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The aim of this paper is to give a cohomology theory for commu-
tative coalgebras dual to the theory of André and Quillen for commutative -
algebras (see [1] and [8]).

For any commutative coalgebra C, we consider two categories:
the category C-Comod of all left comodules over C and the category Coalg-C
of all coalgebras over C. Fundamental elementary properties of those
categories are contained in Section 1. In the category Coalg-C we distinguish
a full subcategory of free C-coalgebras consisting of all coalgebras of
the form k¥[X]°® C, where X is an arbitrary set (see Section 3).

In Section 5 we show that for any C-coalgebra D there exists a cosim-
plicial free C-resolution, i. e., & cosimplicial object X' = {X"} in Coalg-C
such that all X® are free and the cochain complex associated with X
in C-Comod is acyclic. The cohomologies H*(C, D, M) and H*(C, D, M)
of D with coefficients in a D-comodule M are defined as cohomology
objects of the cochain complex Codery(M, X ) and Codiffo(M, X),
respectively, where Codery(M, ) and Codiff,(M, -) are certain functors
from the category (D, Coalg-C) to the category of vector spaces. Basic
‘properties of both these functors, generalizing certain results of Lee [6],
are presented in Section 2.

One of the main results of this paper is Theorem 5.5 which shows
that any sequence B — C — D of coalgebra morphisms induces appropriate
long exact sequences of cohomologies H" and H". To prove this theorem
we show that H™ and H"™ are cohomologies of a certain triple (5.3) with
coefficients in Coder and Codiff, respectively.

Following André [1], we define cohomologies A"(C, D, M) and
4"(0, D, M) using objects k[X,, ..., X,]°® C as models. By Lemma 5.7,
it follows that A™ = H".

In Section 3 a functor S;: C omod C — Coalg-C is constructed, which
is right adjoint to the appropriate forgetting functor. This pair of functors
induces another triple, cohomologies of which will be considered in Section 5

The author wishes to thank Dr. Daniel Simson for valuable comments.
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1. Coalgebras and comodules. Throughout this paper % will denote
a fixed field. Symbols ® and Hom (without subscripts) mean that these
functors are taken over k. The category of all vector spaces over k will be
denoted by Mod-k.

A k-coalgebra is a vector space C together with two k-linear maps
Ao:C > CQ®C0 and ¢:C — k satistfying

(I®4g)de = (4@ 1)4¢ and (e¢®@I)dg =1 = (IQ®¢g) 4.

Ao is called comultiplication, and ey is called counit. If no confusion
can arise, the subscripts C will be omitted.

A Fk-linear map f:C — D is a morphism of k-coalgebras if Apf
= (f® f) 4¢. The set of all coalgebra morphisms from C to D will be de-
noted by Coalg(C, D).

A k-coalgebra is commutative if t4 = A, where
| t: VW > WeV

is a twisting morphism defined by (v @w) = w Qv. If C and D are k-coal-
gebras, then C ®D is also & k-coalgebra with morphisms (I QtQI)(4,Q4p)
and ¢; Qep. It is easy to verify that C is commutative iff 4, is a morphism
of k-coalgebras.

An important role in our considerations will be played by the functors

x: Coalg-k - Alg-k and o : Alg-k — Coalg-k.

For any k-coalgebra C, C* = Hom(C, k) is an algebra over % together
with structural maps 4%|c.ge. and e* (see [9], 1.1.1). If A is a k-algebra
together with maps u: 4 ®4 - A and n:k — A, then A° is a subspace
of A* consisting of all linear maps f: A — k such that ker f contains an
ideal of finite codimension. By Section 6 in [9], the natural map A°®A°
— (4 ®A4)° is an isomorphism and the structural maps u° and 7° are defined
a8 restrictions of u* and 75*, respectively, to A°.

* is a right adjoint functor to o, that is there exists a functorial iso-
morphism

Coalg(C, A°) ~ Alg(4, C*)

for any k-coalgebra C and any k-algebra A (see [9], Section 6, p. 118).
If C is & k-coalgebra, a left C-comodule is a vector space M together
with a linear map o : M — C @ M such that

I =(e®I)e and (4Q®I)¢ =(IQo)e.

The map o is called comultiplication. Similarly one can define a right
C-comodule.
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A morphism f: M - N of C-comodules M and N is a linear map
satisfying (I ®f)¢ = of. The vector space of all C-comodule morphisms
from M to N will be denoted by Hom,(M, N).

The category of all left (right) C-comodules is denoted by C-Comod
(Comod-C). It is easy to prove that this is an abelian category with
arbltra,ry direct sums and products. The product in C-Comod we denote
by []. If M, C-Comod for ae I, then [] M, is a maximal rational C*-
-submodule of [ M, (see [9], p. 37). !

Let M be a right C-comodule and N a left C-comodule. Following
Milnor and Moore [7], we define cotensor product M (1o N as a kernel of
the map '

eRI—-IQo: MN »>MQCQN.
If fe Hom(M, M') and ge Hom(N, N'), then the linear map
fOg: MOy N > M Oy N’

is a restriction of f® g to M [y N. One can readily check that [ is
a left exact functor commuting with arbitrary direct sums. Now, M 1, C
~ M, since the following sequence is exact:

0> M- MR C-21% ¥R C.

Since the category C-Comod has sufficiently many injective objects,
one can define derived functors of the functor [J,. They will he denoted
by CotorS. Clearly, CotorS = -

If C is commutative, then any left C-comodule is a right one with
to as the structural morphism. If M has both left and right C-comodule
structures, then M [J N is a left C-comodule with a comultiplication de-
fined by the following diagram:

0——— > Mo N >MQN >sMQCRN

l o'®IV[ e’@I@Il
v

00— CQRQ MO N—>CQMRIN—CRQIMRJICRQ®N

Throughout this paper we shall consider only commutative coalgebras.
Therefore, the word “commutative” will be omitted, and “coalgebra”
and “comodule” will mean “commutative coalgebra” and “left comodule”,
respectively.

1.1. Definition. Let C and D be k-coalgebras. D is called a C-coalge-
bra with w structural morphism & if &: D — C is a k-coalgebra morphism.
A k-coalgebra morphism f: D — D’ is called a morphism of C-coalgebras
if & f =& The set of all C-coalgebra morphisms from D to D’ will be
denoted by Coalg-C(D, D').

2 — Colloquium Mathematicum XXXII.2
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One can check that if M is a D-comodule and D is a C-coalgebra,
then M is a C-comodule with (¢® I)p as the comultiplication. Clearly,
oM < Do M and ¢ is a C-coalgebra map. Hence 4D < D[JyD and
4 is a C-comodule morphism. Theorefore, we can consider comultipli-
cations as the maps

A:D—->DOQeD and ¢g:M—>DO,M.
1

The category of all C-coalgebras will be denoted by Coalg-C. It is
easy to check that this category is isomorphic to a category defined as
follows. Objects are C-comodules D together with C-comodule morphisms
A:D—-DOeD and &:D —C satisfying

IOoMNd=AdODA and EQDAd=1I=(IO&)A.

Morphisms are C-comodule m(.)rphisms f:D — D' such that (fOf)4
= A'f and & = &f. If M is a D-comodule, and g: M — D[y M is a co-
multiplication, then

(IOee=(4d0De and I =(E0OI)e.

1.2. If D and D’ are C-coalgebras, then D [, D’ together with mor-
phisms (IOt I)(A0O 4’) and ] & is also a O-coalgebra. It is a product
in the category Coalg-C.

1.3. One can verify without difficulty that if D and D’ are C-coalge-
bras, B i§ a D-coalgebra, M is a D[]y D’-comodule, and N is a D’'-como-
dule, then there are the following functorial isomorphisms:

and
Coalg-D(B, DOy D') ~ Coalg-C(B, D).
14. If M, for aeI and N are C-comodules, then (ﬁMa) (e N is
~ ael
a vector space contained in ([ M,)® N, [[(M,O¢ N) is a vector subspace
ael ael
of [[(M,R® N) and, therefore, there exists a natural embedding

ael N ) -
(H-Ma) O¢ N e ”(MaDaN)-
ael ael

1.5. For any C-coalgebra D, one can define a category (D, Coalg-O).
Its objects are morphisms of C-coalgebras 7 : D — B and its morphisms
are C-coalgebra maps f: B — B such that fy = 5. If M is a D-comodule,
then a C-comodule D@® M has a C-coalgebra structure whenever
A4® (g+ tp) is a comultiplication and ¢ @ 0 is a counit. Such a C-coalgebra
will be denoted by DxM. The natural inclusion Dc_s D+M is an object
of (D, Coalg-C) (see [6]).
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2. Coderivations.

2.1. Definition. Let D be a C-coalgebra and let M be a D-comodule.
A morphism f: M - D of C-comodules is called a C-coderivation if

df =(faDte+IOf)e-

A vector space of all C-coderivations from M to D will be denoted
by Codery(M, D).
2.2, LEMMA. For any C-coderivation f: M — D, we have & = 0.

In fact, since O is a C-coalgebra with the comultiplication I = A4, :
C - C = C¢ C and the counit I:C — C, we have

&f = doef = (0 &)dpf = (0 &) (fODe+ (O &e)(I O fle =&+,

whence &f = 0.

2.3. LEMMA. Let g: M —- N be a D-comodule morphism.

a. If f: N — D is a C-coderivation, then so is fg.

b. If g is an epimorphism and fg a C-coderivation, then f is a C-co-
derivation.

It follows from 2.3.a that Codery(-, D) is a functor from D-Comod
to Mod-k. '

2.4. LEMMA. For any C-coalgebra D, the map

d=I0&g—eQI1:D0O;D—D
8 a C-coden'wtion.

. Proof. Since DD is a D-comodule with the comultiplication
40 1, we have

@onIgdH+Ioaddol)=I10I-e04+408—-101 = 4d.

Let L(C, D) be a cokernel of the C-comodule map 4: D - D[y D.
Sometimes we will write L instead of L(C, D). Let 8 be a D-comodule
morphism such that the diagram

0 > D 4, DpOLD LI / > 0

4 J(mtuz)(ZgZ) 8

0

commutes. Ker s will be denoted by J(C, D) (or by J), and the natural
inclusion J = L by h. )

Since d4 = 0, by 2.3, there exists a unique C-coderivation ¢ : L — D
such that ip = d.
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2.5. THEOREM. The C-coderivation j = ih : J (C, D) — D induces a nat-
ural equivalence

j» : Homp (-, J(C, D)) —= Coderq(-, D)

of functors from D-Comod to k-Mod.

Proof. For any C-coderivation f: M — D, the morphism p (I f)e
is a D-comodule map, since there is a commutative diagram

0 > D 4 > Do D —2 L >0

lz l l

0——>DDODE—>DDCDDCDID—”>DDCL—+O

and
er(I0fe =Idp)d0D(IOfe =(IOp(IOf)e)e-
Further,
sp(IOf)e = (Op)IOtOINAO A)(ITS)e
= (pOp)IOtOD(A0(IOfe+(fO D))o
=(pdOpIOfe)e+(pIOfen pd)tg =0
and

p(Idf)e =dIOf)ef

Hence, j, is an epimorphism. It is easy to check that p(I' Q%) ey = I,
Since
hg =p(ID04)eL hg = p(IO (IO kg)e =p(I01J9)0e

whenever g: M — J i8 a D-comodule morphism, j, is a monomorphism,
and the proof is complete.

The cotensor product J (C, D)1, M will be denoted by Codiff,(M , D)
whenever M is a D-comodule. ‘

2.6. LEMMA. If D is a C-coalgebra, M a D-comodule and
(D —— B)eOb (D, Coalg-0),
then M is a B-comodule and there exists a functorial isomorphism
* Codery(M, B) ~ (D, Coalg-C)(Dx M, B).

For C =k this is a well-known fact (see [6]), and the proof for an
arbitrary coalgebra C is analogous.
The following proposition follows from 2.6, 2.5 and 1.3.
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2.7. PrOPOSITION. If B and D are C-coalgebras, and M is a B [y D-co-
module, then there exist the following functorial isomorphisms:

Coderg(M, B[Oy D) ~ Coders(M, D),
Codery(M, B) @ Codery(M, D) ~ Codero(M, By D),
J(C,B)Oe DO J(C,D)Oe¢ B ~J(C, BOg D),
J(B,BOsD) ~ BOsJ(C, D).
2.8. PROPOSITION. Any sequence of k-coalgebra morphisms
D-LsB-2s¢C
induces the following exact sequences:
0 — > Coderg (M, D) = Codery(M, D) L Codery(M, B),
0 —> Codiffz (M, D) — Codiff,(M, D) — Codiff,(M, B).

Proof. For any B-coderivation b: M — D, we have f*b =fb =0
by 2.2. Assume a C-coderivation ¢: M — D such that f*¢ = 0. Then

(fOI)de = (fOD)(cODte+(IOe)e) =IOe)(fOl)e
and, therefore, ¢ is a B-coderivation. Consequently, the first sequence
is exact. The exactness of the second one follows from 2.5.

2.9. It is easy to check that, for any k-algebra A and any A°-comodule
M, there exists a functorial isomorphism of vector spaces,

Coder, (M, A°) ~ Der, (4, M*),

where an A-module structure of M* is induced in a natural way from the
A°-comodule structure of M.

3. Free and symmetric coalgebras.

3.1. Definition. Let C be a k-coalgebra and X an arbitrary set.
A C-coalgebra C{X} = k[X]°® C is called the free C-coalgebra over X.
Any morphism f: X — Y induces (in a natural way) a morphism C{f}:
C{Y} - C{X} of C-coalgebras such that C{-}:Set — Coalg-C is a con-
travariant functor.

The following properties of the functor C{-} can be easily verified:

3.2. 0{-} is a right adjoint to the functor
[ U : Coalg-C —— Alg-C* - Set,
where U is a forgetting functor. The isomorphism
Coalg-C(D, 0{X}) ~ Set(X, D*)

is defined in the following manner. A C-coalgebra map f:D — C{X}
= k[X]°® O corresponds to a set morphism f: X — D* such that f(z)d
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= (I ® &) f(d))w for any ze¢ X and de D. Consequently, any C-coalgebra
morphism f is determined by a collection of functionals f(x), where x¢ X.

33. If i: X<, Y is an inclusion, then p = C{i}: C{Y} - C{X}
is surjective.
3.4. If sX denotes the collection of all finite subsets of X, and [7 and
lim are, respectively, the product and inverse limit in the category Coalg-C,
then
0{x} = [] o{{a}} = lim 0{¥}.

zeX YesX

3.5. PROPOSITION. For any finite set Y and any C-coalgebra morphism
f:0{X} - C{Y}, there exists a finite subset X, of X and a C-coalgebra mor-
phism g: C{X} — C{X} such that the diagram

C{X} £ C{Xo}

c{Y}

commutes.

Proof. Since Y is a finite set, by 3.2 the map f is determined by
a finite set of linear maps f(y): C{X} -k for ye¥Y. It is sufficient to
show that any such f(y) can be factorized by a certain C{X,}, where X,
" is finite. Let ¢ : k¥[X]°® C — k be a non-zero linear map. Then there are
hyy ..., hye k[ X]° and linearly independent e¢,, ..., ¢,e¢ C such that k[X]°
=kerg® D k(h;® ¢;). We can find in k[X] an ideal I, contained in
() kerh; and a finite subset X, « X such that k[X]=I1I,® k[X,]. Let
n:k[X]—>k[X] be a k-algebra morphism defined by =x|;,, =0 and
7 |xx,) = I. Then the induced C-coalgebra morphism

P E[X,RC > k[XTT®C

satisfies conditions pr = I and grp = g. Therefore, gr is a required map
from k[ X,]°® C to k, and the proof is complete.
Let M be a C{X}-comodule. Then 2.7 and 2.8 yield
Codery (M, C{X}) = Coder,(M, k[XT) = Der,(k[X], M*) = [ [ u*

zeX

= [ [ Home (M, C{X}) = Homy, (M’ ﬁG{X})

re X ze X

_ HomC{X}(M, (z[l K ®0{X)),

where [7 denotes the product in the category C{X}-Comod.
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3.6. COROLLARY.
Coderg(M, 0{X}) = [[ M* and J(C,0{X}) =[] ¥ ® C{x}.
zreX ze X
Let M be a C-comodule
Mn=lgDa---DcJJ”, M, =C, M,,= M,O¢M,

—

n

M,,,= M,0 M,00 M,.

Natural product projections of

~

N = ﬁ M, K= ﬁMk,H Q= ” M,

n>0 k,1>0 q,7,8=0
will be denoted by p,, Pri, Pgrs) Tespectively. Consider C-comodule
morphisms y : N — K, y,, y, : K — @ uniquely determined by the formulas

Pra¥ = Pr+1y Pa,r,s¥1 = Pgirsr Par,s¥2 = Pqr+s-

"Let TGM = ™' (Im 4), where ¢ is the natural embedding N o N = K
(see 1.4). For f: M — M’ being a C-comodule morphism, let
Tof: Tc.M - j'C‘M’

be the unique map determined by the equalities pni’cf =(f0O...0f)p,-

3.7. LEMMA. Ta is a covariant functor from C-Comod to the category
of mon-commutative C-coalgebras.

Proof. Let. A:ToM -~ NyON and é:ToM —C be C-comodule
maps such that i4 = yplp,y and € = Dol It is easy to verify that

i(I09) 4 = poy = puy = i1(y0O D4,
where ¢, and 7, are the natural embeddings Ko N = @ and N[J, K

<, Q, respectively. Therefore, it follows that (I[]y)d and (p0] I)4
are factorized by N [y N e N, and so we can consider 4 as a morphism

i’cM _)TCMDC' j’oM.

4 is a comultiplication and ¢ is a counit, since

pn(ID Po)j = (an_-l Po)j = Pno¥ = Pp = pn(pOD I)A
and

IO MDA =y =pp =340 1) 4,
where ¢ is the natural embedding N (Jo N (0o Nc—s Q. Now it is sufficient
to show that ImTyf = ToeM' and that Tof is a C-coalgebra morphism.
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This follows from the equalities

Pea¥ Tof = (fO . ONPrs = (FO oo O Pra¥ltgnr = (FO ... Oy, 4
= (fO...0N@Opd = (fO...0)p0FO...0Np) 4
= (P Tof O P Tef) 4 = (0,0 ) Taf 4 = pioai’ (Tof O Tef).
3.8. Definition. The maximal commutative subcoalgebra S, M of

i’cM is called the symmetric C-coalgebra over M. The existence and the
uniqueness follow from [9], Section 3, p. 63.

It is clear that we have a covariant functor
8y : 0-Comod — Coalg-C.
3.9. PrOPOSITION. S, is right adjoint to the forgetting fumctor U :
Coalg-C — C-Comod.
Proof. Letl D be a C-coalgebra and M a D-:-comodule. We define

a2 map
&: Homy(UD, M) — Coalg-C(D, 8o M)

as follows. If f: D — M is a C-comodule map, then there exists a unique
C-comodule morphism

f: D - N = ﬁMn
such that "0

pf=2, of=§f »f=(f0..0N401I0...01)...4.
Observe that Imyf = N[y N, since

Pra¥f = Prf = (0f O pf)d = (p, O p)(fO A = pri(fO F) 4.

Consequently,  Im f TGM . Futhermore, since D is commutative,
we have Imf = S, M and so, using the above equalities, one can check
that f: D -8, M is a morphism of C-coalgebras. We put &f = f. Clearly,
@ is a monomorphism. It is easy to see that if g: D — 8§, M is a C-coalgebra
map, then \

Pn9 = (p19.0...0p9)(4d0I1I0...01)...4.

Thus @ is an epimorphism, and the proof is complete.

3.10. CorOLLARY. Sy(V*®C) = C{X} whenever V is a vector space
with basis X.

The proof follows from the natural equivalence of functors:
Coalg-C(-, 8x(V*®C)) ~ Homy(-, V*®C) ~ Hom,(-, V) ~ Set(X, *)
~ Coalg-C(-, C{X}).
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For C =k, S, M is the cofree cocommutative coalgebra in the sense
of Sweedler (see [9], Section 6, p. 129).

It follows from [4] that there exists an anti-equivalence of categories
of C-coalgebras and profinite C*-algebras given by the pair of functors

%: Coalg-C — Prof-C* and hom(-, k): Prof-C* — Coalg-C,

where hom (A4, k) denotes the vector space of all continuous morphisms
from A to k (k has the discrete topology). Then the above construction
of 8y is dual to the construction of the functor S,. from the category of
pseudocompact modules over C* to the category of profinite C*-algebras
(see’[4], p. 85-86).

4. Triples and André-Appelgate cohomology. This section contains
some of the results concerning triples and André-Appelgate cohomology
which can be obtained by dualization of results from [2] and which are
needed in our further considerations.

Throughout this section € will be a fixed category.

A collection X = {X"},., of objects of € together with morphisms
g: X" ! > X" and 67: X" > X" (0<i<n) is a cosimplicial object
in € if, for any =,

Sjb‘i = 8.'-81 a:nd 6j8{ = & 61_1 fOI‘ ": << j,
61“3{ =] = 6'-8‘_'_1 and 6j8,‘ = 8,"_16’ for ¢ > j+1.

An augmented cosimplicial object in € is a cosimplicial object X with
a morphism g,: X! — X° guch that ¢, = g,¢,. '

Let ¥ = (T,%,pu), where T: € - C is a covariant functor, and
n: Id - T and pu: ToT —T are natural transformations of functors.
Tisatriplein Cif u(nT) = 1d = u(Ty) and u(Tu) = u(uT). If T is a triple
and © is an object of €, then TC = {T"*'(} together with & = T *yT*
and d; = T"*uT" is an augmented cosimplicial object.

An object C of € is called I-injective if n(C): C — TC splits.

A T-resolution of C is a cochain complex {X", d"} in ZC (the additive
category over €) such that all X" are T-injective and the sequence

0 - ZG(C, TD) — Z&(X°, TD) > ...

is exact in the category of abelian groups for any De Ob €.
A cosimplicial T-resolution of C is an augmented cosimplicial object
X such that the associated cochain complex in Z§,

n+1
EX ={x*, Y (-1 g+,
=0
is a F-resolution of C.
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IC is a cosimplicial T-resolution of C called the standard I-resolution.
Let A denote an arbitrary abelian category. For any functor E:
¢ - A, H*(C, E)y is defined as the n-th cohomology object of the cochain

complex
n+1

0 > BX° a EXlLEXzL... with d" = 2 (_1)1.E8?+17

=0

where X is a certain cosimplicial T-resolution of C. The object H"(C, E)q
is independent of the choice of X.

4.1. We have

H(C, B) 0 for n > 0,
»T T\ EBe for n =0,

whenever C is I-injective.
4.2. If C and D have the cosimplicial T-resolutions X and Y, re-
spectively, such that XIIY is a cosimplicial I-resolution of CII D, then

H"(C, B);®H"(D, E)y = H*(CIID, E)y

for any product-preserving functor E.

4.3. Let De ObC. Then (€, D) is a category of morphisms ¢ - D
in €, and morphisms in this category are commutative triangles

c B
AN /
AN
N /
D
If B: € >A is a functor, then (¥, D): (€, D) >N is defined by

(E, D)(C - D) = ker(EC — ED).

Any triple ¥ in € induces (in a natural way) a triple (T, D) in (€, D)
such that

: (T,D)(C D) =TCIID - D.
4.4. If ’

H™CITB, E H"(C, E)g for n > 0,
Bz = H(C, B):®ETB for n =0

for any C, BeOb(, then an arbitrary sequence of morphisms C — D
— B in € induces an exact sequence

0 —->H°(C —*.D’ (E, 'D))(I,D) —> e —>Hn_1(0 —)B, (E, B))(x’B)
*Hn_l(D - B, (H, B))(I,B) ‘*Hn(o - D, (E, D))(I,D) > eeey

whenever F preserves the product.
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4.5. Let B be an arbitrary category. Any pair of adjoint functors
U: @—->PB and F: B - ¢ induces a certain triple ¥ with T = FU and
appropriate n and u (see [2]). If B is an abelian category and X is an
augmented cosimplicial object in € such that X" are T-injective for n > 0,
and if there exists a contraction of the cochain complex

{vxe, nf (-1} U+ in B,

i=0
then X is a cosimplicial I-resolution.

4.6. Let A be an abelian category with arbitrary products. Let
us distinguish a small and full subcategory I of €. Objects of IM

will be called models. For any functor E: IR — N, the cochain complex
{C*(M, E), d*} is defined as follows:

(M, B) = [ EM,, -where M;c M,

n-—1 .
M, > M,

@t = D (—1)e,

1=0

and &: C"' - (™ is determined by the formula

<au---7an—1> for ¢ =0,
Cagy @1y eeey Uppp &7 = 1<y covy GOy ooy @y TOr 0< i< m,
E(a,_1){agy .-+ Qp_g) for i =mn,

where <{agy ..., a,_;>: C"(M, E) - EM, is a product structural map.
Furthermore, the n-th cohomology object of that cochain complex will
be denoted by H"(I, E).

4.7. Let Ce ObC. Then E,: (C, M) - A is a functor defined by
Ey(C - M) = EM. The André-Appelgate cohomology of C with coefficients
in F and models Ik is a collection of objects

A™(C, E) = H"((C, M), E,),
4.8. We have

0 for n > 0,

A™(M, E) = _
EM for n =0,

whenever M is a model.
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5. Cohomology of coalgebras. A cosimplicial object in Coalg-C will
be called a cosimplicial C-coalgebra. The chain

UX =(0— X -2, 3%, ) with " = ) (=1
T=0
is called the associated chain complex of X in C-Comod.

A cosimplicial free C-resolution of C-coalgebra D is an augmented
cosimplicial C-coalgebra X such that X' = D, UX is acyeclic, and
X" are free for n > 0.

Let us consider a triple , in Coalg-C defined by the pair of adjoint

functors
C{}

Coalg-C Set,
where U is the functor defined in 3.2. It is clear that any free C-coalgebra
is Fo-injective.

The following lemma is a consequence of well-known facts concerning
a simplicial group homology and of results from [1], Section 5:

3.1. LEMMA. X' is a cosimplicial free C-resolution of D iff X" is a cosim-
plicial Fo-resolution of D.

5.2. LemmA. Assume that CotorS(B, D) = 0 for n> 0. If {X"} and
{XY"} are cosimplicial free C-resolutions of B and D, respectively, then
{X"Oc Y™} t8 a cosimplicial C-resolution of By D.

Proof. It follows from Section 2 in [3] that there exists a chain homo-
topy U(X' OgY) ~UX O,UY . Any free (C-coalgebra is injective as
a C-comodule and, therefore, UX and UY are injective resolutions
of B and D, respectively, in C-Comod. Thus U(X OyY’) is acyclic iff
CotorS(B, D) = 0 for n > 0. If X" and Y" are free (-coalgebras, then
also X"[Jo Y™ is free.

Now let D be a C-coalgebra and M a D-comodule. We define coho-
mologies H"(C, D, M) and H"(C, D, M) of D with coefficients in M as
n-th cohomology objects of the cochain complex Coderq(M, X’) and
Codiff, (M, X'), respectively, where X is an arbitrary cosimplicial free
C-resolution of D (taken without X~ = D). ;

5.3. It is easy to see that
H"(C, D, M) = H*(D —— D, Bc)p 5,
H*(C, D, M) = H*(D —> D, Eo)p g,
where E, and E, are functors from (D, Coalg-0O) to k-Mod defined by

Ey(D — B) = Coderp(M, B), Ey(D — B) = Codiff,(M, B)
and .
(D, Fo)(D - B) = (D - FoD — FyB).
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Hence H*(C, D, M) and H*(C, D, M) are independent of the choice
of the resolution X'. '

5.4. COROLLARY. a. H’(C, D, M) = Codery(M, D).
b. H*(C, B, M\Y®H"(C, D, M) = H"(C, B[O¢ D, M), whenever

Cotor$(B, D) =0 for n> 0.
Proof. Statement a is consequence of the exactness of the sequence
0 — Codery (M, D) — Coderg(M, FyD) — Codery (M, F D)

which can be easily verified. Statement b follows immediately from 5.2,
5.3 and 4.2.

5.5. THEOREM. An arbitrary sequence D — B — C in Coalg-k induces
the exact sequence

0 — Codergz(M, D) — Codery(M, D) — ...
- H""(C, B, M)~ H"(B, D, M)-H"(C,D, M) ~H"(C, B, M) ...

for any D-comodule M.
Proof. Observe that

H”’(D — C, (B, 0))(3’00) = H"(C, D, M).
Indeed, .
(Fxy O)(D - C) = (F DQC —C) = (FoD - 0),
(B, O)(D - 0) = ker (Coder, (M, D) — Coder, (M, C)) = Codery(M, D).
Since Cotork(B, ) = 0 for n > 0, we have, by 5.2 and 4.2,
HY(B, By, ®H"(0, By)y, = H"(B®C, By,

Thus the theorem follows from 4.4 and 5.4.
Of course, the functor H"™ has analogous properties as H™.
In Coalg-C we can consider other triple S, induced by the pair of

adjoint functors
Sc

Coalg-C C-Comod.

Using this triple, one can define cohomologies G"(C, D, M) and
@*(C, D, M) similarly as H® and A" in 5.3.

5.6. LEMMA. {X"[(0Y"} is a cosimplicial Sg-resolution of By D
whenever {X"} and {Y"} are standard Sy-resolutions.

Proof. For any OC-coalgebra D, the standard Sg-resolution is in
C-Comod {S%+!(s)}, where s: S§;D — D is a C-comodule map such that

seg = I. Hence U{X"[]oY"} has a contraction and the lemma follows
by 4.5.
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For C =k, the standard &,-resolution is also an &,-resolution, since
the complex Ug,.D has a contraction in %.-Mod (see 3.10 and 4.5). Hence,
in such a case, H" and @" coincide and so do H™ and G".

It follows by 5.6 that

G"(CyB’ M)@G"(O, Da M) = Gn(07 BDCD7 M)’

whenever B, De Coalg-C. Hence 5.5 is true also for G".
Let us consider a category (D, Coalg-C) and its full subcategory

M = {D > k[X;... X, ®Clps:-

The André-Appelgate cohomology of I: D — D with coefficients
in E, or E, and models M will be denoted by A(C, D, M)or A(C, D, M),
respectively. It is obvious that A"(C, D, M) is the n-th cohomology
object of the cochain complex {C"(D), d"}, where

C*(D) = Il Coder(M, C{X, })

dlA an_

S C(X; )

. 1)
D —C(X; 0} n

(C{X;} are models), and d" is defined similarly as in 4.6.
From Propositions 4.1 and 8.1 in [1] we infer that A"(C, D, M)
= H*(C, D, M) for any C-coalgebra D if the following lemma holds:

5.7ALeMmA. For any set X,

for n >0,

A (O, C{X}r -M) = COderc(M7 G{X}) for n =240,

To prove this lemma we need the following notion:

3.8. Definition (see [5]). An inverse system of k-modules C = {C;};.;
is weakly flabby if the natural homomorphism

limC — limC

< <~
I J

is surjective whenever J is a directed subset of I.

Proof of Lemma 5.7. By 4.8, the lemma follows for X finite. Now
observe that any inclusion ¢: Yo X induces an epimorphism 7I™:
" (C{X}) - C*(C{Y}) such that

agy evey @) T" = {agp, ...,y 0,>, Where p = C{i}.

Let B™ be a cochain complex and let {R" Y},..x be a collection of
maps R"Y: B" - C"(C{Y}) satisfying

C*(C{i)B"Y = R"Y,

whenever ¢,: Y, Y is an inclusion.
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We define R": B™ - C"(C{X}) by setting
<a1;7 cery Gy R" = {agy ..oy a,) B Y,

where ¥ and «a, are such that ayp = e, (see 3.5). Then it follows that
T"R" = R"Y and it is easy to see that

lim C™(C{Y}) = C"(C{X}).
Yeax

Consequently, {C"(C{Y})}p..x is a weakly flabby system, since, for
any directed subset s; X of sX, we have

lim O*(C{Y}) = O0*(C{Z}) withZ = U Y

Y:—six YEBIX
and, therefore, the map p: C"(C{X}) —» G’”(O {Z}) is an epimorphism.

Furthermore, {Coderg(M,C{Y¥})lp.x is also a weakly flabby system.
Indeed,

Codero(M, 0{X}) = [[ M* = lim []M* = lim Codero(M, 0{Y}),

zeX Fesx V¥ FesX
Codergo(M, C{Z}) = lim Codery(M, C{Y}),
<
Y!Elx

and the natural map
Codery(M, C{X}) — Codery(M, C{Z})
is surjective. Then we have an exact sequence of weakly flabby systems
0 — {Codery (M, C{X})} - {C*(C{Y})} - ...
By Theorems 1.8 and 1.9 of Jensen [5], the sequence
0 — Coderq (M, C{X}) - C°(C{X}) - CY(C{X}) - ...

is exact, and the lemma follows.
By similar considerations for A™, one can obtain

0 for n > 0,
[l M for n =0.

xeX

a0, C{X}, M) =
Since, by 3.6,
B(C,0{X}, M) = ( [[ ¥)oH,

rxeX
we have 4 # H.
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