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Introduction

In practice we often meet problems in which one deformable body comes
in contact with another. The deformation of each Dody depends not
only on given known forces but also on contact tractions along contact
surfaces which are not known a priori. Mathematical formulation of
these problems leads to a variational inequality of elliptic type, i.c., to
the problem of finding a minimizer of the functional of potential energy
J over a closed, convex subset K of a Hilbert space V. Approximation
of problems of such a type by finite elements have been studied by Oden
and Kikuchi ([11]) and by Haslinger and Hlavaéek ([5]1-[7]).

In all these papers no friction is assumed (contact surfaces are sup-
posed to be lubricated). The aim of this paper is to extend some known
results to contact problems with friction. The main difficulty from the
practical point of view is the fact that the functional J is not differentiable
in general, so that a direct application of finite clements to the classical
variational formulation is not a good way to its approximation. To over-
come this difficulty we use the classical duality approach, by means of
which the minimization problem for the non-differentiable functional J
will be replaced by a saddle-point (or mixed) formulation for a Lagrange
function £, smooth in all its components.

Approximation of contact problems with friction by the finite cl-
ement method, based on the mixed formulation, will be studied.

For the sake of simplicity we restrict ourselves to the plane case
where an elastic body 2 is supported by a rigid foundation (the so-called
Signorini problem). The extension of all results to the case of a finite
number of clastic bodies in contact is straightforward.

[149)
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1. Primal and mixed formulation of the Signorini problem with friction
Let 2 < R, be a bounded domain whose Lipschitz boundary R is decom-
posed as follows:

59 = PuUPPUPK7

where Iy, I'p, 'z are open parts in 42, mutunally disjoint, I', and I'p are
non-empty.

By a classical solution of the Signorini problem with frietion we
denote a displacement field 4 = (u,, #,) satisfying

(1) 'L'ij,j(’w) +1’“,’: = 0 iI). -Q, Q., - 1’ 2 (1)

where 7;;(u%) is the ¢, j-th component of the stress tensor z(u), correspond-

ing to the strain tensor e(u) = {g;;(w)} by mcans of the linear Hooke
law

Ty (%) = Cymen(u) (e = F(ug,;+142)).

The coefficients c¢;;, satisfy the usual property of symmetry
Cyrt = Oy = Crgz; Q€. in Q
and the ellipticity condition
da = const > 0: 0, (@) &, £y = 0y &y a.e. in Q V§,; = ;.
Moreover, the following system of boundary conditions for % i3 prescribed :
(2) w=0 on [,
(3) y(w)n; =P, on Ip, 1 =1,2;

w, =un<0, T (u)= Ty (w)nm; < 0,

(4)

uaa°T1r,(u') =0 on FK;

for Vo e I'y such that u_(z) = 0:
. 1Ty () (#)] < g();
(B) 1

\Ty(u)(®)| < g(w)=>u, =4t =0;
1 Ty(w) (@) = g(@) =322 0, u, = —2T,(u).

F and P are given body forces and surface tractions, respectively. »,
denote the unit normal and the tangential vector to 202, respectively
and g is a given non-negative function.

det, >

or; :
M rgy = ) 6a:j (the summation convention will be used).
j=1 Yy
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The set of conditions (4) are classical unilateral boundary conditions
describing the fact that £ is unilateraly supported by a rigid foundation.
(3) describes the simplest model, involving friction.

In order to give the variational formulation of our problem, we
introduce the space ¥V = ¥V xV, where

V={veH' ()| »=00n I}
and the closed convex subset K of V:
K ={peV|v,<0 on I'g}.
Finally, let
J(v) = }a(v, v) —L(v) +j(v),

with
a(v, v} = fr{,-(w)s{j(v)dm,
o
L(v) = [ Fdast [ Ppods
(7] I'p
and

i) = [ gin\ds.
g

We suppose that I e (L*(Q))?, P e(L*{Ip)f, g€ L*(Ig), 9> 0.
A function u € K such that
(2) Juw<J@w) Voek
will be called a variational solution of the Signorini problem with friction.
It is easy to verify that (£) is equivalent fo
(2') to find % € K such that
a(u, v—u)+j©)—ju) = Lv—u) Voel.

Integrating by parts in (#'), we formally obtain (1)~(5). It is not difficult
to prove

TuEoREM 1. There exisis a unique variational solution of the Signoring
problem with friction.

As already mentioned, formulation (£) is not suitable for numerical
approximation. The main difficulty arises from the fact that J is not
differentiable. To overcome this difficulty the classical duality approach
will be used.
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Clearly,

jto) = sup [ gunds,

Led I'g
‘where
A = {uel’(I'g)| lul <1 on suppy, 4 =0 on Iy \suppg}.

(#) can be written in the following equivalent form:

(6) infd (v) = infsup (v, u),
e K 4
where @: V x AR, iy a Lagrange function given by
(v, u) = Ya(v,v)~L(2)+ [ gunds.
T'r

Instead of (2?), we shall consider the following problem:

(2) to find (w, 4) e £ x A such that
Lw, p) < Lw, )< Q(v, ) VYoeK,ped,
i.c., (w,A) is a saddle-point of £ on K x A.

Using the partial differentiation of & with respect to », u, we obtain
the equivalent form of (#2) (see [2]):

(@) to find (w, i) e K x A such that
org > Lv—w) Vwek,
(g(u—2), w)op, <O Vued.

a(w, v—w)+(gh, v,—w,)

(9‘7) (or (9;’)) will be called the mized formulation of the Signorini problem
with a given friction. The relation between (#) and (£) is given by

THEOREM 2. There exists a unique solution (w, A) of (.?7) and we have
(7) w=1u, gi=1T(u),
where v € K 18 the solution of (P).

Proof. The existence of a solution of (.0/3) is a direct consequence of
Korn's inequality and the boundedness of 4 (see also [2], Ch. VI, Re-

mark 2.1). (7) follows from (é’) and Green’s formula.
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2, Approximation of (%)

Let 2 < B, be a polygonal bounded domain and let {7}, h~0+ be a
regular family of triangulations of 2 which is compatible with the decom-
position of 92 into [, I's and I'y. Moreover, we shall suppose that
I'y is a straight line segment.

With every 7, we associate a finite-dimensional space ¥V, = V,x ¥V,
where

Vi = (s €C(R)] vylp, is linear VT, €7, v, =0 on I,}
and a closed, convex subset XK, of V,, given by
Kh. = {vh EVhl (’vh'”’)(ai)‘{ 0 V"’ = 1’29 "'ﬁm}'

Gy «eey Oy are nodes of I, lying on I'x. One can easily verify that
K,cX Vhe(0,1), i.e.,, K, is an internal approximation of XK.

Let {7y}, He(0,1) be a partition of I'y, compatible with the
boundary of suppg¢ in I'g, the nodes of which will be denoted by by, b,, ...

vvoy Omayy H = maxlength bb,,. These nodes do not coincide with
@1y By vooy Gy, 10 general. Next, we-shall write h = H if and only if

by = sy iy byyry = Oy
Let

Ly = {uy € I*(T)| mhy,,, is constant, § =1, ..., m(H)}
and
Ay = {uy € Ly |ugl <1 on suppg, pug = 0 on I'z\suppg}.

By the approximation of (.‘5?’) we denote the problem of finding a saddle-~
point (wy, Ag) of & on K, X 4g, i.e.,
(g;hﬂ) Bwy, pg) < L(wy, 1) < L(vy, 45) Vo, eK,, VJ“H €dy.

In view of the boundedness of Az and Korn’s inequality, the fol-
lowing exisfence result holds:

TurOREM 3. There exists a solution (wy, Ag) of (?}’7;,3) the first com-
ponent of which 1s uniquely determined.

The second component Ap is not uniquely determined in general.
Let us formulate the conditions which guarantee its uniqueness.
Let

th = {v, €eVy| v°n = 0 on Ig}.
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THEOREM 4. If

(8) (Gpizs oy =0 Vopell, implies pg =0 on Iy,

the second component Ay 18 uniquely determined.

Proof. Let (w,, A), (W, A) be two solutions of (é’m). The second

~

inequality in (#,5) and the fact that K, is a convex cone with vertex
at 0 lead to

(9) a’(whi ruh) +(g}*}17 ‘vkt)o,I‘K > L(”h) V Uy € Kh! i = 17 2,

Let v, € ;. Since K, is a linear set, the gign “>=" in (9) can be replaced
by “=". Subtracting these two equations for ¢ = 1,2, we get

(9(1}1"]%); 'Uhl)o,PK =0 Voek,.
From this and (8), the uniqueness of Ay follows.

Remark 1. Let g be a piecewise constant on I'g. Then guy, pg e Ly is

piecewise constant, while v, for v; e K, is continuous, piecewise linear
on I'z. (8) means that the set 6f continuous, piecewise linear functions
over the partition of I'y, given by points a,, a,, ..., Gy 18 “sufficiently”
large, or in other words that h,o/H is “sufficiently” small. %,, is defined

as max length a,a,,,.

3. Convergence results

The aim of this section is to prove the convergence of w, to w and A5 to
2 in suitable norms. To this end we shall apply the following abstract
convergence result, whose proof is given by Haslinger [4].

Let V, L be two Hilbert spaces, K € V, A = L their non-empty
closed convex subsets, /4 bounded. Let

L(v, p) = 2a(v,2)—{f, v>+b(v, u)—[q, u]

be a Lagrange funection defined on V x I, where

a: V x VR, is a sgymmetric, bounded and V-elliptic bilinear form;

feV,qelL, ie, f,q are linear continuous functionals on 7V, L,
respectively ;

b: VxL—>R, is a bounded bilincar form on V xL.

Let {K.}, {44}, BpsV, dg<s L, h,He(0,1) be closed convex
subsets, and let Ay be uniformly bounded in L, i.c., there exists a positive
constant ¢ such that

lenlz<e Vpgedg, YVHe(0,1),
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Let (w, 4), (wy, Az) be saddle-points of & on K x4, K,x Ay, Tespect-
ively.

THEOREM 5. Let h—0 + of and only if H—~0+-. Moreover, let us suppose
that

(10) VoeK Jv,eK,: v,—v in V;

(11) Vyued pgedy: pg—p in L

(12) v, € I, v,—v (weakly) in V. implies veK;
(13) prg € Agry up—p in L implies ped;

(14) >0 3{v,}, v, € K, such that ||| < r Vh (0, 1).

Let the saddle-point (w, A) of & on K xA be unique. Then
wpy>w i V, ig—=21 in L.
A direct consequence of this theorem is
THEOREM 6. Let h—>0+ if and only if H—>04. Then
w,—~w  in (H'(Q))?
Ag— A  in L (Ig).

Proof. In this theorem we set V =V, L = I*(I'y) with K and A4
defined in Section 1,

{fyvy = L) YeeV, g¢g=0, bv,pu =(g.”3'vt)o,rK-

Since K, = K, Ay A Vb, He(0,1), (12), (13) are automatically sa-
tistied. Clearly (14) holds as well. Using the usual regularization of w,
one can obtain (11). So the most difficult is the verification of (1.0). This
density result has been proved by Hlavaéek and Lovisek ([9]), for example.

Remark 2. Taking into account the relation between (#) and (@),
we see that w, can be taken as the approximation of the displacement
field w and gig as the approximation of T,(u) on I'g.

Remarlk 3. The rate of convergence of w, to w and Az to 1 in terms
of & and H can be derived provided the exact solution w = « is smooth
enough. Unfortunately, it is not so in our case. The solution % is not
too smooth, even if £ is a domain with a smooth boundary and g hag
a special form (sec [10]).

Remark 4. An alternative approach of solving these problems is
possible. Using additional dualization of the constraint » € K, it is possible
to obtain a problem without constraints.
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The Lagrange multiplier related to this dualization plays the role
of T,(u) on I'p (see [8]). The approach described here seems to be useful
if the go-called semicoercive case is assumed, i.e., if J is not coercive on
the whole ¥V and if some additional assumptions on F, P and g are im-
posed (see [1]).

Remark 5. More interesting and much more difficult is the model
involving friction and obeying the so-called Coulomb law (see [1], [10]
and [3]).

4. Numerical realization

(#,) is defined as the problem of finding & saddle-point in finite dimen-
sion, so that the classical method of Uzawa can be used to discover (w,, ig)
(see [2]).

A specific property of our problem, however, enables us to modify
this method to obtain a very economical tool of its realization. An explicit
form of Uzawa’s method is the following:

We choose an arbitrary 1® e Az (we write simply 2 instead of
AQ). ete.). Starting from A™, we define w™ e K, as the solution of

L™, M)y < Q(v, A™) Vvek,.
Then we replace A™ by A®tY as follows:
D =P, (A4 gow™), o> 0,

where P, is the projection of L*(I'g) onto the convex set Ag.
It is well known that there exist positive numbers p,, g5, 0; < 02
such that for every p satisfying o, < g < o0,

w™ 1w, n-—>o0,

where w, is the first component of the saddle-point of & on K, x A5 (see
[2]). As regards the behaviour of {A™}, we have

TexorEM 7. Let (8) be satisfied. Then
LOBNY S
where Ag i8 the second component of the saddle-point of Q on K, X Ag.

Proof. Since {A™} ig bounded, we can choose a subsequence {A®™}
< {A} such that

A% oo,

As ™ e Ay Vi and Ay is closed, A* € A, From the definition of w® it
follows that

a(w™, )+ (gA™, Vo, rg = L(?) Vo el%h.
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The limit passage for n'—o gives

a(Wyy )+ (94% v)o,rp = L(v) Vve K,
On the other hand,

a(wy, )+ (g, Vo, = L(®) Vovel,,

From these two equations and (8) we deduce that A* = 5. As A5 is unique,
the whole sequence A" tends to Ay.

As already mentioned, the problem in question has some specific
properties. First of all, the matrix of rigidity is the same during the whole
iterative process, while only a few components of the linear term vary.
TFinally, the number of constrained components is small in comparison
with the total number of components. These facts can be used for the
modification of Uzawa’s method. Let us suppose that the constrained
unknowns are arranged in such a way that they are listed last. Then
the idea of substructuring inequalities can be applied (see [11]), i.e.,
the unconstrained unknowns can be eliminated and Uzawa's method
can be applied to a small matrix only, the range of whieh is equal to the
number of constrained unknowns.
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