TABLE DES MATIÈRES Introduction..........................................................................................................................................................................................5 I. Cohomologie de dimension infinie.....................................................................................................................................................7 1. Préliminaires...................................................................................................................................................................................7 2. Cohomologie de dimension infinie sur la catégorie $W_0(E)$......................................................................................................12 3. Prolongement du foncteur cohomologie de dimension infinie à une certaine classe de morphismes compacts de W(E)..............17 II. Distances de Borsuk.......................................................................................................................................................................21 1. Transformations multivoques et distance de Hausdorff.................................................................................................................22 2. Distances de Borsuk et séparation................................................................................................................................................26 3. L'opération ~.................................................................................................................................................................................30 III. Applications et champs de vecteurs admissibles et sphériques dans les espaces de Banach.......................................................33 1. Utilisation de la cohomologie de dimension infinie à la théorie des applications et des champs de vecteurs admissibles.............34 2. Applications et champs de vecteurs sphériques dans un espace de Banach...............................................................................42 Bibliographie......................................................................................................................................................................................49
Chaire de Mathématiques, Ecole Pédagogigue de Olsztyn, Żołnierska 14A, 10-561 Olsztyn, Pologne
Bibliografia
[1] F. S. de Blasi and J. Myjak, A remark on the definition of topological degree for set-valued mappings, J. Math. Anal. Appl. 92 (1983), 445-451.
[2] G. Borisovich, B. D. Gel'man, L. Myshkis et V. V. Obukhovskiĭ, Méthodes topologiques dans la théorie des points fixes des applications multivoques, Uspekhi Mat. Nauk 35 (1980), 58-126 (en russe).
[3] K. Borsuk, On a metrization of the hyperspace of a metric space, Fund. Math. 94 (1977), 191-207.
[4] K. Borsuk, On some metrization of the hyperspace of compact sets, Fund. Math. 41 (1954), 168-202.
[5] K. Borsuk, Remark on the Birkhoff-Kellogg theorem, Bull. Acad. Polon. Sci. 31 (1983), 167-169.
[6] C. Bowszyc, Certains théorèmes sur les champs de vecteurs compacts dans les espaces localement compacts, Zeszyty Naukowe WSP w Gdańsku, Mat. Fiz. Chem. 10 (1970), 9-21 (en polonais).
[7] J. Bryszewski, On a class of multi-valued vector fields in Banach spaces, Fund. Math. 97 (1977), 79-94.
[8] J. Bryszewski and L. Górniewicz, A Poincaré type coincidence theorem for multi-valued maps, Bull. Acad. Polon. Sci. 24 (1976), 593-598.
[9] J. Bryszewski and L. Górniewicz, Multi-valued maps of subsets of Euclidean spaces, Fund. Math. 90 (1976), 233-251.
[10] A. Dawidowicz, Spherical maps, Fund. Math. 127 (1987), 187-196.
[11] A. Dold, Lectures on Algebraic Topology, Springer, Berlin 1972.
[12] J. Dugundji and A. Granas, Fixed Point Theory I, PWN, Warszawa 1982.
[13] Z. Dzedzej, Fixed point index theory for a class of nonacyclic multivalued maps, Dissertationes Math. 253 (1985).
[14] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton Univ. Press, Princeton, N.J., 1952.
[15] R. Engelking, General Topology, Monografie Mat. 60, PWN, Warszawa 1977.
[16] K. Gęba and L. Górniewicz, On the Bourgin-Jang theorem for multi-valued maps I, Bull. Polon. Acad. Sci. 34 (1986), 315-322.
[17] K. Gęba and L. Górniewicz, On the Bourgin-Jang theorem for multi-valued maps II, Bull. Polon. Acad. Sci. 34 (1986), 323-328.
[18] K. Gęba and A. Granas, Algebraic topology in linear normed spaces, I-V, Bull. Acad. Polon. Sci., I: 13 (1965), 287-% 290; II: 13 (1965), 341-346; III: 15 (1967), 137-143; IV: 15 (1967), 145-152; V: 17 (1969), 123-130.
[19] K. Gęba and A. Granas, Infinite dimensional cohomology theories, J. Math. Pures Appl. 52 (1973), 147-270.
[20] K. Gęba and A. Granas, On the cohomology theory in linear normed spaces, in: Sympos. on Infinite-Dimensional Topology (1967), Ann. of Math. Stud. 69, Princeton Univ. Press, Princeton 1972, 93-106.
[21] B. D. Gel'man, The topological characteristic of multivalued mappings and a fixed point theorem, Soviet Math. Dokl. 16 (1975), 260-264.
[22] L. Górniewicz, Fixed point theorems for multi-valued maps of subsets of Euclidean spaces, Bull. Acad. Polon. Sci. 27 (1979), 111-115.
[23] L. Górniewicz, Homological methods in fixed point theory of multi-valued maps, Dissertationes Math. 129 (1975).
[24] L. Górniewicz, On the Birkhoff-Kellogg theorem, in: Proc. Internat. Conf. on Geometric Topology, PWN, Warszawa 1980, 155-160.
[25] L. Górniewicz and A. Granas, Some general theorems in coincidence theory, J. Math. Pures Appl. 60 (1981), 361-373.
[26] A. Granas, Sur la notion du degré topologique pour une certaine classe de transformations multivalentes dans les espaces de Banach, Bull. Acad. Polon. Sci. 7 (1959), 191-194.
[27] A. Granas, Theorem on antipodes and theorem on fixed points for a certain class of multi-valued mappings in Banach spaces, Bull. Acad. Polon. Sci. VII, 5 (1959), 271-275.
[28] A. Granas, The theory of compact vector fields and some of its applications to topology of functional spaces I, Rozprawy Mat. 30 (1962).
[29] K. Kuratowski, Sur une méthode de métrisation complète de certains espaces d'ensembles compacts, Fund. Math. 48 (1956), 114-138.
[30] B. O'Neill, A fixed point theorem for multivalued functions, Duke Math. J. 14 (1947), 689-693.
[31] K. Sieklucki, A generalization of the Borsuk theorem on antipodal points, Bull. Acad. Polon. Sci. 17 (1969), 629-631.
[32] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York 1966.