

Tg,hTf,h = h3D3 + h2D2 + I +R2D2 + h−1R+ h−3R3,

Tfg,h = h3D3 + h2D2 + 2I + h−1R+ h−3R3 for all h ∈ K.

This shows that for all h ∈ K we have on S

Tf,hTg,h 6= Tg,hTf,h, Tf,hTg,h 6= Tfg,h, Tg,hTf,h 6= Tfg,h.

Lemma 1.1. Suppose that D ∈ R(X) and an R ∈ RD is arbitrarily fixed.
Let Tf,K , Tg,K ∈ TK , where f, g ∈ H⇐(Ω) have the expansions (1.5). Define the
following operation

(1.7) Tf,h ◦ Tg,h := Dm+n Tf,hTg,hR
m+n for h ∈ K.

Then on the set S

Tf,h ◦ Tg,h = Tg,h ◦ Tf,h for all h ∈ K.(1.8)
Tf,h ◦ Tg,h = Tfg,h for all h ∈ K.(1.9)

P r o o f. Let h ∈ K be arbitrarily fixed. Our assumptions and Theorem 1.1
together imply that the operators D,R, Tf,h, Tg,h ∈ L0(S). We have on the set S

Tf,h ◦ Tg,h − Tg,h ◦ Tf,h

= Dm+n
( ∞∑
k=0

akh
kDk +

n∑
k=1

a−kh
−kRk

)
( ∞∑
k=0

bkh
kDk +

m∑
k=1

b−kh
−kRk

)
Rm+n

−Dm+n
( ∞∑
k=0

bkh
kDk +

m∑
k=1

b−kh
−kRk

)
( ∞∑
k=0

akh
kDk +

n∑
k=1

a−kh
−kRk

)
Rm+n

= Dm+n
{( ∞∑

k=0

akh
kDk

∞∑
k=0

bkh
kDk

)
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−
( ∞∑
k=0

bkh
kDk

∞∑
k=0

akh
kDk

)}
Rm+n

+Dm+n
{( n∑

k=1

a−kh
−kRk

m∑
k=1

b−kh
−kRk

)
−
( m∑
k=1

b−kh
−kRk

n∑
k=1

a−kh
−kRk

)}
Rm+n

+Dm+n
( ∞∑
k=0

akh
kDk

m∑
k=1

b−kh
−kRk

)
Rm+n

+Dm+n
( n∑
k=1

a−kh
−kRk

∞∑
k=0

bkh
kDk

)
Rm+n

−Dm+n
( ∞∑
k=0

bkh
kDk

n∑
k=1

a−kh
−kRk

)
Rm+n

−Dm+n
( m∑
k=1

b−kh
−kRk

∞∑
k=0

akh
kDk

)
Rm+n

=
m∑
j=1

( m∑
k=j

ak−jb−k

)
h−jRj

+
∞∑
j=0

( m∑
k=1

aj+kb−k

)
hjDj +

n∑
j=1

( n∑
k=j

a−kbk−j

)
h−jRj

+
∞∑
j=0

( n∑
k=1

a−kbj+k

)
hjDj

−
n∑
j=1

( n∑
k=j

bk−ja−k

)
h−jRj −

∞∑
j=0

( n∑
k=1

bj+ka−k

)
hjDj

−
m∑
j=1

( m∑
k=j

b−kak−j

)
h−jRj −

∞∑
j=0

( m∑
k=1

b−kaj+k

)
hjDj = 0.

We assume that m > n ≥ 2. Then

Tf,h ◦ Tg,h =
∞∑
k=0

( k∑
j=0

ajbk−j

)
hkDk +

n∑
k=2

( k−1∑
j=1

a−jbj−k

)
h−kRk

+
m∑

k=n+1

( n∑
j=1

a−jbj−k

)
h−kRk

+
m+n∑
k=m+1

( n∑
j=k−m

a−jbj−k

)
h−kRk
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+
m∑
k=1

( m∑
j=k

aj−kb−j

)
h−kRk +

∞∑
k=0

( m∑
j=1

aj+kb−j

)
hkDk

+
n∑
k=1

( n∑
j=k

a−jbj−k

)
h−kRk +

∞∑
k=0

( n∑
j=1

a−jbj+k

)
hkDk

=
∞∑
k=0

( k∑
j=0

ajbk−j +
m∑
j=k

aj+kb−j +
n∑
j=1

a−jbj+k

)
hkDk

+
m∑
k=1

( m∑
j=k

aj−kb−j

)
h−kRk +

n∑
k=1

( n∑
j=k

a−jbj−k

)
h−kRk

+
n∑
k=2

( k−1∑
j=1

a−jbj−k

)
h−kRk

+
m∑

k=n+1

( n∑
j=1

a−jbj−k

)
h−kRk +

m+n∑
k=m+1

( n∑
j=k−m

a−jbj−k

)
h−kRk

=
∞∑
k=0

( k∑
j=0

ajbk−j +
m∑
j=1

aj+kb−j +
n∑
j=1

a−jbj+k

)
hkDk

+
( m∑
j=1

aj−1b−j +
n∑
j=1

a−jbj−1

)
h−1R

+
n∑
k=2

( m∑
j=k

aj−kb−j +
n∑
j=1

a−jbj−k

)
h−kRk

+
m∑

k=n+1

( m∑
j=k

aj−kb−j +
n∑
j=1

a−jbj−k

)
h−kRk

+
m+n∑
k=m+1

( n∑
j=k−m

a−jbj−k

)
h−kRk

=
∞∑
k=0

( −1∑
j=−n

ajbk−j +
k∑
j=0

ajbk−j +
m+k∑
j=k+1

ajbk−j

)
hkDk

+
m+n∑
k=1

( m−k∑
j=−n

ajb−k−j

)
h−kRk

=
∞∑
k=0

ckh
kDk +

m+n∑
k=1

c−kh
−kRk,
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where

(1.10) ck :=
m+k∑
j=−n

ajbk−j for k ≥ −(m+ n).

One can prove that fg ∈ H⇐(Ω) and has the following expansion:

(1.11) f(t)g(t) =
∞∑

k=−(m+n)

ckt
k for t ∈ Ω,

where ck [−(m + n) ≤ k < +∞] are determined by Formula (1.10). Clearly, for
the coefficients ck we have

ck =
∞∑

j=−∞
ajbk−j (k ≥ −(m+ n)).

This implies that Tf,h ◦ Tg,h = Tfg,h. Similar proofs can be given for the other
cases.

It is easy to observe that the set H⇐(Ω) is a commutative linear ring with
the following algebraic operations:

f(h) + g(h) = (f + g)(h), αf(h) = (αf)(h), f(h)g(h) = (fg)(h),

where f, g ∈ H⇐(Ω), α ∈ C, h ∈ Ω.
Lemma 1.1. implies

Proposition 1.1. The set TK of all families of functional R-shifts for D ∈
R(X) induced by the set H⇐(Ω) and an operator R ∈ RD defined on the set S is
a commutative linear ring with the operations

(1.12) Tf,K + Tg,K := Tf+g,K , αTf,K := Tαf,K , Tf,K ◦ Tg,K := Tfg,K ,

where f, g ∈ H⇐(Ω), α ∈ C.
The neutral elements and units of the commutative linear rings H⇐(Ω) and

TK are

0(h) ≡ 0, 1(h) ≡ 1 on Ω,

ORkz = 0, IRkz = Rkz for all k ∈ N0, z ∈ kerD, R ∈ RD,
respectively.

Observe that

T0,h = O, T−f,h = −Tf,h, T1,h = I, h ∈ K, f ∈ H⇐(Ω).

Moreover, if f ∈ H⇐(Ω) then f and 1/f are meromorphic in the set Ω ∪ {0}
and the function 1/f has singular points in Ω only at zeroes of f . These singular
points are poles for 1/f . So that, if f(h) 6= 0 on Ω then 1/f ∈ H⇐(Ω) and by
Lemma 1.1,

I = T1,h = Tf [1/f ],h = Tf,h ◦ T[1/f ],h, h ∈ K.
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This implies that

[Tf,h]−1 = T[1/f ],h for all h ∈ K.
By the definition, if f, g ∈ H⇐(Ω) and Tf,h = Tg,h for all h ∈ K on the set S

then f ≡ g on K.
It is well-known that if f, g ∈ H⇐(Ω), f(hn) = g(hn) for n ∈ N and the

sequence {hn} has a limit point in Ω, then f(h) = g(h) in Ω. Thus, if f, g ∈
H⇐(Ω), K ⊆ Ω is an open set and Tf,h = Tg,h for all h ∈ K on S then f ≡ g on
the set Ω. This implies

Theorem 1.2. Suppose that D ∈ R(X), an R ∈ RD is arbitrarily fixed , K ⊆ Ω
is an open set and TK is the set of all families of functional R-shifts for D defined
on the set S induced by the set H⇐(Ω) and the operator R. Then the rings H(Ω)
and TK are isomorphic. The mapping T : f ⇒ Tf,K is an isomorphism of H⇐(Ω)
onto TK .

Clearly, Theorem 1.2 implies

Corollary 1.1 (cf. [5]). Suppose that all assumptions of Theorem 1.2 are
satisfied and T ′K denotes the set of all families of functional shifts for D defined
on S induced by the set H(Ω ∪ {0}). Then

(i) The set T ′K is a commutative linear ring with the operations

T ′f,K + T ′g,K := T ′f+g,K , αT ′f,K := T ′αf,K , T ′f,KT
′
g,K := T ′fg,K ,

where f, g ∈ H(Ω ∪ {0}), α ∈ C.
(ii) The rings H(Ω∪{0}) and T ′K are isomorphic. The mapping T ′ : f ⇒ T ′f,K

is a ring isomorphism of H(Ω ∪ {0}) onto T ′K .

2. In this section we assume that X is a linear topological space. As before, Ω
is a ring Kρ(0 < ρ ≤ +∞), an open set K ⊆ Ω is arbitrarily fixed, the function
f ∈ H⇐(Ω) has the expansion (1.2).

Let D ∈ R(X) and F be an initial operator for D corresponding to an R ∈ RD.
Write (cf. [7], [18], [23]):

D∞ :=
⋂
k∈N0

Dk, where D0 := X,Dk := domDk(k ∈ N),(2.1)

Eλ := ker(D − λI), λ ∈ C,(2.2)

E :=
⋃
λ∈C

Eλ.(2.3)

Eλ(R) := ker(I − λR), λ ∈ C,(2.4)

S
(n)
f (D) :=

{
x ∈ D∞ :

∞∑
k=0

akh
kDk+nx is convergent for all h ∈ K

}
, n ∈ N0,
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Sf (D) := S
(0)
f (D),(2.5)

S∞f (D) :=
⋂
n∈N0

S
(n)
f (D).(2.6)

It is obvious that S ⊂ D∞ ⊂ S∞f (D) ⊂ Sf (D), where the set S is defined by
Formula (0.1).

In a similar way as in Section 1, we make

Definition 2.1. Let X be a linear topological space and let f ∈ H⇐(Ω) have
the expansion (1.2). Suppose that D ∈ R(X),dim kerD > 0 and R ∈ RD. A
family Tf,K = {Tf,h}h∈K ⊂ L0(X) is said to be a family of R-functional shifts
for the operator D induced by the function f and R if Formula (1.3) holds for all
h ∈ K, x ∈ Sf (D), where the set Sf (D) is defined by Formula (2.5).

This definition immediately implies

Proposition 2.1. Suppose that D ∈ R(X), R ∈ RD and Tf,K = {Tf,h}h∈K
is a family of R-functional shifts induced by a function f ∈ H⇐(Ω) and R. Then

(i) The operator Tf,h of the functional variable f ∈ H⇐(Ω) and the complex
variable h ∈ K as an operator acting in the space L0(Sf (D)) is linear , i.e.

Tλf+µg,h = λTf,h + µTg,h for all f, g ∈ H⇐(Ω); λ, µ ∈ C.

(ii) For all h ∈ K the operators Tf,h are uniquely determined on the set Sf (D).
(iii) If Sf (D) = X and Tf,h are continuous for h ∈ K then Tf,h are uniquely

determined on the whole space X.

Theorem 2.1 (cf. [13]). Suppose that D ∈ R(X), F is an initial operator
for D corresponding to an R ∈ RD and Tf,K = {Tf,h}h∈K is a family of R-
functional shifts induced by a function f ∈ H⇐(Ω) and R. Let Eλ 6= {0}, let
λK := {λh : h ∈ K} ⊂ Ω, where λ ∈ C and let Eλ be defined by Formula (2.2).
Then

(i) Eλ ⊂ Sf (D).
(ii) For all h ∈ K and x ∈ Eλ,

(2.7) Tf,hx = f(λh)x−
n−1∑
k=0

(−k−1∑
j=−n

aj(λh)j
)
λkRkFx.

In a similar way as in the author’s work [7] (see also [14]) we prove

Proposition 2.2. Suppose that D ∈ R(X) and Eλ = ker(D − λI) 6= {0} for
λ ∈ C with λK ⊂ Ω. Let T ′K |Eλ

be the set of all families of functional shifts for
D induced by the set H(Ω ∪ {0}) defined on Eλ. Then
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(i) The set T ′K |Eλ
is a commutative linear ring with the operations defined by

Formula (1.13).
(ii) The rings H(Ω ∪ {0}) and T ′K |Eλ

are isomorphic. The mapping T ′ : f 7→
T ′f,K is a ring isomorphism of H(Ω ∪ {0}) onto T ′K |Eλ

.

Proposition 2.2 implies (cf. [7])

Corollary 2.2. Suppose that D ∈ R(X), Ω ∪{0} = K ∪{0} = C and T ′K |E
denotes the set of all families of functional shifts for D defined on E induced by
the set H(C). Then

(i) The set T ′K |E is a commutative linear ring with the operations defined by
Formula (1.13).

(ii) If E 6= kerD, then the rings H(C) and T ′K |E are isomorphic. The mapping
T ′ : f 7→ T ′f,K is a ring isomorphism of H(C) onto T ′K |E.

Suppose that all assumptions of Theorem 2.1 are satisfied. Then

Eλ(R) = ker(I − λR) ⊂ Eλ

and

Tf,hx = f(λh)x for all h ∈ K, x ∈ Eλ(R)

(cf. [13]). This implies that, in a similar way as in [7], we can prove

Proposition 2.3. Suppose that all assumptions of Theorem 2.1 are satisfied
and Eλ(R) 6= {0}. Let TK |Eλ(R) be the set of all families of functional R-shifts
for D defined on Eλ(R) induced by the set H⇐(Ω) and R. Then

(i) The set TK |Eλ(R) is a commutative linear ring with the operations defined
by Formula (1.13).

(ii) The rings H⇐(Ω) and TK |Eλ(R) are isomorphic. The mapping T : f 7→
Tf,K is a ring isomorphism of H⇐(Ω) onto TK |Eλ(R).

We need the following

Lemma 2.1. Suppose that all assumptions of Theorem 2.1 are satisfied. Then

Rp(Eλ) ⊂ Sf (D), p ∈ N,

and

(2.8) Tf,hR
px

= λ−p
[
f(λh)x−

n−1∑
k=0

(−k−1∑
j=−n

(λh)jaj
)
λkRkFx−

p−1∑
k=0

λk
k+n∑
j=0

ak−jh
k−jRjFx

]
for all h ∈ K, x ∈ Eλ, p ∈ N.
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P r o o f. Let h ∈ K, x ∈ Eλ be arbitrarily fixed. Observe that

(2.9) λpRpx = x−
p−1∑
k=0

λkRkFx for p ∈ N.

Indeed (by induction), if p = 1 then by the definition

λRx = R(λx) = RDx = x− Fx.

Suppose Formula (2.9) to be true for an arbitrarily fixed p ≥ 1. Then

λp+1Rp+1x = λR(λpRp)x = λR
(
x−

p−1∑
k=0

λkRkFx
)

= λRx−
p−1∑
k=0

λk+1Rk+1Fx = x− Fx−
p∑
k=1

λkRkFx

= x−
p∑
k=0

λkRkFx.

This proves Formula (2.9) for all positive integers.
Formula (2.9), Theorem 1.1 and Theorem 2.1 together imply

Tf,hR
px = Tf,h

(
λ−px− λ−p

p−1∑
k=0

λkRkFx
)

= λ−p
(
Tf,hx−

p−1∑
k=0

λkTf,hR
kFx

)
= λ−p

[
f(λh)x−

n−1∑
k=0

(−k−1∑
j=−n

(λh)jaj
)
λkRkFx

−
p−1∑
k=0

λk
k+n∑
j=0

ak−jh
k−jRjFx

]
for all p ∈ N.

Proposition 2.4. Suppose that D ∈ R(X) and R ∈ RD. Let Eλ = ker(D −
λI) 6= {0} and let λK ⊂Ω, where λ ∈C. Then the set TK |Eλ

of all families of
functional R-shifts defined on Eλ induced by the set H⇐(Ω) and R is a commu-
tative linear ring with the operations defined by Formula (1.12).

P r o o f. Let Tf,K , Tg,K ∈ TK |Eλ
where f, g ∈ H⇐(Ω) have the expansion

(1.5). Clearly, it is enough to show that for x ∈ Eλ

Tf,h ◦ Tg,hx = Dm+nTf,hTg,hR
m+nx = Tg,h ◦ Tf,hx for h ∈ K

and

Tf,h ◦ Tg,hx = Tfg,hx for h ∈ K.

Let h ∈ K, x ∈ Eλ be arbitrarily fixed. By F we denote an initial operator for D
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corresponding to R. Lemma 2.1, Formula (2.7) and Theorem 1.1 together imply

(Tg,h ◦ Tf,h)(x) = (Dm+nTg,hTf,h)(Rm+nx)

= Dm+nTg,h

{
λ−(m+n)

[
f(λh)x−

n−1∑
k=0

(−k−1∑
j=−n

(λh)jaj
)
λkRkFx

−
m+n−1∑
k=0

λk
k+n∑
j=0

ak−jh
k−jRjFx

]}
= λ−(m+n)Dm+n

[
f(λh)Tg,hx−

n−1∑
k=0

(−k−1∑
j=−n

(λh)jaj
)
λkTg,hR

kFx

−
m+n−1∑
k=0

λk
k+n∑
j=0

ak−jh
k−jTg,hR

jFx
]

= λ−(m+n)Dm+n
{
f(λh)

[
g(λh)x−

m−1∑
k=0

( −k−1∑
j=−m

(λh)jbj
)
λkRkFx

]
−
n−1∑
k=0

(−k−1∑
j=−n

(λh)jaj
)
λk

k+m∑
p=0

bk−ph
k−pRpFx

−
m+n−1∑
k=0

λk
k+n∑
j=0

ak−jh
k−j

j+m∑
p=0

bj−ph
j−pRpFx

}

= λ−(m+n)
{
f(λh)g(λh)Dm+nx− f(λh)

m−1∑
k=0

( −k−1∑
j=−m

(λh)jbj
)
λkDm+nRkFx

−
n−1∑
k=0

(−k−1∑
j=−n

(λh)jaj
)
λk

k+m∑
p=0

bk−ph
k−pDm+nRpFx

−
m+n−1∑
k=0

λk
k+n∑
j=0

ak−jh
k−j

j+m∑
p=0

bj−ph
j−pDm+nRpFx

}
= λ−(m+n)

{
f(λh)g(λh)λm+nx

−
m+n−1∑
k=0

λk
k+n∑
j=n

ak−jh
k−j

j+m∑
p=m+n

bj−ph
j−pRp−m−nFx

}

= f(λh)g(λh)x−
m+n−1∑
k=0

k+n∑
j=n

j+m∑
p=m+n

λk−m−nhk−pak−jbj−pR
p−m−nFx

= f(λh)g(λh)x−
m+n−1∑
k=0

k∑
j=0

j∑
p=0

λk−m−nhk−m−n−pak−n−jbj−p−mR
pFx
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= f(λh)g(λh)x−
m+n−1∑
k=0

k∑
p=0

k∑
j=p

λk−m−nhk−m−n−pak−n−jbj−p−mR
pFx

= f(λh)g(λh)x−
m+n−1∑
p=0

(m+n−1∑
k=p

k∑
j=p

(λh)k−m−n−pak−n−jbj−p−m
)
λpRpFx

= f(λh)g(λh)x−
m+n−1∑
p=0

(m+n−1∑
k=p

(λh)k−m−n−p
( k∑
j=p

ak−n−jbj−p−m

))
λpRpFx

= f(λh)g(λh)x−
m+n−1∑
p=0

( −p−1∑
j=−n−m

(λh)j
( j+m∑
k=−n

aj−k−n+mbk+n−m

))
λpRpFx

= f(λh)g(λh)x−
m+n−1∑
k=0

( −k−1∑
j=−n−m

(λh)j
( j+n∑
p=−m

bpaj−p

))
λkRkFx.

Hence,

(2.10) Tg,h ◦ Tf,hx = f(λh)g(λh)x−
m+n−1∑
k=0

( −k−1∑
j=−n−m

(λh)jcj
)
λkRkFx,

where cj =
∑j+n
p=−m bpaj−p for j = −1,−2, . . . ,−m − n. This proves that Tg,h ◦

Tf,hx = Tf,h ◦ Tg,hx. Formula (2.10),Theorem 2.1 and Formula (1.11) together
imply that Tg,h ◦ Tf,hx = Tfg,hx.

In a similar way as Theorem 1.1 we prove the following

Theorem 2.2. Suppose that all assumptions of Proposition 2.4 are satisfied.
Then the rings H⇐(Ω) and TK |Eλ

are isomorphic. The mapping T : f 7→ Tf,K is
a ring isomorphism of H⇐(Ω) onto TK |Eλ

.

R e m a r k 2.1. In the author’s work [8]:

— an isomorphism of a ring of analytic functions onto a ring of functional
shifts defined on the space of D-analytic elements (cf. [19], [18]) is established,

— applications of rings of functional shifts to obtain summation formulas of
the Euler–Maclaurin type (cf. [15], [21]) are given.
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