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0. Introduction

Recently I am interested in combinations of singularities on projective
surfaces and curves. I believe that there exists a systematic simple law
describing the appearance of singularities on them (cf. Urabe [12], [13],
[14)).

In this paper I would like to explain the following result on plane sextic
curves, which is obtained by checking case by case.

MaIN THEOREM. Let B = P? denote a reduced (possibly reducible) plane
sextic curve over the complex number field C. Let G =) a, A,+Y b D,
+Y ¢wE,, be a combination of rational singularities. Assume that the sum of
Milnor numbers ) a,k+) b;l+) c,m is less than sixteen. Then there exists a
curve B with G if and only if G # A,+114,, 24,+11A4,, A,+134,.

The rational singularity is defined by the following local defining
equation (cf. Durfee [6]).

Ay 2+ =0 (k= 1),
D;: x*y+y'"'=0 (I=9),
Eﬁ: x3+y4 =0, E7: x3+x.V3 =0’ EB: x3+y5 =0'

We use (1) the surjectivity of the period mapping for K3 surfaces and (2)
the lattice embedding theory due to Nikulin (Nikulin [8]) as the main tools
for the proof. But they are not enough to complete the proof. We need
several devices to complete it. In particular the notion of elementary trans-
formation of Dynkin graphs, which I proposed to describe singularities on
plane quartic curves (cf. Urabe [12]), is effective even for sextic curves. It
gives a sufficient condition for a combination G to exist on B (see Section 4).
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Here I give a remark about the case where the sum of Milnor numbers
1s greater than fifteen. If there is a sextic curve B with a combination G, then
the sum is less than twenty. Even in this case it is possible to make the list of
possible combination of rational singularities on B, if we use the original
exact version of the Nikulin’s lattice embedding theorem. But it is very
tiresome to count up isotropic subgroups to determine overlattices of the
given root lattice for complecated cases. Therefore 1 think it is not very
interesting to carry out the calculation when ) g, > 15. T think rather that
we should try to find out more conceptual proof.

1. Theory of K3 surfaces

We assume that every variety is defined over the complex number field C.

Let B = P? be a reduced sextic curve in the 2-dimensional projective
space. We assume that B has only rational singularities. Let F(zq, z;, 2,) be
the homogeneous defining polynomial of B. We give weight one to each
variable zq, z,, z,. Let z; be another variable with weight 3. By X we denote
the irreducible surface defined by z3—F(zo, 2y, z2;) =0 in the weighted
projective space P(1,1.1,3) (cf. Dolgachev [5]). The projection
m: P(1,1,1,3)—10,0,0, 1)} =P2:(z0, 24, 22, 23) = (20, 2y, 2,) defines a sur-
jective morphism n: X — P? of degree 2. The branching locus of = is B. The
following is well known (cf. Arnold [2]).

ProrosiTiON 1.1. A4 point xe X is singular if and only if n(x)e B and
n(x) is a singular point of B. Moreover the isomorphism class of the surface
singularity (x, X) and that of the curve singularity (z(x), B) determines each
other uniquely.

Thus the study of singularities on B is reduced to that on X. Let o: Z
-+ X be the minimal resolution of singularities of X. The following is an easy
consequence of standard technics in the surface theory, if we note that
R'g, ¢; = 0 under the assumption (cf. Barth et al. [3], Durfee [6]).

ProrosITION 1.2. Z is a K3 surface, that is, H'(¢,) =0 and the
cancnical line bundle Kj; is triviel. The line bundle L = g*n* (' ,(1) is

numerically effective and of degree 2.

Recall that L is numerically effective if for cvery algebraic curve C on Z
the intersection L-C is non-negative.

Here obviously the morphism ng coincides with the one ¢, associated
with the line bundle L. But conversely, when does the given numerically
eflective line bundle I. of degree 2 on a K3 surface Z define a surjective
morphism ¢,: Z — P? of degree 2?7 In the following we consider this
question. Let Z denote a K3 surface. We owe ideas in the proof to Saint-
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Donat [10]. We give a precise proofl to the case where L is numerically
effective and of degree 2, since he treated the case where L is ample in [10].

ProrosiTioN 1.3 (Saint-Donat [10]). Let M be a line bundle on Z.
Assume that the complete linear system |M| is not empty and that |M| has no
fixed components. Then one of the following (i), (ii) holds.

(i) M? >0 and any general member of |M| is an irreducible curve with
arithmetic genus P, = (M?/2)+1. In this case h'(M) = 0.

(i) M? =0 and there exists a smooth elliptic curve E and a positive
integer k with M = ¢, (kE). In this case h* (M) = k—1 and everv member in

M| can be written in the form E,+E,+ ... + E, with E;c|E| for 1 <i<k.

LEmMA 14. (1) For any non-zero effective divisor D, H*((,(D)) = 0.

(2) For any non-zero effective reduced connected divisor D, H'(((D))
= 0.

(3) If H(Gz(A) = W' (C;(B)) for divisors A, B and for i =0, 1, 2, then A*
= B2

Proof. By the Serre duality, cohomology exact sequences and the
Riemann—Roch theorem it is obvious. O

ProrosiTiON 1.5. Let D be an effective divisor on Z. We set D ~ D'+ 4
where A is the fixed components of the complete linear system |D|. Let A4,,
4, ..., Ay be the connected reduced components of A.

(1) Any irreducible component of A is a smooth rational curve with self-
intersection number —2. Furthermare if A = A"+ A" for some effective divisors
4" and A" with A" #0, then A'* = =2h%(0,) < -2.

(2) Assume moreover that D' is reducible. We have a smooth elliptic curve
E and an integer k with k > 2 such that D ~ kE. If D'-A; > 0, then E- 4, = 1.

Proof. (1) Assume that 4 = A"+4". (4" and A" are effective divisors
with 4’ # 0.) Since A’ is fixed components, h®((z(4')) = 1. By Lemma 1.4(1),
h*((;(4’)) = 0. Therefore by the Riemann-Roch theorem

1—h'(C,(4) = (4%/2)+2.
We have
4% = =2(h' (€, (4))+ 1)

Next consider the exact sequence
0— (,(—-A4)—=(,— (,—0.

We have h'((;(4))+1 =h°(¢,) since hO(Cz) =1, h'(C,) = h®((z(-4))
=0, and h'(C,(—4") = h*(C(4') by Serre’s duality.

If A’ is an irreducible component of A, then we have 4> = —2. By the
adjunction formula for the arithmetic genus p,(4°) of A', p,(4") = (42/2)+1
= 0 holds. It implies that 4’ 1s a smooth rational curve.
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(2) The former half follows from Proposition 1.3. Set 4 = D'+ 4,. We
have h°(Cz(D')) = h®((;(A)) since 4; is fixed components. By Lemma 1.4(1),

W (0,(D) = k2(6;(4)) = 0.

On the other hand h'(®,(D’)) = k—1 by Proposition 1.3 and h'(0;(A4)) =0
by Lemma 1.4(2). Thus

x(Cz2 (D)) +k—1 = x(Cz(A)).

By the Riemann—Roch theorem we have

(D'Y2)+2+k—1 =(D'+4,)%/2+2.
Thus we have
kE-A,=D"-A; =k
since 47 = —2 by (1). O

The next theorem i1s due to Saint-Donat, too.

TueoreM 1.6 (Saint-Donat [10]). Any complete linear system on a
projective K3 surface has no fixed points outside its fixed components.

ProrosiTioN 1.7. Let L be a numerically effective line bundle of degree 2
on Z. The following conditions are equivalent.

(1) The line bundle L does not define a surjective morphism ¢,: Z — P?
of degree 2.

(2) The complete linear system |L| has a fixed component.

(3) There is a smooth elliptic curve E and a smooth rational curve I" with
E-TI' =1 such that any member in |L| is linearly equivalent to 2E+T.

(4) There exists an element U €Pic(Z) with U? =0 and U-L = 1.

If one of the above conditions holds, then I' in (3) is the fixed component
of |L.

Proof. Since L? =degL > 0, Z is projective (Theorem IV. 5. 2, Barth et
al. [3]). Applying Kawamata’s vanishing theoremm (Kawamata [7]) and the
Riemann-Roch theorem one has h'(L) = h?(L) =0 and h°%(L) = (L%/2)+2
= 3.

(1) = (2) Assume that (2) does not hold. By Theorem 1.6 (1) does not
hold.

(2) = (3) Let D'+ 4 denote the general member in |L|, where 4 is the
fixed components of |L|. Note that D’ # 0 since dim|L| = 2. First assume that
D’ is irreducible. We have h! (Cz(D’)) = k' (L) = 0 by Proposition 1.3. On the
other hand h*(0z(D’)) = h*(L) =0 by Lemma 1.4(1) and h°(0,(D’)) = h°(L)
by definition. Thus we have D'> = (D'+ 4)? by Lemma 1.4(3) and it implies
that 2D'- A+ 4% = 0. Here recall that L and D’ are numerically effective. We

have
OKSL-A=D'+4)-4=-D-4<0.
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Thus
D-4=4*=0.

Proposition 1.5(1) implies that 4 =0, which contradicts the assumption.
Therefore D’ is reducible. We have a smooth elliptic curve E and an integer
k=2 such that D ~kE. If E-A4=0, we have 0< L-4A=(kE+4)-4
= A* < —2, which is a contradiction. Thus E- 4 > 0. By Proposition 1.5(2) one
sees that there is a component I of A with I'-E = 1. I' is a smooth rational
curve with I'? = —2 by Proposition 1.5(1). Set 4 =I'+4" and D = kE+T.
By definition D+ 4’e|L]. It follows from Lemma 1.4(2) that h'(¢,(D)) =0,
since D is linearly equivalent to a reduced connected effective non-zero
divisor. We have D?> =(D+4)> and 2D-4'+4'>=0. Thus 0< L-4" =(D
+A4)-4"= —D-A'. However, setting A’ = mI'+ A" (me Z, A” contains no I'),
we have

D& =(kE+T):(mI'+4") =m(k—2)+kE-4"+T-4" > 0.

Thus D 4" = 4’2 =0. We can conclude that 4’ =0, and kE+ I'e|L|. Note
that by the adjunction formula p,(E) = (E%/2)+1 = 1, E? = 0 holds. We have
k =2, since 2 =(kE+1)?=2k-2.

(3) = (4 The line bundle U = (;(E) satisfies the condition.

(4) = (1) Assume that (4) holds but (1) does not hold. We will deduce
a contradiction. By assumption we have a surjective morphism ¢.: Z — P2
Now h°(U*) = 0 for the dual line bundle U* of U, since L-U* = —L-U =
—1. By the Riemann-Roch theorem we have h°(U)>2. Let D+ A4 be a
general member of |U|, where 4 is the fixed component of [U]. Note that
D # 0. Obviously D> > 0. If L-D =0, then D*> <0 by the Hodge index
theorem. Thus L-D > O, since L is numerically effective. Furthermore L- A4
> 0 holds. We have L-D =1 since 1 = L-U = L-D+ L- A. It implies that the
restriction ¢, |D is an isomorphism and ¢ (D) is a line in P2 Thus D is
irreducible and p,(D) =0. However, in this case D? = 2p,(D)—-2= -2,
which is a contradiction. . ]

ProposiTioN 1.8. (1) Let MePic(Z) be a line bundle with M? = —2.
Then M or its dual M*, and only one of them is effective.

(2) Let L be a numerically effective line bundle on Z with deglL
=12>0. The set R={MecPic(Z)] M*= -2, L-M =0 is a root system
whose fundamental system of roots is A4 = |0z (C)€Pic(Z)| C is an irreducible
smooth rational curve with C?> = =2, C-L =0} (see Bourbaki [4] for the
notion of root systems).

Proof. (1) It is easily obtained by the Riemann-Roch theorem.
(2) This follows from the Hodge index theorem and the adjunction
formula. O

Since exceptional curves in the minimal resolution of a rational double

28 — Banach Center 1. 20
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point on a surface constitute a fundamental system of roots, we have the
next corollary (cf. Durfee [6]).

CoROLLARY 1.9. Let E; be the union of curves C with (i,(C)e A. Every
connected component of E, coincides with the exceptional divisor in the
minimal resolution of a rational double point. Let p: Z — X be the contraction
morphism of connected components of E; to a normal surface X. The surface X
has only rational double points as singularities and their combination is
described by the numbers of irreducible root systems of each type A, D,, Eg,
E,, Eg which appear in the irreducible decomposition of the root system R

= @ RI“
i=t

ProposiTioN 1.10. Let L be a numerically effective line bundle of degree
2 on Z. Moreover we assume that L does not satisfy any equivalent condition in
Proposition 1.7. Then the morphism @,: Z — P? factors through o: Z — X and
the induced morphism n: X — P?* defines a branched double covering branching
along a reduced sextic curve B with only rational singularities. The combina-
tion of singularities on B is described by the irreducible decomposition of the
root system R = {MePic(Z)| M*= -2, M-L=0).

Proof. We consider the graded algebra @ H°(Z, I®¥™). It follows from

m=0

vanishing theorem and Riemann-Roch theorem that h°(Z, L®™) = m*+2,
if m> 0. Let ug, u,, u, be a basis of H°(Z, L). Let S,, < H°(Z, L®*™) be the
subspace generated by monomials in w;’s. If P(ug, uy,u,) =0 for a
homogeneous polynomial P(z,, z4, z,), then P =0 since ¢; is surjective.
We have dimS,, =the number of monomials in u;’s of degree m =
(m+1)(m+2)/2. Thus S, = H°(Z, L®™) for m = 1, 2 and there is an element
veH®(Z, L®* such that H%(Z, L®?) = $3+ Cv (direct sum).

Let @: Z-P(.1,1,3) be the morphism defined by &(z2)
= (uo(2), U, (2), u3(2), v(z)) for zeZ. Let Y be the image of ¢. Note that
(0,0, 0, 1)¢ Y since u;s do not simultaneously vanish on Z. Let n: Y — P?
be the morphism defined by (z4, z,, 22, 23) — (2g, 2,, Z;). The composition
nd coincides with ¢,. Since n(Y) =, (Z)=P? dimY =2. In view of
following Lemma 1.11, one sees that H°(Z, L®™) = §,,+ vS,,_; for m > 4 by
comparing the dimension. Thus there are homogeneous polynomials
F(zg, 21, 2,) and G(zq, z4, 2,) with degF =6 and degG = 3 such that 2
= vG (Ug, Uy, uy)+ F(ug, u,, u,). By exchanging v by v+ G(uy, uy, u,)/2 we
can assume that G = 0. Then one sees that

@ H°(Z, L"™) = C[zq, 24, 25, 23)/(25 = F (20, 2|, 23)).

m=0

Y is the branched double covering over P? branching along the sextic curve
B: F(zq, z,.2;) =0.
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Assume that B has a multiple component. Let | « P? be a general line.
The curve C = n"'(N) is a singular one with p,(C) = 2, since [ intersects with
the multiple component. On the other hand € = ¢; ' (/) €|L| is smooth by the
Bertini theorem. Thus C is a smooth model of C and p.(C) < 2. However
P.(C) =(L3/2)+ 1 = 2 by the adjunction formula, which is a contradiction.
One sees that B is reduced and the singular locus of Y is O-dimensional by
Proposition 1.1. Note that we can conclude that Y is normal by Serre’s
criterion for normality since Y is a hypersurface in a smooth variety
P(1,1,1,3)—{0,0,0, 1) (cf Altman—Kleiman [1]). Now by the Hartogs
extension theorem one sees that there is a morphism @: X — P(1, 1, 1, 3)
with @9 = @ since X is normal. In particular ¢, = ndp factors through ¢. By
definition @ is a finite birational morphism to a normal variety Y and thus it
15 an 1somorphism. In view of Proposition 1.1, it is obvious that singularities
on B is described by R. [1

Lemma 111, If Plug, vy, uy)+vQ (ug, uy, us) = 0 for homogeneous poly-
nomials P, Q with deg P =degQ+3, then P=0 = 0.

Proof. Obviously we can assume moreover that P and Q has no non-
constant cormmon divisor. Then the variety Y < P(1, 1, 1, 3) defined by
P(zq. z,, 2,)+ 23012, 21, z,) = 0 is irreducible and it contains a surface Y.
Thus Y =Y’ If degQ > 0, then (0, 0, 0, 1)e Y’ = Y, which is a contradiction.
If O is a non-zero constant, then we have ve S5, a contradiction. O

We show further several propositions for later use.

Note that the positive cone Z = {xe H**(Z, R)| x> >0) in H"Y(Z. R)
= H*(Z, Ry nH'(Z. 23) has two connected components since the signature
of the intersection form on H'(Z, R) is (1, 19). Let X, denote the con-
nected component of X containing the Kahler class » (cf. Siu [11]). Another
component is 2_ = -2 .

ProposiTioN 1.12.  Let L be a line bundle on Z with deg L > 0. Assume
that Le Pic(Z) = H"'(Z, R) belongs to X, . Then the following two conditions
are equivalent.

(1) L is numerically effective.

(2) For every smooth rational curve C on Z, L-C > 0.

Proof. (1) = (2) It 1s obvious.

(2) = (1) It is enough to show that for every irreducible curve C on Z,
inequality L-C > 0 holds. First assume that C? < 0. Then by the adjunction
formula C is smooth and rational. By the assumption the inequality holds.
Next we consider the case C? = 0. In this case the orthogonal complement
[C]* to C in H"'(Z, R) does not contain any element in X since the
signature is (1, 19). Thus 2, and X2'_ are in the opposite side with respect to
[C]*. One sees that L-C >0 since x-C >0 and L, xeZX,. O
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For every elememt Me H*(Z, Z) with M? = —2, we can define an
isomorphism sy: H3*(Z, Z)— H*(Z, Z) by sy (P) = P+(P-M)M. It is easily
checked that s, preserves the intersection form and sj is the identity. s, is
called the reflection with respect to M. Indeed the induced mapping
sy: H*(Z, R)— H?*(Z, R) on the real coefficient cohomology is the reflection
with respect to the hyperplane orthogonal to M. Note that when we regard
Pic(Z) as a subgroup of H*(Z, R), if MePic(Z), then s, induces an
isomorphism s,,: Pic(Z) — Pic(Z).

ProposiTioN 1.13. Let L be a line bundle on Z with degL = L? > 0.
Assume that Le Pic(Z) = H'(Z, R) belongs to X,. Then there exist finite
number of elements M, ..., M,e Pic(Z) with M? = —2 (1 <i <r) such that
Smy Sm, --- Sm, (L) is numerically effective.

Proof. Set R = !MePic(Z)| M? = —2}. We denote the orthogonal
hyperplane to MeR by Hy = {xe H*(Z, R)| x-M = 0}. Note that if xc X,
then {(MeR| Hy3x! = {MeR| M-x = 0} is a finite set, since the intersec-
tion form on [NePic(Z)| N-x=0! is negatively definite. Therefore

(U Hy)nZ is closed set in £ and £°=2— () Hy is a union of finite or
Me MR
countably many disjoint connected open sets. Let 7, be the connected

component of X° containing the Ki#hler class » and T’ be the connected
component whose closure contains L. Let x’ be an interior point in T'. We
fix such an x’. We can connect » and x’ with a piecewise smooth path 7 in
2, with the following properties (a) and (b).

(a) The path y does not pass through any point on H,, m H,, for any
M, M’eR with M # M".

(b) If y intersects with H,, for some M eR, then y is smooth at any
intersection point P and it is tranversal to H, at P.

We denote connected components of X° through which y passes by
xXeT'=T, T,_,,..., T,, Ty3x in order. The number of them is finite since
~ is compact. We use induction an r. If r = 0, then LeT, and the condition
(2) in Proposition 1.12 is satisfied. Thus we obtain the conclusion. Assume
r > 0. Let Hy, bethe wall between T and T, ;. Onesees that L' = s, (L) belongs

to the closure of 7T,_,. Thus we can apply the induction hypothesis to L'
and we obtain the conclusion. O

Here we explain the theory of periods for K3 surfaces.

Let A be an even unimodular lattice with signature (3, 19). It is known
that such a lattice is unique up to isomorphisms and thus it is isomorphic to
Q(2Eq)®H ®H®H (orthogonal direct sum). (Q(2Eg) is the negatively definite
root lattice of type 2Eg and H = Zu+ Zv is a lattice of rank 2 with u? = v?
=0and urv=v-u=1. H is called a hyberbolic plane) A is isomorphic to
the second cohomologh group H?*(Z, Z) of any K3 surface Z, if we define
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the bilinear form on H2(Z, Z) by the intersection form. A pair (Z, «) where
Z is a K3 surface and an isomorphism of lattices a: H*(Z, Z) — A is called a
marked K3 surface.

For any marked K3 surface (Z, a), H*(Z, Z)QC = H*(Z, () has the
Hodge decomposition H*(Z, C) = H*(Z, ¢,)®H'(Z, QH®H®(Z, K,). We
have a nowhere vanishing holomorphic 2-form e H%(Z, K;), since the
canonical line bundle K, is trivial. The 2-form ¥ is unique up to the multiple
of non-zero complex number. Thus the point [ex(¥)] =a()
mod C*e P(A®C) = A®C— {0}/C* is uniquely determined depending on
the pair (Z, a). The point [a(y)] is called the period of (Z, a). Set

4= {[w]ePMRO)| 0 # e A®C, v =0, w ® >0].

The point [a(y)] belongs to A4 since Y-y =0 and ¥ -y > 0. The 20-
dimensional complex manifold 4 is called the period domain.
Now we can state the next remarkable theorem (cf. Barth et al. [3]).

THeoreM 1.14 (Horikawa-Shah—Kulikov—Persson—Pinkham-Todrov-
Looijenga). For every point [w] on A4, there exists a marked K3 surface
(Z, o) whose period agrees with [w].

Lemma 1.15. Pic(Z) = {xe H*(Z, Z)| x-y = 0}.

Summing up above results, we have the next one.

TueoreM 1.16. Let Q be the negatively definite root lattice (ie., the
lattice generated by roots) corresponding to a Dynkin graph G =) a; A,
+Y b;Dy+Y Cp E,. Assume that the lattice S = ZA®Q (A* = 2, orthogonal
direct sum) has an embedding S < A as lattices with the following properties (a)
and (b). Then there exists a reduced sextic curve B = P? whose combination of
singularities agrees with G. Now let § = {xe A| for some non-zero integer m,
mx belongs to S} denote the primitive hull of S in A.

(@) If neS, A-n=0, and 5* = =2, then neQ.

(b) S does not contain any element u with u* =0 and u-A = 1.

Proof. Let T be the orthogonal complement of S in A. T 1s a lattice
with signature (2, t) for some t > 0. Let x be an element in T®R such that
p*>0 and §= {xeA| x-u=0). Such a u exists since R is an infinite-
dimensional linear space over Q. Set T' = {Ae T®R| A-pu=0}. T is a linear
space over R equipped with a bilinear form with values in R with signature
(1, 1). Pick an element ve T' with v2 = p?. Set w = y+\/——lveA®C. The
point [w] belongs to 4 since @ o = p2—v*+2/—1u-v="0and w-@& = y?
+v? =2u*>0. Here note that §={xeA| x'w =0}. Let (Z, a) be the
marked K3 surface whose period is [w]. In view of Lemma 1.15, one sees
that « induces an isomorphism a: Pic(Z) = S. We consider the line bundle L
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=%~ '(A). By considering (Z, —a) instead of (Z, «) if necessary, we can
assume that L and the Kdihler class x» belongs to the same connected
component of the positive cone in H"!'(Z, R), because (Z, a) and (Z, —a)
defines the same period. Then by Proposition 1.13, there are finite number of
M., ..., M. ePic(Z)y with M}=-2 for 1<i<r such that L
= Spm, --- Sy, (L) is numerically effective. Now if Me Pic(Z) and M?= -2
then (Z, f) and (Z, Psy) defines the same period, since M-y =0 for
weH%(Z, K;). Thus considering (Z, asy, -.- Sp,) instead of (Z, a), we can
assume that L = o~ !(A) is numerically effective. Then by assumption (b) we
can apply Proposition 1.10. By condition {(a) the root system R
= IMePic(2)] M*= -2, M-L=0! is of type G. O

Remark. The converse of the above theorem is obviously true.

2. Theory of lattices

By the last theorem in the previous section, it is very important to determine
whether the lattice S can be embedded into A or not. In this section we
explain Nikulin’s lattice embedding theorem which gives us a criterion. We
explain it in a simplified form compared with the original form in [8]. It is
enough for our purpose in this article.

We begin with this section by a chain of definitions.

A [ree Z-module S ol finite rank equipped with a symmetric non-
degenerate bilincar form with values in Z is called a lattice. A lattice S 1s said
to be even il x-x = x* is an even number for every xeS. Note that we can
define a canonical morphism § — S* = Hom(S, Z) by associating an element
xe S with a morphism y — x-y. S is unimodular if this morphism § — §* 1s an
isomorphism. The following theorem is well known (cf. Milnor--Husemoller
[9]). By Q(G) we denote the negatively definite root lattice associated with
the Dynkin graph G (cf. Bourbaki [4]).

Tueorem 2.1. (1)  An even unimodular lattice with signature (s, t) (s and
t are non-negative integers) exists if and only if s—t is a multiple of 8.

(2)  Any indefinite even unimodular lattice is uniquely determined by its
signature.

(3) There arc two isomorphism classes of negatively definite cven uni-
modular lattices of rank 16. One is Q(2Ey). The other is '\, which is an
overlattice of Q(D,e) with index 2.

Here for a sublattice S of a lattice §’. §’ is said to be an overlartice of §,
if S'/S 1s a Anite group. The number # (§'/S) is called its index.

Now let A denote a finite abelian group. A symmetric bilincar form
h: AxA— Q/Z over A is called a finite symmetric bilinear forri. A mapping
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q: A— Q/2Z satisfying the following conditions (1) and {2) is called a finite
quadratic form.

(1) q(na) = n*q(a) (ne Z, ac A);

(2) gla+d)—g(a)—q(a’) = 2b(a, a') (mod 2Z) (a, a'e A). Here b: A x A
— Q/Z is a finite symmetric bilinear form; b is called the bilinear form of q.
Note that we can define the notion of orthogonality among subsets of 4 by
using b.

Let S be an even lattice. Its dual S* = Hom(S, Z) contains S as the
image of the canonical morphism S — $* and S* has a bilinear form with
values in Q which is the extension of the one on S.

We can define a finite symmetric bilinear form bg and a finite quadratic
form g5 on Ay = S*/S as [ollows

b(t,+85, t,+8) =t,t,+2Z (1,,1,€8%),
gs(t+S) =12 +2Z (teS*).

bs is the bilinear form of g and it is non-degenerate. by is called the
discriminant bilinear form of § and g is called the discriminant quadratic form
of §.

Now by ¢ (2): Z/2 — Q/2Z (0 = + 1) we denote a finite quadratic form
over Z/2 defined by ¢{*(2) (amod 2) = 04?/2 (mod 22Z).

An embedding S < A of lattices is said to be primitive if A/S is free.

By i(A4) we denote the minimum number of generators of a finite abelian
group A. A, is the p-Sylow subgroup of A for a prime number p.

Under the above definitions we can state Nikulin’s theorem.

Tueorem 2.2 (Nikulin [8]). If the following conditions (1), (2), (3), (4) are
satisfied, then the even lattice S with signature (t,,t_) and the discriminant
quadratic form q has a primitive embedding into an even unimodular lattice with
signature (1, 1_).

(1) l,—1_=0(modB8).

(2) l,—1,201.—t_20,I,+].—t,—t_ = 1(S¥S).

(3) For every odd prime number p, I((S*/S),) <l,+1_—t,—1_.

@) IfI(S*S),) =1, +1_—t,—t_, then g = q¥ (2)®q’ for some q' and
for some 0= +1.

When we consider non-primitive embeddings, the following proposition
is very useful.

Let S’ be an even overlattice of an even lattice S. A chain of embeddings
Sc§ c8§*cS§* is defined. Set Hg = S'/S. We say that a subgroup
H < §*/S 1s isotropic f ¢qs|H = 0.

ProrosiTioN 2.3 (Nikulin [8]). (1) The correspondence S’ +— Hg. gives
one-to-one correspondence between even overlattices of S and isotropic sub-
groups in S*/S.
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(2) The orthogonal complement Hg of Hg in S*/S equals $'*/S and
(qs|(Hs)YHs = g5

In the sequel we give the discriminant quadratic form for an irreducible
root lattice of type A, D, E. By the tables in the appendix in Bourbaki [4] we
can calculate it easily. We assume that every root lattice is negatively
definite.

. Q=0(4) (k> 1.

Let a,, ..., o, be the basis of Q associated with the Dynkin graph (the
fundamental system of roots).

ay 3] aj & Qy
5 o — o

Let wy, w,, ..., o, be the dual basis of a;, a,, ..., a;,. They are basis of Q*
= P(A,). (The weight lattice of type A,).

Ap = Q%/Q =Z/(k+1).
Agp 1s generated by g = w, +Q; @y = — tkoy +(k~Day+ ... + 20, +a; JJ(k+1).
For the discriminant quadratic form g = q5: A5 —» Q/2Z
q(g) = —k/(k+1)mod 2Z.

2. 9=0(Dy (k=4
Let a,, ..., a, be the basis of Q.

4 @3 g3 “h-2 T gt
o—0— - —0 —0
oy
Let w, w,, ..., w, be the dual basis of a,, a,, ..., o,. We denote &; = w; +Q

(I<i<k), #Ag=4and Ag =Q%/Q =0, &, Dy, Dy): Oy = Dy +Dy—y;

wy = —‘(al +a2+ P +ak_2+%a,‘_1+%ak),
Wp—y = — 0 +20+ .. H(k—2ay_ +3kay +3(k—2)a)/2,
o= <o, + 20+ ... +(k—2oy_ 3 +4(k—2) oy + 3k }/2.

Case 1. k i1s even.

Ag = Q%/Q = (Z/2) x(Z/2),

k— k
q(aw, . |+ bwy) = —I‘—:az——E%ab—sz (mod 22).
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Case 2. k is odd.
Ag =Q%/Q = Z/4,
Dy -y =30, @, =2,
q(@,) = —k/4 (mod 2Z).
3. Q=0Q(E)

Let w,, w,, ..., we be the dual basis of the next basis a,, a5, ..., 4.

o, € 3 (!" (g [£'3

2

Ap =0Q*/Q =Z/3, A, is generated by g = we+0,
We = —(2a1+3a2+4a3+6¢14+5a5 +4a6)/3,
q(g) = —4/3 (mod 2Z).

4. Q=Q(E,).
Let w,, w,, ..., w,; denote the dual basis of the following basis «,,
0!2. sy O!-,.
léL ity «, g L (;.,
[
A =0%/Q = Z/2, Ay 1s generated by g = w,+Q,
Wy = —(2.&1 +3a2+4a3+6a4+50(5 +4a6+3a7)/2,
q(g) = —3/2 (mod 2Z).
5. @=0Q(Ey)..
Q is an unimodular even lattice.

Ag = 0%Q =0.
The next lemma holds, since it holds for irreducible ones.

LemMma 24. Let Q = Q(G) be the root lattice of type G.
(1) For any odd prime number p, (p—1)I((Q*/0),) < rank Q.
(2) rank Q = I((Q*Q),) (mod 2).
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3. Reduction of the problem

In this section by Q = Q(G) we denote the negatively definite root lattice of
type G =Y a, A+ b, D+ ¢, E,. We assume that

rankQ =) g k+) bl+) c,m<15
throughout this section.

LemMa 3.1. If 1((Q*/Q),) > 20—rank Q for some odd prime number p,
then Q = Q(7A4,), Q(A3+64,), Q(TA;+ Ay). Q(64,+34,) or Q(As+54,).

Proof. By Lemma 24,
rank Q = 21(p—1)—(p— V)rank Q.

Thus we have 15p > 21(p—1) and p = 3. Note that for an irreducible root
lattice Q, (0*/Q); # 0 if and only if Q is type As, ., or Eg. Since rank Q < 15
and /{(Q*/Q)s) > 6, we have the conclusion. O

Lemma 3.2. There exists an even overlattice Q' of Q' = Q(6A4,) with
index 3 with theAfollowing property (a*).

(@*) If neQ and n* = =2, then neQ’.

Proof. Let ay, ..., ag, By, ..., B¢ be the basis of Q' associated with the
next Dynkin graph.

o0—o o—o o——o O——0 o——= o—=
ay #1 a, B2 a5 B3 a, 84 g Bs o B¢

6
Set =Y §(2«;+ ), and Q' = Q'+ Zw. 1t is easily checked that {’ is an

i=1
even overlalgice of Q' with index 3. We show (a*). Assume that there is an
element neQ'— Q' with n* = —2. Set

6 6
n=73 aa+ ) bfi+ew (a,beZ t=+1).
i=1 i=1

By considering —n instead of 5, we can assume that ¢ = 1. Note that w? =
—4, wa; = —1 and w-B; =0. We have

6
—2=n*=—-4-2Y (@} +a;+b}—a;b)).
i=1

6
Thus ) X;+1 =0, Here

=i

X;=al +a+bf —a;b; = la,—5b;— 1)} 2 +3[1h;+5]7—5].

By the last expression X; = 0 if b; #£ 0. In the case b, =0, X; = g;(g; 4+ 1) = (.

6
Consequently Z X; 2 0, which 1s a contradiction. O

i=1
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LEmMMmAa 3.3. There exists a plane reduced sextic curve with 7A4,,
A,+6A4,, TA,+ A, or 6A4A,+3A4,.

Proof. First we consider the case 0 = Q(74,). Set S = ZA®Q (1% = 2).
Note that Q = Q'®Q” (0’ = Q(64,), 0" = Q(A,)). Take the overlattice ¢’ in
Lemma 32. Set S =Zi®Q' ®Q". Let I be the cyclic subgroup of Q*/Q

= (Z/3)®° generated by w+¢Q'. By Proposition 2.3, Q*/Q’ = I'/I. Since Z/3
is a field, 1((Q"*/0"),) =4 if p=3, and it is zero if p # 3. Thus

1((S /S)p)s |l <rank A—rank§ =22—-15=7, if p#3,
and

1(($*/S);) = 5 < rank A —rank S.

Thus by Theorem 2.2 there is a primitive embedding § = A. The condition
(a*) in Lemma 3.2 implies condition (a) in Theorem 1.16. It is easy to check
condition (b) in Theorem 1.16. Indeed if u-4 = 1 for ue S, then u = i +a for
some ae Q' ®Q". But }¢Z.

Secondly assume Q Q(A;+6A4,). Set Q o 6A2) and Q" = Q(A4,
Taking the overlattice Q' in Lemma 3.2, set S = ZA®Q ®Q".

1((5*/S),) <2 <rank A—rank§ =22—16 =6, if p+#3
and

1((S*/8);) = 4 < rank A—rank §S.

Thus by the same reason as above we obtain the conclusion.
Thirdly we consider Q@ = Q (74, + A4,). Set Q" = Q(64,), Q" =Q(4;+4,)
and $ = ZA@0'@®Q", where (' is the overlattice in Lemma 3.2

1((8*/8),) <2 <rank A-rank S =6, if p#3
and
1((S*/S);) = 5 < rank A —rank §.
The fourth case Q(6A4,+3A4,) is similar. i

LemMa 34, The root lattice Q' = Q(As+4A,) has an even overlattice Q’
with index 3 and with the next property (a¥).

(a*) If ncQ and n? = =2, then neQ’.

Proof. Let ay, ..., s, By, ..., Be, 7 be the basis of Q' associated with
the next Dynkin graph.

ay B, az B, 2, 8, T, 8.
O0—————0 o—0 O—— oO—————0
Xg ﬁ5 Y .23 ﬂs
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6
Set w =1 Z (2a;+ B;) and Q' = Q'+ Zw. It is easily checked that Q’ is an
i=1
even overlattice of Q" with index 3. Note that w? = —4, w-a; = — 1, w-f;
=0, and w'y = 1. Next assume that there is an element 7e Q' —Q with n* =

—2. We can write it in the next form.

6 6
n=3 aa+ Y bpfi+cytew (a,b,ceZ, e= tl).
i=1

i=1

By considering —# instead of n if necessary, we can assume that ¢ = 1. We
have

6
—2=n*=—-4-2) (a?+a;,—a;b;+b?)—2c*+2c+2asc+2bsc.
i=1

Setting
X;=al+a,—ab+b} = {a—3b;~D}*+3[{b+3}2 3]
and
Y =ai+as+bi—asbs+at+ag+bi—agbg+ci—c—bsc—agc
={c—3(ag+bs+1))2+ las—3(bs—1)}* + b —3a¢) > +5 {ag—3(bs—1)}?

31 172 2
+3 bs+3]°—1%,

one knows
4
Y X;+Y+1=0.
i=1
Since X; 20 and Y+1 >0, it is a contradiction. ]

By Lemma 3.4 we can show the next one.
Lemma 3.5. There is a plane reduced sextic curve with As+5A,.

ProposiTioN 3.6. Let Q = Q(G) be the negatively definite root lattice
associated with the Dynkin graph G. We assume that

(1) rank Q < 15;

(2) 1(Q*/@):) < 20—rank Q.

Then there is a plane reduced sextic curve with the combination of
singularities G.

Proof. We can assume moreover that G £ 74,, A;+6A4,, TA,+ A,,
6A,+3A, and A5+5A4; by Lemma 3.3 and 3.5. Set § = ZA®Q (4> = 2). By
Lemma 3.1 for every odd prime number p

1((S*/S),) = 1((Q*/Q),) < 20;-rank Q =rank A—rank S—1.
On the other hand by assumption (2)
1((S*/S),) = 1 +1((Q*/Q);) < rank A—rank §.
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Note that
1(S*/S) = max 1{(S*/S),).

If 1((S*/S),) <rank A—rank S, then by Theorem 2.2 there is a primitive
embedding S < A. Assume that [((S*/S),) = rank A —rank S. In this case the
discriminant quadratic form q on S*/S = Z/2®Q*/Q has the form ¢
= ¢?(2)®q' because 2> =2. Thus by Theorem 2.2 there is a primitive
embedding S = A. Obviously conditions (a) and (b) in Theorem 1.16 are
satisfied. We have the conclusion by Theorem 1.16. O

ProprosiTioN 3.7. Let Q = Q(G) be the negatively definite root lattice of
type G. We assume that

(1) rankQ < 15;

(2) 1((Q*/Q);) > 20—rank Q.

Then G is one in the next list. (We write the values of r =rank Q and !

= 1((0*/Q),) in the list.)

r=11
[1] 114, =11
r=12
(2] Ay;+9A4, =10 [4] 84,+D, =10
[3] Ay + 104, =10 [5] 124, =12
r=13 *
[6] As+8A4, [=9 [13] 8A,+D; [=9
(7] As+9A4, [=9 [14] 7A,+Dg I1=9
(8] 2A4;,+7A, =9 [15] 5A4,+2D, 1=9
[9] A+ A,+8A, =9 [16] A;+104, =11
[10] A;+6A,+D, I=9 [(17] 94,4+ D, =11
[11] 24,+9A4, I=9 [18] A,+11A4, [=11
[12] A;+7A4A,+D, I=9 {19] 134, [=13
r=14
[20] A, +7A4, I = [41] A3+A,+54,+D,1=8
[21] Ag+8A4, I = [42] A,+5A4,+Dg [=8
[22] As+ A3+ 64, =8 [43] A;+3A4,+2D, [=8
[23] As+A,+7A4, [=8 [44] A,+4A,+2D, /=8
[24] As+54,+D, 1=8 [45] S5A,+Ds+D, =8
[25] A, + A3 +7A; =8 [46] 4A,+Dg+D, =8
[26] A, +A,+8A4, [ = [47] 2A4,+3D, l=
[27] A,+6A,+D, 1=8 (487 2A4,+8A4, [=10
(28] 245+ A, + 64, =8 [49] A;+7A4,+D, =10
[29] A3 +24,4+7A, = [50] 8A,+ Dg =10
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[31] 34,484,

[32] 24,4+ 6A,+D,

[33] A;+7A+ Dy

[34] A, +6A4,+ Dy

[35] 8A,+ Eg

[36] 7A4,+ D,

[37] 74, + E,

[38] 64, + Dy

[39] 3A5+ 54,

[40] 2A,+4A4,+D,
r=15 1=17

[62] Ag+64,

[63] Ag+7A4,

[64] A;+ A, +6A,

[65] Ag+ Ay +64,

[66] Ac+A,+7A4,

[67] 245+ 54,

[68] As+ A, +6A,

[69] As+A;+A,+5A4,

[70] As+2A,+64,

[71] As+5A4,+ D,

[72] 24,474,

[73] A+ A3+ A, 464,

[74] A, +24,+7A4,

[75] Ay+6A,+ Dy

[76] A, +3A,+64,

[77] A;+6A4,+Eg

[78] A;+54,+ E;

[79] 44,+7A,

[80] 24, +6A,+ D,

[81] A, +7A,+E;

[82] A,+6A,+ D,

[83] A, +6A4,+E,

[84] TA, + Eg

[85] 64, -+ Dy

[86] A+ A3+ 54,

[87] A.+4A,+ D,

[88] As+2A4;+44,

[89] As+ A, +44,+D,

[90] As+4A,+ Dg

[91] As+2A,+2D,

[92] 44,+3A,
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=38
[=8
[=8
=28
=38
=38
=28
=8
=8
=8

[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]

[98]

[99]
[100]
[101]
[102]
[103]
[104]
[105)
[106)
[107]
[108]
[109]

T110]

[111]
[112]
[113]
[114]
[115]
[116]
[117]
[118]
[119]
[120]
[121]
[122]
[123]
[124]
[125]
[126]
r127]
[128]

As+94, 1=10
A, + 104, I=10
As+ Ay +94, =10
24, + 104, 1=10
A,+84,+D, 1=10
94, + D, 1=10
Ay+ 114, =12
A, + 124, =12
104, + D, =12
144, =14

Ay+ A, +4A, + Dg
Ay+A;+24,+2D,
Ay +3A4,+Ds+D,
A3+24,+De+ D,
Ay+3D,
4A,+Dg+ D;
4A4,+D,+E,
34, + D3+ D,
34+ 2D
2A,+Ds+2D,
Ag+A3+4A4,+D,
As+4A4,+ Dy

A, +4A4,+Ds+ D,
54+ D

54, +2Ds
44,4+ D, +D,

Ay +Ds+2D,
Ay+2A45+54,
Ays+5A4,+ D¢
24;+2A4,+ 54,
A3 +24,+4A,+ D,
Ay+ A, +54,+ D;
A3+ 54,+ D,
24,4+ 54, + D¢
A;+3A4,4+Dg+ D,
A¢+5A4,+D,
As+ A3 +3A4,+ D,
Ay +A,+5A4,+ D,
3A,+54,+ D,
5A,+D,+Eg
2435+ A, +34,+D,
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(93] JA3;+ A, +44, [129] A,+5A4,+ Dy
[94] 34+2A4,+ D, {130] A,+34,+2D,
[95] 245+4A,+ D, (131] 2A4,+3A,+2D,
[96] 2A3+3A,+ D¢ [132] A,+A,+3D,
[97] 24, + A, +2D,
r=151=9
[133] 243+5A4,+D, [147] 243+ A,+7A,
[134] As+4A4,+2D, [148] Ay+2A4,+8A4,
[135] 5A,+ D¢+ D, [149] A;+A,+46A,+D,
[136] A, +8A4; [150] A;+7A,+Dg
[137] As+6A,+D, [151] A3;+6A4;+Dsg
[138] 7A, + Dg [152] 34,494,
[139] 3A,+3D, [153] 2A4,+7A,+D,
[140] Ag+94, [154] A,+8A4,+D;
[141] As+ A, +7A, [155] A,+7A,4+ D¢
[142] As+ A, +8A4, [156] A,+5A4,+2D,
[143] A+ Ay +84, [157] 94,4 E,
[144] A+ A;+94, [158] 8A,+D,
[145] Ay +74,+D, [159] B8A,+E,
[146] 34,4+ 64, (160] 6A4,+Ds+D,
r=151=11
[161] As+104, [166] 10A4,+ D4
[162] 2A;+9A4, [167] 94,4+ Dg
[163] A3+ A, + 104, [168] 7A4,+2D,
[164] A;+8A,+ Dy [169] A,+11A4,
[165] Ay +94,+D, [170] 24,4114,
r=151=13
[171] A+ 124, [173] A,+134,
[172] 114, +D,
r=151=15
[174] 154,

Sketch of the proof. Since I<r and 1> 20-r, 11 <r<15. Let Q

m
= @ Q, denote the decomposition into irreducible root lattice. Let a be the

i=1
number of components ; which are of type 4,,_,, Dy, (k=1,122) or
E-, and let b be the number of components Q; of type D,; (I = 2). Then

2l—r<a+2b=1<a+4b <L r.

By Lemma 24, r = a (mod 2).
Case r=11. If b>=1, we have | <r—2b <9 <21—r, a contradiction.
Thus b =0 and 10<a <11 Since ais odd a=11=r. Thus Q = Q(114)).
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Caser=12. If b= 2. We have | < r—2b <8 < 21-—-r, a contradiction.
First assume b =0. Then 9 < a < 12 and thus a =10 or 12. If a = 10, it is
easy to see that Q = Q (104, + A,) or Q(94,+ A,). If a=12, Q = Q(124)).
Next assume b = 1. We have 7=21—-r—2b < a<r—4b =8 and thus a = 8.
Therefore Q = Q(8A, +D,).

In the case r = 13, 14, or 15, the argument is more complicated but by
the same method we can show the proposition. O

LEmMa 38, Set Q' =Q(5A4,) and §' = ZA®DQ’ (A2 =2). §' has an even
overlattice S’ with index 2 and with the next properties (a) and (b) for any
negatively definite root lattice Q".

(@ If neS'®Q", n* = —2and -1 =0, then ne Q' ®Q".

(b) S'@Q”. contains no element u with > =0 and u-1 = 1.

Proof. The next Dynkin graph shows a basis of Q'

5
Set o =%(A+ ) a;) and 8" = §'+Zw. §' is an even overlattice with index 2
i=1

of §'. Note that w* = -2, -4 =1 and w-a, = — 1. Since the orthogonal
complement of A in $@Q" is Q' ® Q", (a) holds. Next consider (b). Assume
that there is an element ue $'®Q” with u? =0, u-4 = 1. We can write it in
the form

5
u=w+) gqu+p (geZ, fcQ").
i=1

5
Set B> = —2m, where m is an integer with m > 0. We have 0 = —2-2 ) (4}
i= 1

5
+a;)—2m, and thus ) g;(a;+1)+m+1 = 0. But the left-hand side of the last

i=1

equality is positive, which is a contradiction. O

By Lemma 3.8 we can deduce the next lemma.

LeEmMMA 39. Let Q be the root lattice associated with the Dynkin graph
G. Assume the following three conditions:

(1) rankQ < 15;

(2) 1(Q*/Q)2)+rank @ = 22;

(3) G is a sum of a Dynkin graph G’ of type 5A, and another Dynkin
graph G” containing A,, As or E, as its component.

Then there is a reduced plane sextic curve with the combination of
singularities G.
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CoroLLARY 3.10. Dynkin graphs [1]-14], [6]-[14], [20]-[38], [62]-
[85] can be realized on reduced sextic curves as their combinations of
singularities.

4. Elementary transformations of Dynkin graphs

The notion of elementary transformation is useful to manipulate our prob-
lem. This notion is the one which I first proposed to describe singularities on
quartic curves (Urabe [12]).

DerFiniTion 4.1, The following procedure by which we can make a root
subsystem R’ from a given root system R is called an elementary transforma-
tion of the root system R.

(1) Decompose R = @ R, into irreducible root systems.
i=1
(2) Choose a fundamental system of roots 4; < R; for 1 <i < m. Set 4;
= 4; u {—n;} for 1 <i < m, where #; is the maximal root associated with 4,.
(3) Choose a proper subset 4; < 4; for | i< m.

(4) Set R'= @ R{, where R} is the root system generated by 4;.
i=1

Now for a given root lattice Q, its root system R = {neQ| n*> = —2} is
uniquely defined. Conversely to a given root system R, its root lattice Q

= Y Zo corresponds. Thus the above definition also gives a procedure by
aeR

which we can make a root sublattice Q' from a given root lattice Q.

Let M denote an even lattice and Q be a negatively definite root lattice.
Assume that an embedding Q = M is defined. Let Q = {ue M| For some
non-zero integer m, mpe Q} be the primitive hull of Q in M. We say that Q is
full in M if the following condition (*) is satisfied.

(%) If HEQ and n* = —2, then neQ.

ProposITION 4.2. Let M be an even lattice and Q be its full root
sublattice. For any root lattice Q' which is obtains from Q by one elementary
transformation, there is a full embedding Q' ¢ M@ H, where H is a hyperbolic
plane.

Proof. Let R be the root system of Q. We use the notation in
Definition 4.1. Then O 4; is a free basis of Q'. We define an embedding
@: Q"> M®H by setltzilllg for ae 4;,

pa)=a®0 (f a# —ny)

=a®u (@ a= —n).

29 — Banach Center t. 20
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Here u, v is a basis of H = Zu+ Zy with u?> = v? =0, u-v = 1. Obviously ¢
preserves bilinear forms. Thus we have only to show the fullness. Let O’
denote the primitive hull of ¢ (Q’) in M@®H. Assume that neQ’ and n? = —2.
We can write it in the form

n=2

m
i=1

Z‘ a,p@)eM®H (a,e0).

We would like to show that a,e Z for every a.

Now set A =1li| 1 <i<m, —n¢d]), B=li| 1 <i<m, —p;cA] and
4’ =4;——n;. Il ieB, 4] is a proper subset of 4;. Set —x, = ¥ ¢,
acy

(c;a €Z). Then we have

=7 Y a,(@®0+) | (a,+a;c,)(aD0)

ied aed] icB aed’
+ ) 6, (@®@0}+{Y 4} (0®u).
aed;— A&’ ieB

Here we set a_,, = a;. Let n: M®H — M denote the projection. n(n) belongs

to the primitive hull of @ in M. By the fullness of Q we have n(3)e R < Q,
since n(n)? = —2. There is a number k with 1 < k < m such that n(5)eR,.

Case 1. ke A.

First we have g, Z for ac 4, since n(n)e R,. ForiecAwithi#k, a,=0
for every ae A;. Next fix an arbitrary ieB. g,¢;,, =0 for ac 4, — A # ¢. We
have a; =0, since ¢, # 0 (cf. Bourbaki [4]). Thus for every a€d;, a
=a,+a;c, =0.

Case 2. ke B.

We have a, =0 for ie 4, ae 4;. We consider ie B with i # k. We have
a;cig =0 for Bed;— A # ¢ and thus g; = 0. It implies that a, = a,+4g;c;,
= 0 for every ae 4] Lastly we consider ke B. We have a, = ) g, =n-veZ.

icB
By the fullness of Q, a,+a, c;,,c Z for every ac 4;/. We have a,e Z for ae 4;,
since ¢, Z.
Consequently we have
n= 3 a,e® (a,ecZ). O

aedj

DeriniTioN 4.3. A disjoint finite union of connected Dynkin graphs is
called a Dynkin graph. For a Dynkin graph, the following procedure is called
an elementary transformation of it.

(1) Replace each component by the extended Dynkin graph of the
corresponding type.

(2) Choose in an arbitrary manner at least one vertex from each
component (of the extended Dynkin graph) and then remove these vertices
together with the edges issuing from them.
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We give some explanation. We use the notation in Definttion 4.1. We fix
an integer i. We can obtain the Dynkin graph of the corresponding type
from A4; by the following rule: (a) Draw a vertex o corresponding to each
element a in A4;. (b) If «-f = 1, then connect the correspnding vertices 0—o0
with an edge for a, fe 4; with a # . If a- B = 0, then we do not connect the
corresponding vertices o o. If we apply the same rule to 4;, then the
obtained graph is the extended Dynkin graph the corresponding type.
Therefore choosing a subset 4 = 4; corresponds to choosing a proper
subgraph of the extended Dynkin graph.

By these facts one sees the following. Let R be the root system
corresponding to a Dynkin graph G. Let R’ be a root subsystem of R which
is obtained by one elementary transformation from R. If the type of R’ is
described by a Dynkin graph G’, then G’ is the one obtained from G by an
elementary transformation of Dynkin graphs.

THeoreM 4.4.  Any Dynkin graph which is obtained by elementary trans-
formations repeated twice from the one of type 2Eg or D¢ can be realized as a
combination of singularities on a reduced plane sextic curve.

Proof. We consider Q = Q(2E,). Assume that Q" is a root lattice which
is obtained from Q by elementary transformations repeated twice. By Prop-
osition 4.2 there is a full embedding Q" c Q@H®H. Let (" denote the
primitive hull of Q" in Q@H®H. Set § =(0"®Z(u+v), when u and v are
basis of the third hyperbolic plane H. The lattice S has a natural primitive
embedding S =« Q@ H®H®H, which has the following properties (0), (a), (b).

(0) For A=u+v, A>=2.

(@) If nes, n-A=0 and 5% = —2, then neQ".

(b) S does not contain any element u with «> =0 and u-A = {.

By Theorem 1.16 we obtain the conclusion.

Next consider another even unimodular lattice I'y, with signature
{0, 16). It is known that Q = Q(D,,) is a full sublattice of I';¢. Noting that
e PHOH®H = Q(2E;)PH®H®H, we have the conclusion by Proposi-
tion 4.2 and Theorem 1.16. O

COROLLARY 4.5. Dynkin graphs [5], [15]-[17], [39]-[52), [86]-[114],
(133]-{139] in Proposition 3.7 can be realized on a reduced plane sextic curve
as a combination of singularities.

Indeed, graphs [52], [108]-[114], [136]- [139] are obtained from D,,.
Other ones are obtained from 2E4 by elementary transformations repeated
twice.

5. Concrete construction

For Dynkin graphs [18], [19], [53]-[61], [115]-[122], [140]-[168], [171],
[172], [174] it is not difficult to find out a reduced reducible plane sextic
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curve whose combination of singularities agrees with the Dynkin graph. In
the following we give several typical examples. (As for singularities on plane
quartic curves, see Urabe [13])

[57] 94, + Ds: a cuspidal cubic + a general line passing through its
singular point + a general conic;

[60] 104, +D,: 2 general conics + 2 general lines passing through
one point on a conic;

[122] A,+3A4,+ D¢+ D,: a quartic curve C with A,+ A; + a general
tangent line at a general point P to C + the line passing through P and the
A,-point on C;

[140] A¢+9A4,: a quartic curve with 4¢ + 2 general lines;

(141] As+ A3 +7A,: 3 conics Cy, C,, C5 with the following properties
C, and C, have intersection number 3 at one point, C; and C, have
intersection number 2 at one point and intersect transversally at the other 2
points, C; and C, intersect transversally at 4 points not on C,;

[145] A, +7A,+D,: a quartic curve with A, + A4, + a general line
passing through the A,-point + a general line;

[147] 24,4+ A;+7A,: a cuspidal cubic A + a conic B tangent to A at
2 different points + a general line

(A: x?z =) B: 4x? —8y?+5yz—2%2 = 0);

[157] 94, +E4: a quartic curve with E¢ + 2 general lines;

[158]) 8A4,+ D,: a quartic curve with 4, + A, + a general line passing
through the A4-point + a general line;

[159] 8BA;+ E;: a quartic curve with E, + a general conic;

[161] A5+ 10A4,: 2 conics with intersection number 3 at one point +
2 general lines;

[163] A3+ A,+104,: a cuspidal cubic + its general tangent line + 2
general lines;

[174] 15A4,: 6 general lines.

6. The remaining cases

The remaining items in Proposition 3.7 are [123]-[132], [169], [170]
and [173]. For [123]-[132] there are corresponding sextic curves. On the
contrary we can show that there is no plane sextic curve with [169] A,
+11A4,, [170] 24, + 114, and [173] A,+134,.

LEMMA 6.1. Set S'=ZA®Q with A* =2 and with Q' = Q(34,+D,).
There is an even overlattice §' of S’ with index 2 and with the next properties
(a) and (b) for any negatively definite root lattice Q".

(@) If neS'®Q", A-n =0 and n* = —2, then ne Q'®Q".

(b) S’ @®Q” does not contain any element u with u* =0 and u-1 = 1.
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Proof. The following is a basis of Q.

ay a, Xy B 8, B4
o o © o— 7o)

B¢

Set wy = (B, +28,+ P +2B.)/2. We have wl=—1, w, ;=0 (1 <i<3),
wy Bs=—1.Set 0=+, +a,+a,)/2+w, and § = S+ Z0. It is easy to
check that §' is an even overlattice with index 2. Obviously (a) holds. We
show (b). Assume that we have such an element u. We can write it in the
form

3
u=41+) la+ila+(B+w)+y (aeZ, feQ(Dy), yeQ").
i=1

We have
0=u?= —2q (ay +1)—2(a, +1P = 2(ay + P+ (B+w,) + 7.

Since a;’s are integers, ¢, (a, +1) =0, (a,+%? > 0 and (a; +3)* > 0. More-
over (B+w,)? < 0 and y? < 0. Thus the right-hand side of the above equality
is negative, which is a contradiction. Ol

By using the above lemma we can show the next one.

LEmMMA 6.2. Let G’ be the Dynkin graph of type 3A,+D,, let G” be a
Dynkin graph with the following properties

(1) G” has 8 vertices;

(2) G contains A, or As as its component.

Then there is a plane reduced sextic curve corresponding to G =G +G".

CoROLLARY 6.3. There are corresponding reduced plane sextic curves for
[123]-[127].

ProrosiTioN 6.4. There are corresponding curves for [128]-[132].

Proof. We indicate an even overlattice § which has an primitive
embedding into A with the properties (a), (b) in Theorem 1.16. We set Q
=Q(G) and S = ZA®Q (A* = 2).

[128] 243+ A,+3A4,+D,. The basis of Q is the following.

o« a; ay <, Gq ag B 8,

o o — 5 o———o——o0 o—9
¥ ¢! Y3 g, ¢, 85
o o o o o o

A
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S=S+Ze, 0=(l+dl+a3+a4+a5+}’,)/2.

[129] A,+5A4,+Dg. The following is the basis of Q = Q(A4,+54,
+ Dy).

Set @ = (y; + 27,4 373+ 474 + 595 + 676 + 377 + 475)/2.
S=S+26, 0=(1+B;)2+w.

[130] A,+34,+2D,.

[131] 24,+3A4,+2D,.

[132] A,+ A, +3D,.

The following is the basis of Q"' = Q(A, +2D,).

a By B2 83 n 72 ?a
o o o

8. 74

S=8S+Z0, 0=@A+a+P,+Ps+71+7s)2.

_ Set S =(ZA®Q')+Z0. We can check that the discriminant form on
$*/5" is ¢ (2*@q% 2. 0

ProposITION 6.5. There is not a reduced plane sextic curve with a
combination of singularities Ay+11A,, 2A,+11A, and A,+13A4,.

Proof. Let p, =(n—1)(n—2)/2 denote the arithmetic genus of a plane
curve of degree n. Note that pg =10, ps =6, p, =3, p3 =1, p, = p; =0. For
any irreducible reduced curve D of degree n and for its smooth model D, the
following equality holds.

g+).6, =P,

Here g is the genus of D, d, is a positive number defined for every singular
point pe D, and the sum is taken over all singular points on D. The above
equality is called the Pliicker formula.

Assume that there is a plane reduced sextic curve C with 4,+11A4,.
Note that §, =2 for A, and 6, =1 for 4,. C cannot be irreducible, since



COMBINATIONS OF RATIONAL SINGULARITIES 455

24+ 11 x1 =13 > pg. Let C, be the irreducible component of C with the A,-
singularity. Since the A,-point has only one branch, C, is uniquely defined.
Now degC, =4 or 5, since C, has the A,-point.

Assume that deg C, = 5. We can write C in the form C = C, v (C,, and
C, is a line. C, and C, intersect at at most 5 points and at every intersection
point C has a singularity. In our case the singularity is of type A,. Thus C,
and C, intersect at 5 points transversally. Then C, has to have 11-5 =6
A, -singularities, since C, is smooth. The sum of J, over singularities on C, s
2+ 6 =8. But 8 is greater than ps, which is a contradiction.

Assume that deg C, = 4. If we write C in the form C = C; u C,, then C,
is a conic. C, and C, intersect transversally at 8 points. C, has at most one
A,-singularity. Thus C, has at least 11 -8 —1 = 3 A,-singularities besides the
As-point. Thus the sum of 4, over singularities on C, is at least 243 = 5.
But 5 is greater than p,, which is a contradiction.

Noting that an A,-singular point has only one branch and that 6, =1
for an A,-singularity, we can give similar proofs for the case 24,+ 114, and
the case A4;+134,. ]

Remark. 1t is interesting to ask whether we can determine all possible
combinations of singularities on plane sextic curves only by the Pliicker
formula. The answer is negative. Consider the A,,-singularity. Since §, = 10
for A, the existence of an irreducible reduced rational sextic curve whose
singularities consist of an A,,-point cannot be prohibited by the Pliicker
formula. But such a sextic curve never exists, since rank Pic(Z) < 20 for any
K3 surface Z.
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