TOPICS IN ALGEBRA BANACH CENTER PUBLICATIONS, VOLUME 26, PART 2 PWN-POLISH SCIENTIFIC PUBLISHERS WARSAW 1990

JACOBIAN MATRIX AND p-BASIS

HIROSHI NIITSUMA

Nippon Kogyo Daigaku, Saitama, Japan

In this paper, p is a prime number and a ring is always a commutative ring with identity. Let R be a ring of characteristic p and R^p denote the subring $\{x^p|x\in R\}$. Let R' be a subring of R. A subset of Γ of R is said to be p-independent over R' if, for any subset $\{b_1, \ldots, b_n\}$ of Γ , the set of monomials $b_1^{e_1} \ldots b_n^{e_n}$ ($0 \le e_i \le p-1$) is linearly independent over $R^p[R']$. Γ is called a p-basis of R over R' if it is p-independent over R' and $R^p = R^p[R', \Gamma]$.

The aim of this paper is to check up on a relation between the existence of p-basis and the Jacobian condition for various Frobenius sandwiches of rings. We omit almost all the proof and the reader may refer to [7].

Let R be an artinian local ring of char p and let M be the maximal ideal. Let $\{x_1, \ldots, x_n\}$ be a minimal system of generators for M and k be a coefficient field of R. Then, we may set $R = k[x_1, \ldots, x_n] = k[[X_1, \ldots, X_n]]/I$, where $k[[X_1, \ldots, X_n]]$ is a power series ring in n indeterminates over k, I an ideal of $k[[X_1, \ldots, X_n]]$ and $x_i = X_i \mod I$.

Let R be a ring, J an ideal of R and let D be a set of derivations of R. Then, J is called a D-ideal if $d(J) \subset J$ for all d in D.

THEOREM 1 (Cor. 1 of [6]). Let R be an artinian local ring of charp, k a coefficient field of R and $\{x_1, \ldots, x_n\}$ be a minimal system of generators for the maximal ideal M of R. Then, the following three conditions are equivalent:

- (1) $\{x_1, \ldots, x_n\}$ is a p-basis of R over k.
- (2) There exist n k-derivations $d_1, \ldots, d_n \in \operatorname{Der}_k(R)$ such that $d_i x_j = \delta_{ij}$ and $d_i^p = 0$ $(i, j = 1, \ldots, n)$.
- (3) There exists a D-ideal I of $k[[X_1, ..., X_n]]$ such that $R = k[x_1, ..., x_n] = k[[X_1, ..., X_n]]/I$ and $D = \{\partial/\partial X_1, ..., \partial/\partial X_n\}$.
 - P. Nousiainen proved the following interesting and useful result:

This paper is in final form and no version of it will be submitted for publication elsewhere.

186 H. NIITSUMA

THEOREM 2 (6.2 Theorem of [10]). Let k be a field of charp. Let $R = k[X_1, ..., X_n]$ be the polynomial ring in n indeterminates over k and $f_1, \ldots, f_n \in \mathbb{R}$. Then, the following conditions are equivalent:

- (1) There exist n k-derivations $d_1, \ldots, d_n \in \operatorname{Der}_k(R)$ such that $d_i f_j = \delta_{ij}$ $(i, j = 1, \ldots, n).$
 - (2) There exist n k-derivations $d_1, \ldots, d_n \in \operatorname{Der}_k(R)$ such that $\det(d_i f_i) \in k^*$.
 - (3) The Jacobian matrix $(\partial f_i/\partial X_i)$ is invertible.

 - (4) $k[X_1, ..., X_n] = k[X_1^p, ..., X_n^p, f_1, ..., f_n].$ (5) $\{f_1, ..., f_n\}$ is a p-basis of $k[X_1, ..., X_n]$ over $k[X_1^p, ..., X_n^p].$
- P. Nousiainen proved this result by a p-Jacobian matrix in his thesis. We may prove this result by a little bit different way (Theorem 4.2 of [7]). Anyway, this result is just our assertion itself. That is, the invertibility of Jacobian matrix $(\partial f_i/\partial X_i)$ is equivalent to that $\{f_1,\ldots,f_n\}$ is a p-basis of $k[X_1,\ldots,X_n]$ over $k[X_1^p, \ldots, X_n^p].$

In the case of formal power series rings, we have the following:

PROPOSITION 3. Let k be a field of characteristic p and k[[X]] $= k[[X_1, ..., X_n]]$ be the formal power series ring in n indeterminates over k. Let $\{f_1, \ldots, f_n\}$ be a set of n power series without constant terms in k[[X]]. Then, the following conditions are equivalent:

- (1) There exist n k-derivations $d_1, \ldots, d_n \in \operatorname{Der}_k(k[[X]])$ such that $d_i f_i$ $= \delta_{ii} \ (i, j = 1, \ldots, n).$
- (2) There exist n k-derivations $d_1, \ldots, d_n \in \text{Der}_k(k[[X]])$ such that $\det(d_i f_i) \notin M$.
 - (3) The Jacobian matrix $(\partial f_i/\partial X_i)$ is invertible.
 - (4) $k[[X_1, ..., X_n]] = k[[f_1, ..., f_n]].$
 - (5) $k[[X_1, ..., X_n]] = k[[X_1^p, ..., X_n^p]][f_1, ..., f_n].$
 - (6) $\{f_1, ..., f_n\}$ is a p-basis of $k[[x_1, ..., x_n]]$ over $k[[x_1^p, ..., x_n^p]]$.
- (7) $\{f_1, \ldots, f_n\}$ is a regular system of parameters of the regular local ring $k[[X_1,\ldots,X_n]].$

This proposition is straightforward from Proposition 5 of § 4, Chap. III, [1]. The proof of Proposition 3 is very simple, but it has many interesting applications.

Let (R, M, k) be a local ring of characteristic p. Then R^p is a local ring with the maximal ideal $M^p = \{x^p | x \in M\}$. Since $M \cap R^p = M^p$, the natural map $R^p/M^p \to R/M = k$ is surjective and its image is equal to $(R/M)^p = k^p$. In view of the above injection, the residue field R^p/M^p of R^p can be identified with the subfield k^p of k. R' denotes an intermediate local ring between R and R^p , M' the maximal ideal and k' the residue field. It is clear that R dominates R', and so we may identify the residue field k' of R' with the subfield of k and we assume that $k \supset k' \supset k^p$. For any subset A of R, we denote by \overline{A} the set of residue classes of the elements of A modulo M. When we say " \overline{A} is a p-basis", we tacitly assume that A maps injectively to \overline{A} .

PROPOSITION 4. Let (R, M, k) be a local ring of charp. Let A be a subset of R such that \overline{A} is a p-basis of k over k'. If R' is regular, R'[A] is a regular local ring with the maximal ideal M'R'[A].

Let (R, M, k) be a local ring of characteristic p and k_0 be a subfield of R. k_0 is said to be a quasicoefficient field of R if the residue field k = R/M is 0-etale over the image of k_0 in k. A local ring of chap p has a quasicoefficient field k_0 and the M-adic completion R^* of R has a coefficient field K containing k_0 (cf. Theorem 28.3 of [9]). Then, every derivation of R (into itself) over k_0 is uniquely extended to a derivation of R^* (into itself) over K. Therefore, we can identify $\operatorname{Der}_{k_0}(R)$ with an R-submodule of $\operatorname{Der}_K(R^*)$ and $\operatorname{Der}_{k_0}(R^*)$ = $\operatorname{Der}_K(R^*)$.

PROPOSITION 5. Let R and R' be semilocal rings of characteristic p such that $R \supset R' \supset R^p$ and R is a finitely generated R'-module. For the subset Γ of R, the following conditions are equivalent:

- (1) Γ is a p-basis of R over R'.
- (2) Γ is a p-basis of R^* over $(R')^*$.

THEOREM 6. Let (R, M, k) be an n-dimensional regular local ring of charp and let k_0 be a quasicoefficient field of R. Suppose that R is a finitely generated $R^p[k_0]$ -module. Then, for the elements f_1, \ldots, f_n of M, the following conditions are equivalent:

- (1) There exist $n k_0$ -derivations d_1, \ldots, d_n of R into itself such that $d_i f_j = \delta_{ij}$ for $i, j = 1, \ldots, n$.
- (2) There exist n k_0 -derivations d_1, \ldots, d_n of R into itself such that $\det(d_i f_i) \notin M$.
 - (3) $\{f_1, \ldots, f_n\}$ is a p-basis of R over k_0 .
 - (4) $\{f_1, \ldots, f_n\}$ is a regular system of parameters of R.

COROLLARY 7. Let R be a regular local ring of charp and k_0 be a quasicoefficient field of R. Then, if R is a finitely generated $R^p[k_0]$ -module, R has a p-basis over k_0 and R has also a p-basis over R^p . More precisely, if $\{f_1, \ldots, f_n\}$ is a regular system of parameters of R and A is a p-basis of k_0 over $(k_0)^p$, then $\{f_1, \ldots, f_n\}$ is a p-basis of R over R^p .

LEMMA 8 (Lemma 1 of [5]). Let (R, M, k) be a local ring of charp and let (R', M', k') be an intermediate local ring between R and R^p . Assume that R has a p-basis of Γ over R'. Let A be an arbitrary subset of Γ such that A is a p-basis of k over k'. Then $\Gamma - A$ is a finite set and $|\Gamma - A| = \operatorname{rank}_k M/(M'R + M^2)$.

188 H. NIITSUMA

COROLLARY 9. Let R be a regular local ring of charp and k_0 be a quasicoefficient field of R. Then, the following conditions are equivalent:

- (1) R is a finitely generated $R^{p}[k_{0}]$ -module.
- (2) R has a p-basis over k_0 .

Finally, the methods of proving Theorem 1, Theorem 2 and Proposition 3 are different from each other.

References

- [1] N. Bourbaki, Algèbre Commutative, Hermann, Paris 1967.
- [2] A. Grothendieck et J. Dieudonné, Éléments de Géométrie Algébrique, Ch. IV, Première Partie, Publ. Math. Inst. Hautes Études Sci. 20, 1964.
- [3] T. Kimura and H. Niitsuma, Regular local ring of characteristic p and p-basis, J. Math. Soc. Japan 32 (1980), 363-371.
- [4] -, -, On Kunz's conjecture, ibid. 34 (1982) 371-378.
- [5] T. Kimura, p-basis of a regular local ring of characteristic p. TRU Math. 19 (1) (1983), 33-47.
- [6] -, p-basis of an artinian local ring of characteristic p, ibid. 19 (1) (1983) 49-52.
- [7] H. Niitsuma, Jacobian matrix and p-basis, to appear in TRU Math. 24 (1) (1988).
- [8] H. Matsumura, Commutative Algebra (Second edition), Benjamin, New York 1980.
- [9] -, Commutative Ring Theory. Cambridge University Press, 1986.
- [10] P. Nousiainen, On the Jacobian problem. Thesis, Pennsylvania State Univ. (1982).
- [11] S. S.-S. Wang, A Jacobian criterion for separability, J. Algebra 65 (1980), 453-494.