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Introduction

In this paper we will discuss the problem of testing hypotheses concerning
one main parameter in the presence of a nuisance parameter by sequential
. tests based on independent identically distributed random variables, available
in successive experiments of the same kind. Such problems are often handled
by applying invariance principles, but there have also been proposed appeal-
ing likelihood methods. We will concentrate here on this second type of
methods.

Let the main parameter be denoted by y, the (k— 1)-dimensional nuis-
ance parameter by 6 and the density of the independent random varnables
with respect to some measure u(x) by f(x;y,d), and suppose that the
parameter 9 = (y, 67)7 belongs to a parameter set 2 = R*,

Bartlett (1946) proposed a sequential likelihood ratio test of y =y,
against y =y, based on the log-likelihood differences

)= Z (lnf(x1§ 715 S(IM))_lnf(xi; Yo, 58"))) (1)

i=1

where 6" and 8{® are maximum likelihood estimates of & under the
restrictions y =7y, and 7y =1y, respectively obtained from the sample
X,,....X,.,and X,, X,, ... are the successively available random variables.
As long as this log-likelihood ratio stays between two limits b <0 and a >0
experimentation is continued, if it exceeds the limit b experimentation
terminates and y =y, is accepted and if it exceeds the limit a experimen-
tation terminates.and y = y, is rejected in favour of y =7,.

Cox (1963) proposed a similar procedure which makes use of the
ordinary (unrestricted) maximum likehhood estimator instead of two separate
ones. The test of y = y, against y =y, is based on the log-likelihood ratio

YJLC”(’YI) = Z (]nf(xia ‘YIs S(M’)—lnf(xia 'yD: S(M))) (2)

i=1
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where 0™ = (5™, §™T)T js the usual maximum likelihood estimate of the
parameter 0 = (y, 6")" calculated for the m first random variables. The rules
for terminating experimentation as well as the rules for accepting and
rejecting the hypothesis y =y, are of the same type as in the Bartlett
procedure. The simplification by using only one maximum likelihood es-
timator in the summands is reduced by the fact that the dimension of the
estimated parameter is one unit larger here than in the Bartlett test. It is of
course possible to use the Cox type of procedure with the simpler restricted
maximum likelihood estimator §{™ replacing the ordinary maximum like-
lihood estimator §™ in the summands. But the success of such a replacement
depends on the properties of the obtained tests.

For one-parameter problems Berk (1975a) showed that a sequential test
based on the sum of derivatives of the log-likelihood function has the
property of maximizing the derivative of the power function at the boundary
of the hypothesis. This suggests using in the multiparameter case a procedure
for testing y = yo against y > y, based on the log-likelihood derivative sums

m g
Yo = Z [5 In f(x;, 7, 5)] (3)

Y=70 5= 5m

where 6™ is either the -part of the ordinary maximum likelihood estimator
6™ = (5™, §T\T of the parameter & = (y, 47)" or the maximum likelihood
estimator of & under the restriction y = y,. Termination rules, acceptance
rules and rejectance rules of the same types as in the Bartlett and Cox tests
should be used.

Obviously there are a number of possibilities to construct sequential
likelihood procedures in the multiparameter case. A natural question poses-
itself. What are the properties of the different tests? It is known that the
approximate power functions of the Bartlett and Cox tests can be con-
siderably different when the test limits are the same. On the other hand the
approximative expected sample sizes can also be considerably different. A fair
comparison of the tests ought to be made by holding some of the power or
expected sample size properties fixed and make a comparison of others. See
for example Berk (1975b). How can such comparisons be made in the
multiparameter case? How are the properties changed by reparametrization?
How are the properties affected by allowing the test limits to depend on
estimates of the nuisance parameter? What are the possibilities of steering the
properties of the tests by reparametrization or using test limits depending on
estimates of the nuisance parameter? Are there any optimality properties of
those tests?

Our aim is to develop the asymptotic theory far enough to answer the
above questions in terms of asymptotic properties. We will do this by
proving first some results of weak convergence of suitable random processes
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defined by the likelihood function and then use these results to obtain
asymptotic properties for the different tests. The asymptotic properties of the
Cox test are also studied by Kohlberger (1978) but the formulations and
methods differ from ours.

Breslow (1969) has given a general framework of weak convergence
theory in which a number of asymptotic likelihood ratio test problems may
be solved. It requires however for each problem a reduction to two sequences
of one-dimensional random variables converging weakly to a random pro-
cess and a nonrandom function. We intend in this paper to get general
asymptotic properties without special investigations for each problem.

2. Weak convergence of a log-likelihood process on bounded sets

It was pointed out by Cox (1963) that the test statistic sequence, upon which
his test is based, could be approximated by a simple random walk. A proper
limit theorem can be formulated for the weak convergence of a normalized
sequence of test statistics to a Brownian motion process. And such a limit
theorem would give us the asymptotic power function and asymptotic
expected sample size function of the same simple form as in a sequential
probability ratio test for drift in a Brownian motion. This applies not only to
the Cox tests, but also to the Bartlett test and the tests based on the
derivative of the log-likelihood.

We will formulate and prove this type of limit theorems later by using
the weak convergence of a log-likelihood process to a multidimensional
Brownian motion, studied in this section.

The asymptotic properties are obtained when the sample sizes increase
and the parameter at the same time approaches a point at the boundary
between the hypothesis and the alternative. If n denotes the (increasing)
sample size corresponding to the time ¢t =1 for the limiting process, the
suitable parameter convergence can be written

0= (7, 8T)7 =00 +n"12-@ ={(y,, 65)" +n”2-(I', 4T)" (4)

where 8, = (7o, 63)7 is a fixed parameter point in the interior 2° of @ on the
boundary between the hypothesis and alternative and @ =(I", A)" is a
normalized parameter.

We define a sequence of (k+ 1)-dimensional random processes X,(t, @)
forn=1,2 3,...0n the set 0 <t < o0, ®cR* in the following way. Its first
component X‘V(t, @) is defined in the time points t = m/n as a sum of
differences by

xa“("f , @) = 3 (0/(X 640" 20)~In [ (X, 6) ()

i=1
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and between those points it is linearly interpolated. Its second component
X2 (¢, @) is defined in the time.points t = m/n as a sum of partial derivati-
ves by '

o fm ¢ m r 0
X2 (;, 9) = ﬁXL“(;, @) = i;ﬁlnf(X,-, Oo+n"1120) (6)
and between those points it is linearly interpolated. The remaining k—1
components are analogously defined in the time points t = m/n as sums of
partial derivatives of the log-likelihood function with respect to the k—1
components of 4 and between those points by linear interpolation.

It may seem too complicated to introduce a (k + 1)-dimensional random
process in order 1o obtain results for one-dimensional processes, but it has
the advantage that it easily gives asymptotic results for the different tests in
the same framework without voluminous special investigations for the differ-
ent tests. _

For the Bartlett test statistics Y,® (y,), m=1, 2, 3, ..., we can define a
suitable -sequence XP(1), n=1, 2, 3, ..., of random processes by defining
X®(¢) generally by ‘

XO@= sup XV, 60)- sup X, 0) 0

r=ry,4eRk~ r=0,4eRk~

which for t = m/n reduces to

X (g) = ¥®(yo+n7V2T)). ®)

The alternative y =y, thus here approaches the hypothesis according to
7= po+n Y2l 9)

We call the function generating XV (1) from X,(t, ®) the Bartlett test
Sunction or Bartlett mapping

The processes X,(t, ©) are defined for 0 <t < o0 and for @cR*. We
will later discuss this unbounded definition set. But we begin by considering
the processes on a bounded definition set of the type TxD where T,
= [to, t,] for some ¢, and r; with 0 <t, <t; <o and D ={©: |0 <d,}
for some d, >0, where |@| i1s the ordinary Euclidean norm of the k-
dimensional vector 6.

If the log-likelihood function has continuous partial derivatives the pro-
cess {X,(t, ©): teT, @eD} belongs to the set C**"(TxD) of continuous
functions on the set TxD. In C**Y(Tx D) we introduce the supremum
metric defined as the supremum over Tx D of the Euclidean norm of the

function value. _
When we consider the process X,(t, @) only for te T, @ ¢ D the Bartlett



SEQUENTIAL LIKELIHOOD RATIQ TESTS 197

mapping generates

X2, = sup X, 0)-— sup X, 0) (10)
r= rl,leiﬁdl r=0,|01£d1

onteT.

The possibilities to obtain asymptotic results for the Bartlett test from
weak convergence of processes X,(t, @) depend on the following simple
lemma. '

LeEMMA 1. The Bartlett test function on C**V(Tx D) has its values in
the set C(T) of continuous functions on T. It is also continuous when C(T) is
endowed with supremum metric.

Proof. 1t is easily seen that the Bartlett mapping applied to a function
in C**V(Tx D) gives a continuous function on T

To see that the Bartlett mapping is also continuous let X(t, @) and
Y(t, ©) be two functions in C**(Tx D) with a distance |Y (1, @)— X (t, O)|
which is smaller than ¢, and let X*™(¢) and Y®(¢) be their images in C(T7).
Then obviously the distance |Y® (r)— X® (r) between the images satisfies
[Y® () — X® 1) < 2e. .

The other tests can be treated in a similar way. For the original Cox test
we define the maximum likelihood estimator é,,., as a value of ® maximizing
X (¢, ), with some additional rule making it unique. The Cox test 1
mapping is now defined as the function giving for X,(t, @) the result

XSO0 = X0, (Fy, A7) - X0(, (0, 43)7). (11)
where 4,, is the Acomponent of @,,. For t =mfn, m=1, 2, 3, ..., this
relates to the sequence YV(y,), m=1,2,3, ..., in formula (2) by

XE0(0) = Y (o +n” 2 1). (12

For the modified Cox test based on a restricted maximum likehhood

estimate we define analogously the Cox test 2 mapping as giving for X, (¢, ©)
the result

XD (1) = XPe, (I, AT)T)-XD(r, (0, A1)7) (13)

where 4,, is a uniquely defined value of 4 maximizing X" (t, (0, 4M)").
The two Cox test mappings can be defined either for functions X,(t, ©),
0<t < oo, @eR*, or for functions X,(t, ), teT, @D, and in the latter
case the maximum likelihood estimators are also restricted to the set
16| <
Asymptotlc properties for the two Cox tests can ‘be obtained from weak
convergence results for X,(t, @) by help of the following simple lemma.

Lemma 2. The two Cox mappings are continuous and take values in
C(T) for each subset of C**V(Tx D) where the second @-derivative exist and
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the eigenvalues of the second derivative matrix are bounded above by a negative
number.

Proof. Consider the subset of C**V(Tx D) where the second @-deri-
vative is bounded above by —1 <0. If X,(t, ®) and X,(t, @) belong to
this set and @, and @, are the corresponding maximum likelihood estimates
and |X,(t, @)— X, (t, @) <& then we get )

- - £
6:-64 < (14
by considering the derivative components of X,(t, @) and X,(t, ©).

The statements in the lemma now follow for the Cox test 1 mapping
from the continuity of the functions in C**Y(Tx D) and of the supremum
operations.

If 4, and 4, are the maximum likelihood estimates of A under the
restriction I’ =0 in X, (¢, @) and X,(t, ®) we have analogously

(15)

which gives the stated results for the Cox test 2 mapping. "

Finally for the differentiation test 1 based on the ordinary maximum
likelihood estimator we define a mapping generating for X, (¢, 0)eC* "1 (Tx
x D) the function

XPY () = XD (t, (0, 4T)) (16)

where @, = (I',, AT )T is the maximum likelihood estimator in C***(Tx D).
And for the differentiation test 2 based on the restricted maximum likelihood

estimator we introduce a mapping generating for X, (¢, @)¢ C**1)(Tx D) the
function

XP2(e) = X\2(t, (0, 41)7) (17)

where AT, is the restricted maximum likelihood estimator maximizing
X(¢, (0, aANT) for (4] < d,. '

Observe that in this case the relation to the sequences Y.°D, m
=1,2,3,...,and YP? m=1,2,3,..., given by formula (3) for the two
estimators is given by

X:.,D” (T) — n—1/2 Y,f,D” (18)

n

and

X(nDl) (T) = n-1/2 Y’:‘Dlj. (19)

h
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LeMMa 3. The two differentiation test mappings are continuous and take
values in C(T) for each subset of C** ) (Tx D) where the second ©-derivative
exists and the eigenvalues of the second derivative matrix are bounded above by
a negative number.

Proof. From the proof of Lemma 2 we get the continuity of the
ordinary and restricted maximum likelihood estimates. The statements in the
lemma now follow from the continuity of the functions in C**Y(Tx D). m

By the above three lemmas we can transfer weak convergence results for
the processes X,{(t,®), n=1,2,..., on C**V(Tx D) to weak convergence
results for the different test statistics processes on C(T). See, e.g., Billingsley
(1968), Theorem 5.1. Thus we have a good motivation for studying weak
convergence of the processes X,(f, @) on C**"(Tx D). The problems of
extending the results to unbounded time and parameter sets will be discussed
in the next section.

We begin our study by some general considerations for the space
C** D (Tx D).

LemMMa 4. The space C**V(Tx D) is complete and separable with re-
spect to the supremum metric.

Proof. A fundamental sequence of functions gives a fundamental se-
quence in each point. They converge uniformly to a continuous function
which proves the completeness. Separability follows from the Stone-Weier-
strass theorem (see, e.g., Hewitt and Stromberg (1965), p. 95) which states that
the polynomials constitute a dense subset in C** 1 (Tx D), .

Note. Another dense subset which is more closely connected to our
convergence problems can be constructed in the following way. For all
natural numbers v consider nets with side 1/v and functions with rational
values in the net points. Within the cubes of the net the value is obtained by
summing over the cube corner values multiplied by factors of the type
Dy "V, ... Uy+ Where v, are linear functions varying between 0 and 1 over the
Ith coordinate interval and attaining the value 1 in the corner the factor
belongs to.

A sequence P,, n=1, 2,3, ..., of probability measures on a metric
space C 1s said to converge weakly to a probability measure P on C if

lim [gdP, = [gdP (20)
C

n—a C

for every bounded continuous realvalued function g on C.
A set IT of probability measures P on C is said to be tight if for every
¢ > 0 there exist a compact set K, such that P(K,) > 1—¢ for each Pell.
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We can now prove a fundamental theorem of weak convergence in
C**D(Tx D).

THeoreM 1. Let P,, n=1,2,3,..., and P be probability measures on
C*¥* N (Tx D). If the finite dimensional distributions of P,, n=1,2,3, ...,
converge to those of P and (P,:n=1,2,3, ...} is tight then P, n
=1, 2,3, ..., converges weakly to P.

Proof. By Lemma 4 the space C***(Tx D) is complete and separable.
For such spaces tightness implies relative compactness, i.e., each subsequence
of {P,: n=1,2,3,...} contains a weakly convergent subsequence. See, e.g.,
Billingsley (1968), p. 37. Let this limit probability measure be denoted by Q.
But the finite dimensional distributions are limit determining and thus P
= Q. The theorem now follows from Theorem 2.3 in Billingsley (1968),
p. 16. ]

The tightness condition in Theorem 1 is possible to substitute by an
equivalent condition which is easier to verify.

LeMMA 5. The sequence |P,: n=1,2,3,...} is tight if and only if
(1) For each n > 0 there exists an a > 0 such that

P,({x: |x(0) > a}) <, Vnz=l.

(i) For each ¢ >0 and 5 > 0 there exists 6, 0 <6 <1 such that
P({x: w,(8)=e})<n, Vnzl,
where w,(0) is the continuity modulus of the function x.

Proof. By the Ascoli-Arzela theorem (see, e.g., Simmons (1963), p. 126)
a closed subspace of C** 1 (Tx D) is compact if and only if it is bounded and
equicontinuous. The lemma now follows exactly like the proof of the cor-
responding lemma for the case C[O0, 1] in Billingsley (1968), p. S5. ]

So far we have discussed weak convergence for a sequence {P,: n
=1,2,3,...} of probability measures. In our orginal problem we rather
have to study a sequence {X,(t, @): n=1,2,3,...} of random processes.
Formulated in terms of weak convergence of random processes on the set
Tx D we have the following lemma.

LEMMA 6. Let X, (t,0), n=1,2,3,..., and X(t, ©) be random pro-
cesses in C**V(Tx D). If the finite-dimensional distributions of X, converge to
those of X and

limsupP{ sup |X,{t,0)—X,({', ©) >e}=0 (21)
o (i)
for every € >0 then X,(t,©), n=1,2,3, ..., converges weakly to X(t, ©),
i.e, the corresponding probability measures converge weakly.
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Proof. Literally equal to the proof of Theorem 1 in Gikhman and
Skorokhod (1969), p. 449, for the C[0, 1] case. "
In the final step we are now going to use this lemma for proving weak

convergence of our likelihood processes. We need some conditions, which
will now be introduced. The first condition involves existence of second

order partial derivatives which can hardly be avoided since the final weak
convergence result' will include those derivatives. The existence of the third
order partial derivative and boundedness conditions might be avoided or
changed.

ConprtioN 1 (existence and boundedness of partial derivatives). There
exist partial derivatives of the first three orders with respect to 8-components of
the log-likelinood function 1n f (x, 0) for every 0eQ a.e. with respect to p.

Further for each 8,c Q° on the boundary between the hypothesis and the
alternative there exist a neighbourhood Qg  and functions F,(x), F,(x) and
F3(x) such that the maximum numerical value of the first, second and third
order partial derivatives over g are bounded by F,(x), Fy(x) and F4(x).
There exist constants K,;, K, and K, such that

) § Ffin 0dutd <Ky, V0ely,
(1) _j Fy(x)} f{x, 0)du(x) < K,, VGE.QOO,

i) [ Fa(0f(x 0)du(x) <Ky, VOeQ,.

Next condition concerns uniform convergence of means of partial de-
rivatives of the log-likelihood function. We introduce here some notation
dln f(x; 6)

o0
dimensional vector whose components are the first order partial derivatives

. : 2?1 ;0
with respect to the different components of 6 and by —n?fe(zx—) we mean
the k xk matrix whose (i, j)-element is equal to the second order partial

derivative with respect to the ith and jth component of 6.
. : d '
By Condition 1 the expectations E|:[— Inf(X, 0)1, J and
-_—00

which will be used throughout. By the notation we mean the k-

08
0? '
E[[Eﬂ_zln f(X, 9)9=90J] exist for any true parameter 0* of the random
variable X. Further the covariance matrix of éaln (X, 0) exists and

_00

aZ
equals E[—[W Inf(X, 0)9=90]:|.
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In the case when the parameter in the distribution of X equals 8, we
denote this expectation by I(6,) and generally

62
1(0) = E[—[E‘ﬁlnf(X, 6)]:,

when the true parameter of X is # and the second derivative matrix is
calculated in the same point.

If the true parameter of X is (o+n~ 12 @* then from condition 1 and
bounded convergence we get

lim E [n”" [i In f(X", 9)] ] ~ 1(6,) O (22)
a=® aB =0
and
(-;2
lim E [—[,‘—5 In £ (X, 0)] ]: 1(6,). (23)
h— 0 09 9=90

The norm of a matrix will be denoted by ordinary modulus signs around the
matrix notation and the norm is to be interpreted as the supremum length of
the resulting vector when the matrix is multiplied by unit vectors.

ConDITION 2 (uniform convergence). For each 84,e Q° on the boundary
between the hypothesis and the alternative there exists a neighbourhood ,,
such that 1(0) is continuous in Qg and

> a) =0

lim P,(
uniformly for 0€Qg for each ¢ > 0.

When proving the weak convergence of the log-likelihood process we
use Lemma 6, i.e, we prove that the tightness condition (21) is satisfied and
that the finite-dimensional distributions converge.

1 x &

LemMA 7. If Conditions 1 and 2 are satisfied then for each ¢ >0

limsupP{ sup |X,(t',O@)-X,(t, O) >¢} =0.

S
Lt'eT,0.8'eD

Proof. Since the X, functions are continuous the result in the lemma is
equivalent to a corresponding result with the supremum over n substituted

by limes superior in n. The result will thus follow if we show that for each
e>0

limm P( sup [X,(¢, @)—X,(t, ©) >¢) = 0.

o ) ()
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Now consider first the derivative components of X,(¢, &). We denote by
X, (t, @) the k-dimensional vector whose components are the k-derivative
components of X,(t, @). We have by the triangle inequality

| Xa(t', @)= X, (t, O) < |X,(', @)— X, (1, @) +]X,(t, O)— X, (1, O)

and we will show that for each ¢ > 0

limTim P(  sup  |X,(r, @)~ X,(t,0) >¢)=0 (24)
k—=0n—x li-rl<h|€|<dy

and
lim im P( sup 1X,,(t, @)= X, @) > &) = 0. (25)
h—=-0n—w |@—@|<shitgststy

We begin by showing formula (24). Supposing that t' > ¢ and denoting
my, =[nt]+1
and
m, = [nt']
we get
| Xa (', ©)— X, (1, )
2 ¢
Y n_”z[%lnf()ﬁ"’, ()):’

j=my

s +

8=00+n" /28

= In (X0 1, 6) +
| &0 ' Jo=0g+n~1/2¢
o _
+p™ 2 =Inf (X2, ., 6) . (26)
| 0 2! Je=eo+r1/29'

2

+ n— 2

Here by series expansion

m2
Y n 2 [3 In f (X!, 9)]
ji=my e 0=0g+n~1/2¢

m2 m3 2
<| Y n‘”’-[—a—lnf(X}"’, 9)] + Y n‘l[a—zlnf(X}"’, B)J 1@ +
i=my ae 0=209 j=my w 0=26¢
m2
+n" 32|02 k3 Z F:,(X}-"’) (27)
i=my

where F, is defined in Condition 1.
Now let J4, Jy, ..., be the intervals defined by

J, =[vh, (v+1)h].
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Then
P(  sup | Xa(t, @)= X,(t', ©) >¢)

jt—t’|<h|€|<d;

SP( sup  |X,(t, @)= X, (1, ©) > }e)
s breme ¥

< P(  sup |X,(t, @)= X, (', @) >3¢).  (28)
Je— II<hI9'|<dl .
=[t'th)-h

We will use this formula together with the estimates in formulas (26) and
(27) to obtain (24). Note first that formula (27) applies to all three terms in
the right member of (26), by using in the two final terms the special case m,
= ml

Taking supremum over |@'| < d, in the right member of (27) just means
substituting |@’| by d, since everything else is independent of @’.

Since F, is a nonnegative function we get for the third term in the right
member of (27)

ma
P(  sup n~¥2dtk? Y Fy(x{") >¢)
n0$m1$m2Sn1 j:ml

ny n32
P((nl—no+1)_1j§'0F3(X}")) > E’dl 2k 3m)

< Ki(E) 'dikPn ¥ (n —ny+1) (29)

where no = [nty] and n, = [nt,]+ 1. Thus this term tends to 0 as n tends to
o for each & > 0.

Consider now the middle term in the right member of (27) for t' in the

subinterval J,, ie.,
m2
Z [ In f( X"" B)l
j=l0+1

There exist a number M > 0 and for each ¢’ a number m” such that

P(m_1
i=1

m2 az
2 [W In f(X§", 9)]

j= =8¢

sup
ngt1l<my<ng+inh)+1

<M for each m> m") = 1-¢" (30)

uniformly for the true parameter 8* in a neighbourhood of 6, ie,

-P(n-lL”f [ S In f (X4, e)l

for each m,, ng+m”" < m, < nyg+[nh]+1 2 )2 1-¢". (31)

°<2Mh




SEQUENTIAL LIKELIHOOD RATIO TESTS

Further
m2 az
P(n“ y [aez In f (X, 6)] < 2Mh
j=n0+l 9=90

for each m,, ng+1 <

205

m, < No + m”)

U EL (X < Mk > 1= K2 (3
j=§+1 A0S I oM

The same estimates are valid in all subintervals J,,

and thus

P( sup
imy—mq| <(nh]+2

"Z

j=my

[692 In f (X5, 0)]

g= 90

Iy —1lo
=0,1,2,...,
. [ . ]

> 8Mh)

ty—tg ., m’'Kyk?
S([ p :|+l)(8 +——2Mhn . (33)

This gives
2
TfrﬁP( sup n-! Z |: > In f(X{, 9)} >a)=0 (34)
n—~w jmy—my| S[nhl+2 j=my 69 9=6

for each ¢ >0 and h <§;—4 since &

shown that
lim im P( sup | X (', @)=X.(t, @) > s) =
k=0n—o |t—t'|<h|&|<d,

if we show that X, (¢, 0) is tight on the interval t, < ¢

can be chosen freely. Thus it will be

0 for each ¢ <0

< t,. The investigation

of this problem will be postponed to the end of the proof.

Next we will show that

lim lim P( sup 1X,(t, ©@)—X,(t, ) > &) =0 (35)
h~0n—am |0-6|<htg<rsty
for each ¢ > 0. By series expansion and Condition 1 (iii)) we get
| X0 (1, @)— X, (¢, O)
sl@—a’ln_l Z zlnf(X(ll) 9)
j=np+1 a0
0
Tl | s (n)
+@—-@'n" | —51In f (X%, 0)
00
m+1
+@—-0'|n! zlnf(X""B) +4di’n‘3f2 Z Fi(x{™  (36)
69 j=n0+1
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where m= [nt]. Here the final term does not depend on © and @',

m+ 1 [my}+1
Y F3 X< ) F3(XP") (37)
j=ngt+1 j=ng+1
and
[llll_|+l
P(@din=37? Y F3(X{™) >e) < Ks-4din % ([nt;]+1—np), (38)
j=mgtl1

i.e, the supremum of the final term tends to 0 when n tends to co.
In the first term the part

i [692 In f (X, 9)]9

Jj=ngt1

n—l

is independent of ® and @', and when taking supremum over ¢ (over m) we
get like in the previous part of the theorem

m 62 -
—1 X" 0

> M2d, (t, —to)) =0. (39)

HEP( sup  |@—0|n !

n-ax ngtlEms[nqg]+1

The supremum of the middle terms is dominated by twice the supremum
of the first term and formula (35) will follow.
Now consider the first component X'V (¢, @) of the process X,{t, ©), i.c.

the process which is a linear interpolation of Xf,”(m, @) given by
n

x‘,“(’”:l 9) S (Inf (X, 8o+~ "2@)~In £ (X, 6,)).

ji=1

Also in this case we will prove tightness by proving two formulas

lim Iim P( sup (X, 0)—- X, ) >¢=0 (40)

h—»0n-x lt—¢t'|<h|O|<d;

and
lim Iim P( sup XV, ©)—XP(t, O) >€) =0 (41)

h-0n-w tg<t<ty,|0-&|<h

which together imply tightness.
Observing that X!V (¢, 0) = 0 and making a series expansion we get

XD, @) XD (1, @) = |(Xiit', @)= X,(t, 0") O] (42)
<X, (1, @)X, t, ©) -0

where |@”] < |@’]. It is thus seen that formula (40) will follow from tightness
of X,(t, ).
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Similarly
X5 (t, @)=XP (1, @) =|X,(1, 0)(0'—0) (43)
< |X,(t, ©")- 0" -6
where |@"] < max(|@’|, |@|). The formula (41) will thus also follow from

tightness of X, (t, ©).

It remains to prove tightness of the process X 2(t, 0 onty <t <ty This
process is a linear interpolation of

M - 1)2 n
m0)eese £ [Znsinro]

By Conditions 1 and 2 the expectation

¢ (XY
#| ool |
. 0
lim n'/2 E [[;- In £ (X", o)l ]: 1(8,)-0*
n— o a0 -0

where 1(8,) is positive definite. Further by Conditions 1 and 2 the covariance

matrix
_ ¢
lim Cov H:— In f (X7, H):L :I = 1(8,).
n—a 60 =90

The tightness of the components of X, (t, 0) on t, <t < t, now follows
from Theorem 1 on page 452 in Gikhman and Skorokhod (1969). With their
notations we have for example for the first component

2 (1) (1)
—grtp 2l (m - (n)
i =011 {l:wlnf(xj ,9)]0=00 E[[aelnf(X 9)]9=00]} (44)

where
o} = Var [[a—% lnf(Xﬁ-"’, 9)l=00:, (45)

and the Lindeberg condition is easily seen to be satisfied. The extension of
the result for the time interval 0 <t < 1 in Gikhman and Skorokhod (1969)
to the time interval fy <t <t, is trivial

exists and

exists and
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The tightness of the whole process X,(t, 0) follows directly from the
tightness of its components which completes the proof of Lemma 7. ]

We now turn to the convergence of the finite-dimensional distributions
and we begin by proving a lemma relating the limiting finite-dimensional
distributions of X,(t, @) to those of X,(t, 0).

Lemma 8. If Conditions 1 and 2 are satisfied then .

limp(X;,(t, e)— X, (t, 0)+1(0,) @t) =0 (46)
and
limp(X‘,”(t, 0)—-0T X (t, O)+%@TI(00)@t) =0 (47)

Proof. By a Taylor series expansion it is seen from Condition 1 that
[XD(t, ©)— 0T X (¢, 0)—307 X, (1, 0) &1

k2 m+ 1
<edn Y Fa(XP) (48)
i=1
where m = [nt] and X (¢, 0) is a linear interpolation of

" Z [692 In f (X7 9)]6:00

By Condition 1 (ii1)
k m+1 K,y k? n
P{—din 32 Y Fyx R A | VI 1L S 4
(6 jzl ( )>F) e 6 1 m+1 (49)
and thus by Condition 2 (1)
limp(XP(t, ©)—OT X, (t, 0)+5n 1 OT[(8,)Ot) =0

which is formula (47).
Again by a Taylor series expansion

m+1
1X'(t, @)—X'(t, )~ X"(t, 0)Ot] < $kdin 32 Z Fy(X{™) (50)

J=
and Condition 1 (ii)) and Condition 2 give

limp (X, (1, 4)— X (t, 0 +1(8,) O1) =

n—a

which is formula (46). n

Note. If formula (47) is considered to be the approximation

X, )= 0TX,(t,)—7071(0,)@ (51)
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then formula (46) can be considered to be the approximation
X(t,0)x X'(t,0—-OT I(6,) (52)
obtained by differentiating (51).

Lemma 8 shows that the finite-dimensional distributions of X,(¢, ©) are
determined by those of X,(r, 0) for the same time points. The finite-
dimensional distributions of X, (t, @) degenerate when there are some points
with coinciding time values.

The sequence defining the process X, (¢, 0) has independent increments
and its limiting finite-dimensional distributions will be related to the finite-
dimensional distributions of a k-dimensional Brownian motion X'(t, 0) with
drift 7(6y) ©* and covartance [(8,) per time unit, ie, a k-dimensional
process with independent increments, the increment X'(¢, 0)— X’(s, 0) in the
interval [s, t] being normally distributed with expectation I(0,) @*(t —s) and
covariance I(0g)(t— s).

LEMMA 9. When Conditions 1 and 2 are satisfied then the finite-dimensional
distributions of X,(t, 0) converge to the corresponding finite-dimensional
distributions of a Brownian motion X'(t, 0) with drift 1(6,) ©* and covariance
1(8y) per time unit.

Proof. Consider first the k-dimensional distribution of X,(t, 0). By

Chebyshev 1nequality
, ,([nt]
limp|{ X, (¢, 0)— X, B 0}}=0 (53)

n—a

and by the ordinary central limit theorem the limiting distribution of
X'([nt]/n, 0) is a normal distribution with mean I(8,)©@*t and covariance
I(0¢)t. Sufficient conditions to obtain this result are included in Conditions 1
and 2.

Next consider two time points s and t, where s < t. Then we can obtain
the limiting distribution of (X, (s, 0), X,(t, 0)) from the limiting distribution
of (X.(s, 0), X.(t, 0)— X, (s, 0)).

Again by Chebyshev inequality we can obtain the limiting distribution
as the limiting distribution of (X,([ns]/n, 0), X, ([nt]/n, 0)— X, ([ns)/n, 0)).
The two components are independent, and by the central limit theorem their
distributions converge to those of (X'(s, 0), X'(t, 0)— X'(s, 0)). Three or
more points can be handled in the same way. =

We now have the possibility to easily prove the following main theorem
of this section,

ThHeoreM 2. If Conditions 1 and 2 are satisfied then the likelihood
process

X, @))

Xalt, ©) = ( Xo(t. )

14 — Banach Center t. 16
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te T, @eD, converges weakly to the random process
OTX'[t,0]1-3071(6,) Ot
X'(t, 0)—1(0,) Ot

where X'(t, 0) is a k-dimensional Brownian motion with drift 1(6,)©* and
covariance 1(0,) per time unit.

X(t,@)=(

Proof. Follows directly from Theorem | and Lemmas 7, 8 and 9. =

In order to see that Conditions 1 and 2 are not too restrictive we will
now see that they are satisfied in exponential classes with natural parametriza-
tion. With our notation for main and nuisance parameters the density in
such a class can be written

k—1

f(x,9,0)=C(y, d)exp(yT(x)+ Y 6, U;(x)). (54)
j=1
The function C(y, 8) is analytic in each of the components y, J,, ..., d;_,

where their real parts are in the interior of the natural parameter space and
the partial derivatives of InC(y, ) give expectations and covariances for
T(X), U(X), ..., U,_{(X). See Lehmann (1959).

The first order partial derivatives of In f(x, y, ) are bounded by

k-1 k—1
Fi(x)=) Kj+|T(x)|+ Y |U;(x) (55)
j=0 j=1
where
d
o = sup }71n C(y, 9) (56)
06990 a.y
and
K; = su InC(y, 8. 57
K; 0en£) |7 (v, 9) (57)
Here

2

bl o 2\1/2
Eo[IT(X)] < (Eo[T?(X)])? = (azlnC()’, 5)+(~lnC(y, 5))) (58)

and similar estimates hold for E,[jU;(X)]], j=1,2,..., k—1.
Thus the boundedness condition

J Fi(®0)f(x, 0du(x) <K,, VOeQ,,
follows from the continuity of partial derivatives of InC(8).

The second and third partial derivatives of In f(x, y, 8) are not even
random but equal to the same derivatives of In C (y, 4). This means that parts
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(i1) and (iii) of Condition 1 as well as Condition 2 follows from the continuity
of partial derivatives of InC(y, §). Thus we have the following corollary.

CoroLLARY 1. Conditions 1 and 2 and the results of Theorem 2 hold for
all naturally parametrized exponential classes.

3. Unbounded parameter set

The random processes corresponding to the different test statistic sequences
can be obtained from the log-likelihood process by different mappings. In the
statistical applications they must always be mappings of the log-likelihood
process on the whole parameter space. In order to be able to use the weak
convergence results for bounded normalized parameter sets in statistical
applications we thus must consider the problems connected with the tran-
sition to unbounded parameter sets. First the definition of the concept of
limiting tail inferiority.

DerFiniTion 1. A real random process Y (r, @) defined for teT and
@ e D < R* is said to be tail inferior in @ on T if for each KeR and ¢ >0
there exists a d, > 0 such that

P(Y(t, ) <K, V(t,0): teT, @cD, |0 >d,)> 1. (59)

DerFiniTION 2. A sequence [Y,(f, ©): n=1, 2, ...} of real random pro-
cesses Y (t, @), te T, @eD, = R*, is said to be limiting tail inferior in @ on T
if for each KeR and & > O there exist d;, > 0 and n, > 0 such that

P(Y,(t, @) < K,V(1,0): teT,@cD,, |0 >d|) > 1-¢ (60)
for each n = n,.

THeOREM 3. Suppose that Conditions 1 and 2 are satisfied and that the
first components X\V(t, @) of X,(t, @) constitute a limiting tail inferior
sequence. Then the Bartlett mapping X' (1), the Cox mappings X V(1) and
XD and the differential mappings XPY(t) and XPHP(@) of
(X,(t, 0): teT, 8p+n"12O@eQ) converge weakly on T to Brownian motion
processes

X®@ =T [JT(0e) X' (t, =3 T, JT(80)1(B0)J (B0) 1], (61)
X =T (JT 00106 (00) ' [JT(0) X'(t, 00=3 Ty L,-t],  (62)
X)) =T [0 (00) X' (¢, =3 T, I, 1], (63)

XY (1) = (T (00)1(80) J (Bo) ™ I (o) X' (¢, 0) (64)

and
X)) =JT(6,) X'(r, 0) (65)
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where I, 1.5, 15, and I;; are submatrices of 1(6o) of types 1 x1, 1 x(k—1),
(k—1)x1 and (k—1) x(k—1) defined by

1, L
100 =} )
0 Iﬁy I66

and J(0,) is a (k x1)-matrix defined by

1
J(GO) = (—15_115)

Proof. Let X®)(t) denote the Bartlett mapping of
(X,(t, ©): |0 <d, O+n 120cQ}
and let X'?,(r) denote the Bartlett mapping of
(X, 9): 10| < d\

The infima inf X (1) and inf X%),(t) are continuous functions of X'¥(¢) and
teT teT

X®,(t) respectively in C(T). Let further X (1) denote the Bartlett mapping
of {X,(t, ®): 0,+n 20ecQ} and X®(t) denote the Bartlett mapping of
[X(t, @): @cR*). A trite calculation shows that X () has the form given
by formula (61).

Choose K to be the ¢ fractile in the distribution of inf X® ().
teT
By definition

X®() = sup X(t, ®)—sup X (1, O).
I‘=r1 r=0

But here sup X(t, ©) =0 since X(t,00)=0 and thus X®(¢) > K implies
sup X(t, @) > K.

r=rg
The process X'V (¢, @) is obviously tail inferior, ie., for the K and €
above there exists d; > 0 such that

P(X"(t, 0) <K, VieTand |0 >d;) > 1—¢. (66)

Now that X®(1)> K, VteT, sup X(t, @) =K, VteT and the two ex-

tremas sup X(t,®) and sup X (t ©) will be attained for |@| < if
XU, (-f)) < K VieT and |@| >dl Thus
P(X®(t) = XP,(1), VteTand d > d )21—23. (67)

By limiting tail inferiority of {X'(t, ©@): n=1,2,...} in @ on T there exists
for the above K and ¢ a d, >0 and a n, such that

PIXP(t, ) <K, V(t,0): teT, |0 >dy)>d,) = 1—¢ (68)
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for each n = n,. When X'"(1, @) < K <0, V(t, @): teT|@] > d, and
X0, = sup X, 0)- sup X, 0)>K, VieT

r=ry,|0/<d, r=o,18<d,
we must have X®) (1) = X (1), Vte T and d > d, since X{"(t, 0) = 0 implies
that sup XP(r, @) = 0 cannot be attained by X{'(t, ®) for |@| > d,

r=0,06| <d,
and that

sup Xt 0)>K+ sup XP(,0)>K

r=r1,|9|$d2 f=0,|9|5d2

cannot be attained by X\V(z, @) for |@| > d,. This means that with d,
= max(dla dZ)

P(XO)=XP (1), Vie T and d > d,)
> P(X(1, ©) <K, V(t, O): teT,|0] > d, and X% (1) > K, VteT)
> P(XP(t, @) < K, Y(t, ©); te T, 18] > do)—
—P(X3},(0) < K for some teT). (69)

The process X,(t, @) converges weakly to the process X(t,0) on the
bounded set te T, |@| < d, when Conditions 1 and 2 are satisfied. Thus by
Lemma 1 and the mapping Theorem 5.1 in Billingsley (1968) the process

X$), (1) converges weakly to X%, on reT

This also means that
lim P(X3), (1) < K for some teT)=P(X%, (t) <K for some teT),

' (70)
ie., that Ve > 0 I n, such that

P(X%a, < K for some te T) < P(X%,, (1) <K for some teT)+e (71)
for all n > n,.
Since d, < d, we get by (67)
P(X® () = X‘Q%’do(t), VteT)=>1-2 (72)
and thus by (69), (68) and (71)
P(XP() = XD, VieT, d > dy)
>1—e—(P(X®(t) < K for some reT)+2s+¢)=1-5c.  (73)
The weak convergence of X$’(t) to X®(r) on te T now follows from
Theorem 2.1 in Billingsley (1968) since & can be chosen arbitrarily small in
(67) and (73).
The proofs of the other cases are similar. At the end of the proofs the

mapping theorem is combined with Lemma 2 or Lemma 3 which require a
concavity condition to be satisfied. This condition is a direct consequence of
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Condition 2. which is supposed to be satisfied. The prools for these other
cases will not be reproduced. m

Note. The five processes X® (1), X' (1), X2 (1), XV (r) and X (1)
are essentially equivalent since they are all transformations of the type

%2 () W(t)+ A (0o} ¢
of the same Brownian motion process

W) = JT (0) X'(t, 0).

This fact will be of great importance in the statistical applications to appear
later.

For practical applications the weak convergence results on T = [1g, ¢,]
obtained for unbounded parameter are sufficient because t, can be chosen
arbitrarily small and ¢, can be chosen arbitrarily big. And in practice it is
reasonable to have some “idle time” in the beginning and a bound on the
sample size anyway. The transition from [tq, t,] to [0, o] may however
have a theoretical interest and some formulas for Wiener processes, useful for
the original test problems, are simpler in infinite time than in finite time.

Close to 0 the estimates are bad and the log-likelihood process may be
“wild”. It seems to require severe restrictions on the likelihood function to
get tightness properties all the way down to 0.

For big values of ¢ the likelihood process is much more regular and the
mappings X' (1), XSV (1), XC2(), XPV () and XP?(r) behave approxim-
ately like processes with independent increments. Convergence results for
functionals of these processes on infinite time intervals can be obtained if
some uniform integrability conditions are satisfied. For functionals, whose
expectations give asymptotic power functions and asymptotic expected
sample size functions for SPR-type tests, these uniform integrability con-
ditions are satisfied if the processes are unilormly exponentially bounded. We
are not going to study those problems more extensively here. For (individual)
exponential boundedness of similar processes see Wijsman (1977).

The condition of limiting tail inferiority of the first component of
X, (r, @) gives some restrictions of the log-likelihood function. In order to see
that those restrictions are not too severe we will prove that this limiting tail
inferiority always holds in exponential classes with natural parametrization.

CoroLLARY 2. For exponential classes with natural parametrization the
first component X'\'(t, ©) of the log-likelihood process X ,(t, ©) is limiting tail
inferior in © on any interval [ty, t;] where 0 <t, <t, < oo and the results of
Theorem 3 hold.

Proof. For exponential classes with natural parametrization the first
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component of the log likelihood process in time points m/n equals

Xi,”(%, @) = mln gzg:)ﬁ Y (6,—00)" T(X)) (74) |

where
0,. - 00+n_112@

and T(X)) is a k-vector valued function of X;, whose components we denote
by T,(X;), v=1,2, ..., k If the true parameter point is 6} = 0,+n" /2 O0*
we introduce the random vector Z,(X;) by

)
Z(X;) = T(Xj)—Ee;[T(XJ-)] =T(X;)— [_09]n C(B):L ) (75)
:9"

. m .
and write the process XE,“(—, @) in the form
n

wm (™M C(Gﬂ)_i T[ﬁ l
Xt (n,@) "G ﬁ@ e |+

+n 2T i Z,(X). (76

j=1

Here the components Z{"(X;), v=1, 2, ..., k of Z,(X;) have expectations 0
and by the Kolmogorov inequality (see, e.g., Billingsley (1968), p. 248)

Pe( sup ) ZP(X) = a)

tonsmEen j=|

ntl (v) ntl
Cl Val'o (Z (Xl)) az[ 693 (77)
and
Pgo( sup [} Z(X))| > o)
Ignsmstyn j=1
SPp( sup Y ZP(X)za)+Pp( sup Y —ZY(X) > a)
tonsmstnj=1 ,0n<m<,1,,j_1

2:’ ‘ [ < In C(G)l (78)
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Thus for the random part of X‘,,”(%, @) we get the estimate

| S 2t
P-( sup |— 0O Z,,(X-);K)g’l@kzv 79
n tonsm<in \/;1 jgl I ! KlZ‘ l 0 ( )
for n big enough where
- a2
Do = Sup L——zln C(6) (80)
1€svsk 66\; =6p

since the second order partial derivatives of InC(f) are continuous.

The nonrandom part of X“’(m, @) equals
n

Cc@,) m
m(lnc(ao) H; [—l C(H] )
0
=m (ln b; (0,—0,)7 [% InC (9)]#3;)’

which is a concave function of 8, (or @) taking its maximal value for 6, = 0¥
(or ® = @*). Because of the continuity of the partial derivatives of In C(0) we
get (uniformly on sets [@] < d)

0, . i
lim m(ln— (6,—0,)7 [a%ln C(B)J ):z(@’ 19*—10716). (81)
n—o 0=0y

Let v, and v, be the minimal and maximal eigenvalues of I, which both are
positive. Then for |@* < i(v,/v,)"/*d and |@| = d we have

HOT10*—10T [0) < —41d?v,. (82)

0, e
m(lng—o—(()n—go) [Elncw)l:s;)

is a concave function of @, (a concave function of @ = n'/2(0,—0,)) we thus

get
9 0 )
1 e 1

< —§1d2U17$ —gtl dv, |O| (83)

Since

for |©] > d and n big enough.
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Thus by (76) and (79) for n big enough

Pﬂ’ (X‘n“(T, 9) < K, V-n—IE[to, {1] and I@I > dl)
r n n

>py( sup |-67F 2,0%)

‘O"S"‘S'l"

1
— € K+_-tpdv, |O

2t1 |@| k ' 21)0
(K+31,dv|0)*

which can be made arbitrarily close to | by making |@| big enough .

(84)

=

4. Asymptotic test properties and steering

For a nonsequential test the asymptotic relative efficiency (A.R.E.) or Pitman
efficiency is defined as the limiting ratio of the sample sizes of two tests when
they approach the same asymptotic power. When the asymptotic distri-
butions are normal it equals the limiting ratio of the squares of expectation
differences divided by standard dewiations for the two tests.

The sequential analogue for problems with one-dimensional parameter is
given by Lai (1978). When the random processes defined from the sequences
of test statistics converge weakly to Brownian motions he defines the A.R.E.
as the hmiting squared ratio of the scaled change in the asymptotic drift.

For problems with multidimensional parameter the A.R.E. with respect
to a main parameter can be defined in the same way for each nuisance
parameter point. In general the A.R.E. depends on the nuisance parameter
point.

The random processes defined by the test statistics sequences used in the
tests B, Cl, C2, D1 and D2 all converge weakly to Brownian motion
processes of the type

x(00) W(t)+A(0p)t
where
Wt)=J"(6,) X'(t, 0)
is a Brownian motion with variance
62(0o) = JT (0) 1(0)J (0y) = L,—1s15" 15, (85)
per time unit and drift
JT(00)1(06)O* = (I, — ;17 " 1,)™* = a*(0) I'* (86)

per time unit. Thus the difference of the drift for ' = I'* and I" = 0 divided
by the standard deviation per time unit for all those test statistic processes



218 S. HOLM

equals
#(00) 7 (Op){I™* — 0) _
#(0o) o (6o)
and the AR.E. for a pair of such test statistics sequences always equals 1
although they do not have the same scale function x(8,) and drift function
2(0). _

Observe however that the A.R.E. properties are obtained for time
intervals of the type [¢,, t,] only, i, for sample sizes m in an interval
ton < m < t;n only. The result thus means that if a test with idle time tyn
and truncation time f, n based on one of the test statistic sequences for a
fixed nuisance parameter point has some asymptotic properties obtainable
from the weak convergence to the Brownian motion process there are also
tests with idle time tyn and truncation time t, n based on the other test
statistics sequences with the same asymptotic properties in the same nuisance
parameter point. In general the two tests have different asymptotic properties
in other nuisance parameter points. But we will soon see that by introducing
power steering, where the rejection and acceptance boundaries depend on a
consistent estimate of the nuisance parameter, we can get tests based on
different test statistics sequences with the same asymptotic properties for all
nuisance parameter points.

The original Bartlett and Cox tests are tests of Wald type, ie., the
hypothesis is rejected il the sequence of test statistics reaches a fixed upper
boundary and it is accepted if the sequence of test statistics reaches a fixed
lower boundary. Since the Wald type of tests have good properties in
problems with one-dimensional parameter we will concentrate on this type of
tests.

When calculating asymptotic properties for Wald type of tests with idle
time nt, and truncation time nt; we have to use results concerning the
hitting of two fixed boundaries in the time interval (¢, t;] for a Brownian
motion process. In practice the idle time t, is usually small and the
truncation ttme ¢, is usually big. In that case the properties for this interval
are approximately equal to the corresponding properties for the interval
(0, o0).

Let [|W(1): 0<t < o0} be a Brownian motion with drift 4 and variance
o? per time unit. For some b <0 and a >0 let T be the stopping time

t =inf{te[0, co): W(t)=a or W{t) <b}.

ag(0p) I'*

Then
(e™ 247" — 1)+ b(1 — e 20/7")
- Zlm/c:r2 —e Zaulaz)

E[]=" for u#0, 87)

e

b
E[r]=—% for u=0 (88)
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and

- 2
e 2buje -1

P(W(t)=a) = for u#0, (89)

- 2 — 2
e 2bufo —e 2apfe

P(W(t) =a)= — for u=0. (90)

a—b
See, e.g., Dvoretsky, Kiefer and Wolfowitz (1953). From these formulas we
get the approximate expected sample size and power for the five studied
likelihood ratio tests when the idle time is small and truncation time is big.

For the simple differentiation test D2 the drift per time unit is
a2(0o)-I'*, and the variance per time unit is 62(0,). Then the approximate
power P(W (1) =a) will be

e~ 27 _ 1

P(W(t)=a)=e—2bf”_e*7-ar3 for I'*+#0 (91)

and

PW()=a)= - for ' =0, (92)

a—b
ie., it will depend only on I'* and not on the nuisance parameter §,. The
same is the case for the Bartlett test while for the others it depends in general
on both I'* and 4,.

The general formulas for the approximate expected stopping time 7 and
power for boundaries b <0 and a > 0 applied to the process x(do) W(t)
+A(8,)t where W (t) is a process with variance o2(d,) per time unit and drift
I'* 6%(J,) per time unit are obtained from formulas (87), (88), (89) and (90) by
substituting o2 with %2(3,) ¢2(d,) and u with x(8y) 62(8o) I'* +A(do). From
these formulas we can thus get approximate expected sample size functions
and approximate power function for the different tests by using the ap-
propriate functions »(3,) and A(d,) from formulas (61}{65) in Theorem 3.

Already Cox (1963) pointed out that in order to get the Wald approxim-
ations for the power of his test (C1) the test limits a and b should not be
fixed but should depend on an estimate d, of the nuisance parameter 3,. The
‘test should then also be equivalent to the Bartlett test. Formulas (61) and
(62) give the Brownian motion processes

Wa(t) = T {(W(t)—3 T, 6 (3o)1)
and
Wei(t) = Tya™2(8o) (W) —3T; 6% (o)1)

associated with the tests B and C1. From these it is immediately seen that a
B test with limits b < 0 and a > 0 is asymptotically equivalent to a C1 test
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with limits b-62(5o) <0 and a-6(dy) > 0. Then it is also asymptotically
equivalent to a C1 test with estimated limits b-02(8y) < 0 and a-62(8) > 0
on the interval [t,, t,] if 6%(5,) is a continuous function of §, and §, is a
strongly consistent estimate of J,.

We will now study more generally ideas of steering properties of
likelihood ratio tests of the Wald type by letting the boundaries of the tests
as well as an imposed drift depend on an estimate of the nuisance parameter
. Suppose that 8, is a strongly consistent estimate of , and let

Wi (1) = 2, (80) W(1)+ 4, (80) ¢ (93)
and
Wi (1) = %3(d0) W (1)+ 42 (d0)t (94)
be the Brownian motions associated with any two of the likelihood ratio test
statistic sequences. In both cases there are sequences
Wi . (0), n=1,2,...,
and
W, . (1), n=1,2,...,
of sample random processes converging weakly to W, (t) and W, (t) respect-
ively in [tg, ¢, ].

If 3, (d¢), A4 (dg), %2(00) and 4,(dy) are continuous functions of d, and
#,(00) # 0 and x,(dq) # 0 for all é, then also

g x2(50) " o2
W, ()= A, (0g) 1) ——=—+ 4, (do) 1
( 1,0 (D) 1(00) )%1(50) 4.2(d0)
converges weakly to W, () on [¢,, t,] and
. ) .
(W:z,..(f)—flz(éo)I)LAO)""11(50)r
%3 (00)

converges weakly to W, (f) on [tg, ¢;].

This means that by modifying one of the likelihood ratio test statistics
sequences with the help of §, we can get a test with the same asymptotic
properties for all d, as a test based on another likelihood ratio test statistics
sequence. This motivates the given definition of asymptotic relative efficiency
for problems with nuisance parameter.

By this method we can not only transform any likelihood ratio test
statistics sequence to converge to the Brownian motion process associated
with another likelihood ratio test statistics sequence, but also transform it to
converge to any Brownian motion process x(dq) W(t)+4A(do)t where W (t) is
a Brownian motion process with drift I'* per time unit and variance ¢2(d)
per time unit and »(d,) and A(d,) are continuous functions of d,. Thus the
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asymptotic properties of the test can be steered to a desired dependence of
the nuisance parameter J,.

The character of the limiting Brownian motion processes for the B, Cl
and C2 tests differs from the character of the limiting Brownian motion
processes of the D1 and D2 tests in the way that the drift is proportional to
I'*—TI7/2 in the first case and proportional to I'* in the second case. This
depends on the intenticn to maximize power at I'* = I'; in the first three tests
and the intention to maximize power locally at I'* = O in the last two tests.
We will discuss this difference more when studying optimality in next section.
In order to demonstrate the principles of steering of power in a simple form
we will here only study the steering of the simple D2 tests by a multiplicative
factor x (). This means that we get a process which converges weakly to a
Brownian motion process with drift proportional to I'* where the pro-
portionality constant depends on the nuisance parameter J,.

In a Wald type of test based on this steered sequence experimentation
will stop as soon as x(5y) X'°? (m/n) reaches one of the boundaries b < 0
and a > 0, the hypothesis is accepted if b < 0 is reached and rejected if a > 0
1s reached. If the idle time t4 is small and the truncation time ¢, is big then
the approximate power is

o 2T xE0) _ |

B(T*, 8) = for T*#0 (95)

T o~ 2ITxog) _ o~ 2aT¥x(dg)

and

b
B(0, 0p) = ——— (96)
a—b

and the approximate expected stopping time is

a(e— 2bIx(dg) _ l)+b(1 —e" Zar"/x(éo))

e(I'*, o) = a? (‘50) T*(e” ZbI"’/x(éo)_e~2ar"‘/:¢(60)) for I'*#0 (97)
and
ab
0, §o) = 98
O o o B .
The derivative (with respect to I'*) of p(I'*, d,) at I'* = 0 equals
—ab
B0, 0g) = ———— (99)
" (a=b)x(5)

which can be used as an estimate of the steepness of the power function at
dq-

If we choose x(3,) smaller the steepness of the power function will
increase but at the same time the expected stopping time will increase even
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more which is most easily seen in e(0, d4). We illustrate the steering of power
by a very simple example.

ExaMmpPLE 1. Let X,, X,, ... be independent normally distributed with
expectation y and variance §. The D2 test of y < 0 against y > 0 should be
based on the sequence

m _ -0
X© (;) k= (100)

i=1

where
5(»-) —_

i (101)

See formulas (3) and (19). For this test sequence

1
m;

1
6?(8o) = JT(0, 60)1(0, 80)J (0, 6p) = —
and the test with continuation region

b<n mY XAY X)) <a (102)

(for nt < m < nt,) has asymptotic power depending only on I'* = y* \/;z and
not on §,. The approximate power derivative at I'* = 0 with respect to I'* is
—ab

B0, 60) = —,

e, the approximate power derivative at y* = 0 with respect to y* is

—ab ~
VB0, 80) = = /n

independent of J,. The approximate expected sample size at the boundary
1*=01s

n-e(0, do) = n——zéo

The power of the test can be steered so that the slope (0, é,) is propor-

tional to &4 !/2 by choosing »(8,) = 63/2. This means that the test has the
continuation region

2m _)_: x,./(.i X)) <a (103y
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(for nty, <t < nt)), the approximate power derivative at y* = 0 with respect
to y* 1s

nY2 (0, 8,) = ;abnuz 5g 12
’ a—-b

and the approximate expected sample size at the boundary y* =0 is

—ab
ne(0, 5,) = n —abéo 0g!
We get here a simple type of sequential ¢ test, where the approximate power
r*
is a function of R = "1’25_;6- See formula (95) and (96).

One can easily construct 2 number of examples of sequential likelihood
ratio tests with or without steering of power.

5. Locally most powerful unbiased tests and an optimum property

In the previous sections we have studied asymptotic properties of the five
sequential likelihood ratio tests and compared them to each other. But we
have made no attempt to compare them to other tests or to show some kind
of optimality. We will now introduce suitable comparison tests and prove an
optimality property of the likelihood ratio tests.

If we knew the exact value 0, of the nuisance parameter 6, then we
could construct a locally most powerful test of y <y, (or y = y,} against
y > 7o according to Berk (1975a) which would then give a maximal y-
derivative of the power function at y =y, among the tests with the same
level and expected sample size when y =19y, (and & =Jd,). We can never
expect a likehhood ratio test (or any other test) with a level a and expected
sample size ny at y = y4, d = o to have a higher value of the y-derivative of
the power function than such a locally most powerful (LMP) test of v < y,
against y > y, at = d, with level a and expected sample size n,. And we
would really be satisfied if we got the same y-derivative. Usually we do not.

But the comparison between likelihood ratio tests and LMP tests for
fixed nuisance parameter points is not fair. The likelihood ratio test is
intended to be a reasonably good test (at some level a) for all & while the
LMP is an optimal test for just one fixed 6. It might happen that the level a
LMP test in a point 6 has a power function whose derivatives with respect to
components of d are not equal to 0 at = d,. In this case the level of the
test can be much higher than a even in a small neighbourhood of d,. It is
more fair to compare the likelihood ratio tests to the locally most powerful
unbiased (LMPU) tests we are now going to introduce.
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DeriniTioNn 3. Suppose that X,, X,,... are iid. random variables
whose distribution depends on a one-dimensional main parameter y and a
(k—1) dimensional nuisance parameter d. A test is said to be a locally most
powerful unbiased (LMPU) test of y =y, against y >y, at § = 3, of size a
with expected sample size < n; if

(1) 1its size 15 < a,

(i) its expected sample size at (yq, dp) 1S < ng,

(iti) the derivatives of its power function with respect to components of
0 in the point (ye, &o) are equal to 0

(iv) the y derivative of its power function in the point (y,, J) is greater
than or equal to the same derivative for every other test satisfying (i), (ii)) and
(11i).

In the one parameter case when the random variables X,, X,, ... have
a density f(x, 6) depending on a one-dimensional & the test of 6 = 0, against
0 > 0, based on

Sp = Z [~ In f(x;, B)l

with continuation region
b<S,<a
is LMP at its size and expected sample size. See Berk (1975a). In the case

with multidimensional parameter 6 denote 6, = (3o, o) and introduce for
each unit vector ieR* the corresponding one parameter family of densities

J(x, 8o +nd)

where the new parameter is the scalar #. Under our Conditions 1 and 2 the
assumptions 1-4 in Berk (1975a) are satisfied and the test with continuation
region

b < i [g;lnf(x,-, (')0+11),)] <a (104)
i=11 n=0

is LMP at its level and expected sample size for testing n = 0 against n > 0.
Randomization on the boundaries i1s allowed.
Here

a k 0
[57 In f (x;, 00+n1)l:0 = ,-; ,1,.-[679}' In f (x;, 0):|9=90 (105)

where 4,, ..., 4, are the components of A and 6,, ..., 0, are components of 0.
The main parameter y is supposed to be the first component 0, of 8. Using
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the notation

SY = i [% In f(x;, B)]ﬂ (106)

i=1

_90
we can write the continuation region (104) for the above LMP test

k

b< ) ASY <a.

=1

Now let # " (a, ny) be the set of LMP tests of size a with expected
sample size < n, in directions 4 with positive first component 4,. Then we

have the following theorem:

THEOREM 4. Suppose that Conditions 1 and 2 are satisfied. If a test in
P (a, no) has a power function with all derivatives with respect to components
of & equal to 0 in the point 04 = (yq, 6o) then it is a locally most powerful
unbiased test of y =7y, against y >y, on level a with expected sample size
< np.

Proof. Let 4 be a unit vector with 4, > 0 for which the test satisfies the
condition that all d-derivatives of the power functions in 8, = (y,, do) €qual
0. Denote its stopping time by N. The test has a continuation region

k
b< ) 4S9 <a
i=1
and possibly a randomization if the limits are hitted exactly. The terminal
decision rules (for stopping at n) are given by test functions ¢, depending
only on X,, X,, ..., X, giving the rejection probability. Then when
Conditions 1 and 2 are satisfied the power of the test equals

B(0) = Eo[on] (107)

and the derivative of the power with respect to the jth component of € in the
point 0, equals

0 .
1:69(1"]“:80 = EOO [(PN ) S%)] (108)

This follows directly from Berk (1975a). Thus for our LMP test in the 4
direction satisfying the side condition that all §-derivatives of the power
function equal 0 we have

Epy[on SP1=0 for j=2,3,... k (109)

and the power function derivative

&
E, [‘PN' ): AjS(f\P]
=1

i=

15 — Banach Center 1. 16
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is greater than or equal to the same derivative for any other test with level a
and expected sample size < n, satisfying the same side conditions. Let M be
the stopping time and , be the test functions for any such test. Then using
the just mentioned properties

1
Ey, [onSN'] = 1 E,, Lon4; S§']
1

I k : 1 . :
=gy Eolon L AS0T> S B [on X 4501 (110
(3 Jj=1 1 J=1

1
= 1_ EGO [leA'l SSV”] = EGO [Ile S%)]s
1

ie, the LMP test in the A direction is a LMPU test. -

Note. 1If there exist two 4's for which the LMP tests on level a with
expected sample size < ny in 0, satisfying the side condition that the é-
derivatives of the power function equal O in 6,, then they must have the
same power function j-derivative in €,. This is seen by applying (110) to
both of them comparing with the other. Observe further that in general the
LMPU test is not the LMP test corresponding to 4 =(1, 0, 0, ..., 0)7 but to
some other A.

We will now find an estimate of the y derivative of the power function in
the point 8 = 0, for a LMPU test, i.e., an upper boundary of the y derivative
of the power function in the point 8 = 0, for any locally unbiased test with
size &« and expected sample size < n,. First we consider the case with
one-dimensional parameter 0.

Lemma 10. Let X,, X,,... be iid. random variables whose density
f(x, 6) depend on a one-dimensional parameter 6 and suppose that conditions 1
and 2 are satisfied. If B(0) is the power function of any size o test of 8 = 0,
against 0 > 0, with expected sample size < ny in 0, then

% < a'?2(1-w)l2gnl/? (111)
00 Jo=s,

ol = Eq, [([al“fégl’_e)l )Z:I (112)
200

Proof. Berk (1975a) has shown that the power function derivative

where

|:5§ is maximized by a LMP test with continuation region
=60

b<S,<a
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i [vlnf ,,8)] .

Denoting the stopping time for the test by N, the random variables

where

0
[—lnf(X,, 9):L by Z; and the test function when stopping at m by

=8p
®,, he also shows that the power function derivative at ¢ = 8, equals
ﬁ’:Eeo[GDN'SN]:“'EBD[SN|SN90]- (113)
Further
a = Eg, Lon] (114)

and by well-known Wald equations (see, e.g., Govindarajulu (1981))
Eoo[N1-Eg,[Z,] = Eg,[Sx]
=0 Ego [SnlSy 2 a]+(1—a) Eg [SnISy <b]  (115)
and
Eeo [N]- Eoo [Zf] = Eeo [Sir]
=a'E90[S§,]SN>a]+(1—a)E[S§,|S~<b]. (116)
Since Eg [Z;] =0 we have by (115)
(l*a)Eoo[SNl'SN b] = —aEeo [Sx|Sy 2 a] (117)

and thus by (113)
(B)? = a®(Egy [Sn|Sx = a))® = (1 —a)*(Ee, [Sn| Sy < b))%

This means that

1
(13)2( | —u )za(Eoo[SNISN a])* +(1 —=) ) (Eq, [Sn|Sy < b))

< 2By, [S31Sy > a]+(1—2) By [S¥| Sy < b] = Egg[N1-Eg [Z3]  (118)

and
(B)? < a(l—a)a’ny. = (119)

The estimate for the one-dimensional case can now be used to get an
analogous estimate for the multidimensional case.

LEmma 11. Let X,, X,,... be iid. random variables whose density
f(x, 6) depends on a k-dimensional parameter 0 = (y, 6T)T where y is a main
parameter and ¢ is a nuisance parameter and suppose that conditions 1 and 2
are satisfied. If B(0) is the power of any size a test of 0 =0y = (yg, 65)"
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against y > yo with expected sample size < ng in 0y and all 6 derivatives of
B(0) in 0 =0, equal to O, then

0
[£ <a'?(1—a)?on}? (120)
0y Jo-s
where

ot =JT1J,
I and J are the k xk covariance matrix and associated k vector defined in
Theorem 3.

Proof. When Conditions 1 and 2 are satisfied the power function of
any test is differentiable and for a test satisfying that all é-derivatives in 0
= ), being equal to 0 we must have

gradooﬂ() B e (121)

where e, is the unit vector e, =(1,0,0, ..., 0)".
This means that the derivative with respect to  for n =0 of B(0,+n4)
where A is a k vector with positive first component 4; must be

Peld=p2.
By Lemma 10 however

(B 41)* <a(l-a)oing (122)

k 0
g} = Vary, (Z Ay [58— In f(X,, 6)1 )
j=1 J =0g

and this must be satisfied for all unit vectors 4 with A, > 0. Denoting

where

[—Inf(Xl, B)l =W, (123)
we will now find minimum of
1 k ,l
PVaroo(Z A;Wj) = Varg | W, + Z (124)
1 =1 A
This is just the problem of predicting W by linear combination of W,, ..., W;
with a minimal mean square error. It is easily seen that the best predictor is
— I 15, (Wy, Wy, ..., W, )T and that the minimal variance is J7 1J.

Thus we have shown that

(B <a(l—a)JT 1Jn,. u (125)
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When the expected sample size n, tends to oo the upper estimate of the

y-derivative of the power function also tends to oo. With a normalization
factor ng 2 we have

ng /2 sup ([%gl ) < a1 —a)' 2 (JT L), (126)
=0p

It is easily seen from formulas (88) and (91) that for the asymptotic
approximation of the D test

N R L (127)

where o« = —bf{a—b) and ¢?> = JT IJ. The same is the case for the D1 test.

This means that the asymptotic approximations for the D1 and D2 tests
have a power function derivative which is equal to the best possible for each
value of the nuisance parameter. For the real asymptotic properties taking

into consideration idle time and truncation time the result can be formalized
as in the following theorem.

THEOREM 5. Suppose that Conditions 1 and 2 are satisfied and suppose
that X\ (¢, 0) is limiting tail inferior in 6 on [ty, t;]. Let B,(0), n=1,2, ...,
be the power functions of a sequence of asymptotic level o differentation (D1 or
D2) tests of y = yo against y > y, with idle time nty, truncation time nt, and
continuation region of the type

b < XS,D’(m) <a
n

m . . m
for nto <m<nt,, where the sequence X’ (—) is either Xf,D”(-)
n n

or X{P2 (T) Further let N, for n=1,2,3,... denote the sequence of
n

stopping times for these tests. Then for each 0y = (yo, 60)7

lim (Eqo[N,])~ '/ [a%e)l =a'?(1—a)'2(JT 1))/2-g(a, to, 1)
n—w =8p

where

llm g(a, to, I]) = 1
lo"CIJ
{1 o

Jor each fixed a, 0 <o < 1.
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Proof. By Theorem 3 the random process X'P?(¢) converges weakly to
a Brownian motion process W(r)=JT X'(t, 0) on t, <t <t,. Thus

him 1E90 [N.]J=Eq[1] (128)
where
7 =min(ty, inf {t: W()¢(b, a)}). (129)

l1>l
Further when Conditions 1 and 2 are satisfied

5/3..(0)l -
=E9 SN ‘PN 130
[ % s, o [Sn, ©n] (130)

where

i I
Sm = l;] [a—y lnf(XJ-, 0):'9

and ¢,, is the indicator of rejection for stopping with m observations and by
the weak convergence results in Theorem 2

limn_”z[i%;—elja =E,{e" X'(z, 0): ¢(1)] (131)
=89

where e’ =(1,0,0,...,0) and ¢(1) is the indicator of rejection for making
decision at time r. Now make a decomposition of eT X’(t, 0) into two
orthogonal components

eT X'(t, 0) = cW () + W, (1) (132)
where
Wi =J"X(1, 0),
c = Cov(W(r), e" X'(t, 0))/Var W (1)
and
Cov(W(1), Wy () =0.
Here

c=1,/J"1J (133)

is independent of ¢t and the two random processes [W(f): 0 <t < oo} and
W, (1): 0<t <oo] are independent Brownian motions. Thus we get
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Eq[e” X'(t, 0) 0 (1)]
= Eo[W(t) @(1)]+Eo[W: (1) 0(7)]
=c Eq[W@e(@]+Eo[e(1)] Eo[W (0| W), 0 <t < 0]

1
= P EW@em] (139

since E,[W, ()] =0.
Finally a straightforward calculation for a Brownian motion W (t) with
the stopping time 7 shows that

I
(Eo [f])”zﬁ Eo[W(r)o(1)]

has the form

a2 (L—a) 2T 1) 2 g(a, to, ty)
where

lim g(a, to, t;) =1
tp—0
(S

for every a. It is to be observed that the result holds independent of the value

of ¢ (i.e., of the final decision) at truncation time t,. The proof for the test
D1 follows the same lines.

For the sake of simplicity we have concentrated in this section on the
utmost local properties of power function derivatives at the boundary
between hypothesis and alternative and found that D1 and D2 tests are
asymptotically optimal. There might be formulated an asymptotic theory for
local alternatives ol the type

y=1v+I ' n '?

where B, C1 and C2 tests are asymptotically optimal in a suitable
formulation.
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