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A function on a set A is any (in particular, empty) partial transfor-
mation of 4. Sometimes functions are called transformations. If ¢ and o
are functions on A, then yog denotes the result of superposition of the
pair (g, y), i.e. yog(a) = yp(p(a)) for all aed for which the right-hand
side of the equality is defined (the left-hand side is defined simultaneously
with the right-hand side). Thus po¢ is just the composite function. A func-
tion semigroup is any non-empty set of functions (on a fixed set 4) closed
under superposition. The operation of superposition is associative, and
so function semigroups are particular cases of semigroups. On the other
hand, according to well-known Suschkewitsch’s theorem, each abstract
semigroup is isomorphic to a function semigroup. Therefore, the abstract
theory of semigroups can be considered as an algebraic apparatus fit for
studying the object of such a paramount mathematical importance as
the function semigroup.

Functions ¢ and yp on A are called compatible if p(a) = y(a) for all
a ¢ A for which both sides of this equality are defined (i.e., if the binary rela-
tion Uy is one-valued, that is, if Uy is a function). A set of functions
is called compatible if every two functions from this set are compatible.

Univalent (i.e., one-to-one) functions ¢ and v on A4 are called strictly
compatible if Uy is a univalent function (i.e., if ¢, p as well as the inverse
functions ¢!, y~! are compatible). A set of univalent functions is called
strictly compatible if every two functions from this set are strictly com-
patible.

As a rule, compatible sets of functions are not closed under super-
position, and sets of functions which are closed under superposition are
not compatible. A (strictly) compatible (univalent) function semigroup
is a (univalent) function semigroup with (strictly) compatible set of ele-
ments (which are functions). A semigroup isomorphic with a (strictly)
compatible (univalent) function semigroup is called a (strictly) compatible
semigroup.
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As mentioned above, compatible semigroups form a rather narrow
subclass of the class of semigroups. The aim of this paper is a description
of the classes of compatible and strictly compatible semigroups. Our
main results are the following two theorems:

THEOREM 1. A semigroup is compatible if and only if it satisfies the
identities
(1) zy? = 2y,
(2) Yz = w2Y.

THEOREM 2. A semigroup is strictly compatible if and only if it satis-
fies the identities

(3) zy = (2y)?
(4) Ty = yx.

Thus, both classes of semigroups are semigroup varieties, i.e., these
classes are closed under subsemigroups, homomorphic images and di-
rect products of arbitrary families of semigroups. See the end of this
paper for a further discussion of the theorems and some results on the
structure of (strictly) compatible semigroups (?).

Remark. A univalent mapping P of an abstract semigroup G onto
a function semigroup is called an isomorphism if P(gh) = P(h)oP(g) for
all g, he@. The form of this equality is due to the fact that in the product
gh the factors are read from left to right (thus, ¢ is the first factor), however,
in the product of funections P(h)oP(g) the factors are read from right
to left (and P(g) is the first factor since it acts first in the composite func-
tion P(h)oP(g), when this funetion acts on an element ae A). If one prefers
the equality P(gh) = P(g)oP(h), one must change identities (1) and (2)
for their dual (and read y%*xr = yx instead of (1)). Identities (3) and (4)
are self-dual.

Proof of Theorem 1. Necessity. Let G be a compatible semi-
group and let P be an isomorphism of G onto a compatible semigroup
of functions on a set 4. Let g, he@ and a, beA.

If P(gh?)(a) =b, then P(gh)(a) is defined since

P(gh*)(a) = P(h)(P(gh)(a)).

Since P(gh?) and P(gh) are compatible, P(gh)(a) = P(gh?)(a).

Suppose now P(gh)(a) is defined. Since P(gh)(a) = P(h)(P(g)(a)),
we infer that P(g)(a) is defined. Since P(gh) and P(g) are compatible
functions, P(gh)(a) = P(g)(a). It follows that

P(gh)(a) = P(h)(P(g)(a)) = P(h)(P(gh)(a)) = P(gh®)(a).

(1) As J. Anusiak and K. Glazek have observed, the conjunction of (3) and
(4) is equivalent to that of (1) and (4). (Note of the Editors.)
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Thus, the functions P(gh?) and P(gh) coincide. Since P is an_isomor-
phism, gh? = gh and (1) holds.
To verify (2) suppose P(fgh)(a) is defined for some fe@.

P(fgh)(a) = P(h)(P(fg)(a)) = P(gh)(P(f)(a)

implies P(f)(a) and P(fg)(a) are defined. Since the functions P(f), P(fg)
and P(fgh) are compatible,

P(f)(a) = P(fg)(a) = P(g)(P(f)(@) = P(fgh)(a) = P()(P(fg)(a)
| = P(W)(P(f)(a)) = P(fh)(a).

Therefore,

P(fgh)(a) = P(fg)(a) = P(9)(P(f)(a)) = P(g)(P(fh)(a)) = P(fhg)(a).

In the same way one may prove that if P(fhg)(a) is defined, then
P(fhg)(a) = P(fgh)(a). Therefore, the functions P(fgh) and P(fhg) coincide
which implies fgh = fhg, and (2) holds. '

Sufficiency. Suppose G is a semigroup satisfying (1) and (2). We
are going to construct an isomorphism P of G onto a compatible semi-
group of functions over an appropriate set A.

Let a, and b, be symbols corresponding to every x¢@; if #, y«G and
2 # ¥y, then suppose all four symbols a,, b., a, and b, are distinct. The set
of all symbols a_, b, for all z¢G is denoted by A. Let P(g) be a function
over A defined for every geG as follows:

P(g)(a,) is defined iff ¢ = « or gh = z for some heG;

if P(g)(a,) is defined, then P(g)(a,) = b,;

P(g)(b,) is defined iff 29 = x, and this being the case P(g)(b;) = b,.

Clearly, P(g) is a function, and the set of all functions P(g) for ge@
is compatible.

Suppose P(g) = P(h). Evidently, P(g)(a,) = b,. Therefore, P(h)(a,)
is defined, i.e., g = h or hx = g for some zeG. Interchanging the roles
of g and h, we obtain either » = g or gy = h for some y<@. Suppose hx = g
and gy = h. By (1), 9§ = hx = ha® = gz which implies, by (2), ¢ = hx
= gyr = gxy = gy = h. Therefore, P is a univalent mapping of G onto
a set of functions. ' |

-Let P(h)oP(g)(a,) be defined. Then P(h)oP(g)(a,) = b, and both
P(g)(a,) and P(h)(b,) are defined, i.e., g = 2 or gy = x for some yeG,
and zh = 2. If g = x, then gh = x, and if gy = x, then ghy = gyh =zh =zx.
In both cases P(gh)(a,) is defined which implies P(gh)(a,) = b,. On the
other hand, if P(gh)(a,) is defined, then gh = x or ghy = x. for some
¥ €G. In both cases P(g)(a,) is defined. In the first case, zh = gh® = gh = x;
in the second case, zh = ghyh = gh’y = ghy = x, i.e. P(h)(b,) is defined.
Therefore, P(h)oP(g)(a,) is defined and equals b,.
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Suppose now P(k)o P(g)(b,) is defined, i.e., both P(g)(b,) and P(h)(b,)
are defined. In other words, g = x and zh = x. It follows that zgh =
=zh =2. If xgh = x, then

vg = vghg = vg*h = xgh = x and xh = agh = x.

The equality zgh = x means that P(gh)(b,) is defined. Thus the
domains of the functions P(k)oP(g) and P(gh) coincide. The definition
of P(g) and P(h) and the fact just proved imply

P(h)oP(g) = P(gh).

Thus P is an isomorphism of G onto a compatible function semi-
group, and G is compatible.

Proof of Theorem 2. Necessity. Let G be a strictly compatible
semigroup. Then there exists an isomorphism P of G onto a strictly com-
patible semigroup of univalent functions. Define a new multiplication * on
‘the set of all elements of G: gxh = hg. Under this new operation ¢ is a semi-
group which will be denoted by G*. G* is called an inverted semigroup
for G. Write Q(g) = [P(g)]™! for all geG. One can verify straightforwardly
that @ is an isomorphism of G* onto a strictly compatible semigroup of
univalent functions. It follows that G and G* are compatible semigroups.
By Theorem 1, @ and G* satisfy (1) and (2). Clearly, G* satisfies (1) and
(2) iff @ satisfies the identities y*x = yx and 2yz = yzx. Using these iden-
tities as well as (1) and (2), we obtain

xY =xYYy = Yyry = yyr = yw.
Thus, G is commutative. Therefore,
gy = oyt = a%? = (ay)t.
Hence identities (3) and (4) hold.
Sufficiency. Let G be a semigroup satisfying identities (3) and (4).

Then identities (1) and (2) are also valid in G. In fact, (2) is a direct con-
sequence of (4), while (1) follows from (3) and (4) in the following way:

wy? = (vy?)? = a?y* = 2*y* = (ay)* = xy.

As in the proof of Theorem 1, associate two symbols a, and b, with
each ze¢ G. However, now we suppose a, = b, iff 2? = x. P(g) is construc-
ted precisely as in the previous case. One can easily verify that P(g)
is a function, i.e., every element in the domain of P(g) has a uniquely
determined image under P(g). Clearly, the set of all functions P(g) for
g <G is compatible. Only the elements a, and b, can have the same image
under P(g). Let
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Since the left-hand side of this equality is defined, g == 2 or gy =«
for some ye @. Since the right-hand side is defined, zg = . If ¢ = =,
then 22 = 2. If gy = x, then

X = 29y = 2Yg = gy*9 = gyg = xg = .

In both cases x? =z, i.e., a, = b,. Therefore, the functions P(g)
are univalent for all ge@. Suppose now [P(g)] '(b,) and [P(h)]~'(b,)
are both defined. Then the elements [P(g)]~'(b,) and [P(k)]"'(b,) are
either equal or one of the elements equals a, and the other element equals b,.
Without loss of generality we may suppose [P(g)]~'(b,) = a,and [P (k)] (b,)
= b,. Then P(g)(a,) and P(h)(b,) are both defined. Therefore, ¢ =«
or gy = x for some ye@, and zh = 2. By (3), #? = (zh)? = xh = x, i.c.,
a, = b,. Thus the set of functions P(g) for all geG is strictly
compatible.

We can prove that P(g) = P(h) implies ¢ = h exactly in the same
way as in the proof of Theorem 1. It remains to verify the identity

P(gh) = P(h)oP(g) for all g, heG.

The definition of the functions P(g) and P(h) entails the need to
check the coincidence of the domains of P(gh) and P(h)oP(g), i.e., to
check that P(gh)(a,) and P(h)oP(g)(a,) are defined or undefined simul-
taneously, and the same should be done for P(gh)(b,) and P(h)oP(g)(b,).
In the case a, # b, the verification of this fact coincides with the corre-
sponding argument in the proof of Theorem 1. Suppose then a, = b,, i.e.,
x? = . If P(g)(a,) is defined, then g = x or gy = x for some ye G. In the
first case g = x* = «, in the second case rg = gyg = g%y = gy = «, i.e.,
P(g)(b,) is defined. Conversely, if P(g)(b,) is defined, i.e., if xg = x, then
gr = 29 = x and P(g)(a.) is defined. Therefore, P(g)(a,) and P(g)(b,)
are defined or undefined simultaneously. Taking this into consideration,
we may verify the needed fact in case a, = b, exactly as it was done in
the proof of Theorem 1.

Thus P is an isomorphism of G onto a strictly compatible semigroup
of univalent functions.

Notice that Theorem 1 and the proof of the necessity in Theorem 2
imply that a semigroup G is strictly compatible iff G and G* are both com-
patible which, in turn, is equivalent to G being both isomorphic and anti-
-isomorphic to compatible function semigroups and this, finally, is equi-
valent to G being a commutative compatible semigroup.

Let G be a semigroup and (4,),. @ family of pairwise disjoint sets
indexed by the elements of @. Suppose ge A, for all g ¢G. Introduce a binary
operation * on the set A = | J(4,),.4: if acd, and beA,, then a*xb = gh.
Then A with * is a semigroup which is called an inflation of G [1].
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A semilattice is an idempotent and commutative semigroup, i.e.,
a semigroup satisfying the identities #? = x and xy = y=.

COROLLARY 1. A semigroup is strictly compatible iff it is an inflation
of & semilattice.

Proof. Necessity. The verification of the fact that inflations
of semilattices satisfy identities (3) and (4) is straightforward.

Sufficiency. Let G be a strictly compatible semigroup. By Theo-
rem 2, @ satisfies (3) and (4). Let ¢ denote the self-mapping of G defined
as follows: ¢(a) = a® By (4), ¢ is an endomorphism of G. Clearly, ¢(9) = ¢
if g is an idempotent. For every ge@, by (3), the element g2 is idempotent.
The set I of all idempotents is a subsemigroup of @ since I is closed under
multiplication. I is commutative and, therefore, I is a semilattice. Let A;
denote the set of all geG such that g2 = ¢el. Clearly, (4,);.r is a partition
of G and teA; for all ¢el. Let ged;, heA;. Then gh = (gh)? = gh® = 4j,
i.e., G is an inflation of the semilattice I. ¢ is a homomorphism of G onto I.

Since the inflation is a very simple semigroup-theoretic construction,
the problem of the construction of all strictly compatible semigroups
is reduced to the problem of constructing all semilattices.

Identities (1) and (2) which characterize compatible semigroups
can be obtained from the identities of idempotence and commutativity
if the latter identities are multiplied on the left by a new variable.

Every idempotent semigroup satisfies (1), therefore, idempotent
compatible semigroups are those which satisfy (2), i.e., idlempotent com-
patible semigroups are precisely restrictive semigroups of the second
kind (left normal bands, in other terminology). The structure of such
semigroups is known fairly well (see [2] and [5]).

If a non-empty set A is endowed with a binary operation such that
ab = a for all a,beAd, A turns out to be a semigroup. Such semigroups
are called left zero semigroups. One can easily verify that inflations of
left zero semigroups satisfy (1) and (2), hence, they are compatible semi-
groups. The class of all such inflations is, in fact, characterized by two
independent identities: the associativity and the identity zy = x2

Let ¢ be a congruence relation over a semigroup G and let all classes
modulo ¢ be subsemigroups of ¢ (in other words, the quotient semigroup
G /e is idempotent). This being the case, @ is called a band of the subsemsi-
groups @/¢ (here G /¢ denotes the set of all e-classes and not the quo-
tient semigroup). If the quotient semigroup is commutative (it satis-
fies identity (2)), we say that G is a semilattice (a restrictive band of the
second kind) of the subsemigroups G|e.

Inflations of one-element semigroups are called zero semigroups
(thus, @ is a zero semigroup iff gh = 0 for all g, heG; here 0 is the zero
element of G).
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COROLLARY 2. Every compatible semigroup is a restrictive band of the
second kind constructed from zero semigroups, and it is a semilattice of
inflations of left zero semigroups.

Proof. Let @ be a compatible semigroup and let ¢ be a self-mapping
of G: ¢(g9) = g% for all geG. If I is the set of all idempotents of @, then ¢
maps G onto I, since ¢(¢) = ¢ for iel and ¢(g9) = g%eI, by (1). The equal-
ities

¢(gh) = (gh)* = ghgh = g*h® = @(g)p(h)
show that ¢ is an endomorphism of G. Therefore, I is a subsemigroup
of @. Let ¢, denote the kernel congruence of ¢. Since G satisfies (2), the
quotient semigroup G/e, satisfies (2) as well. Since I is idempotent, we
infer that G /e, is a decomposition of @ into a restrictive band of the second
kind. If g and h are elements of some ¢,-class, then gh = gh? = gg2 = g2
= ¢(g9) = ¢(h), i.e., every class modulo ¢, is a zero semigroup.

To prove the second part of Corollary 2 consider the following binary
relation ¢ over G:

e ={(g,h): 9% = g*h, h* = h%}.

By (1), ¢ is reflexive. Obviously, ¢ is symmetric. If (f, g) ec and (g, k) ee,
then

f* =9 =f*9* = f°¢*h = f’gh = f*hg = f*h’g = f*h* = f*h.

In the same way we can prove that h? = h?%f, i.e., (f, h)ee and ¢ is
transitive. Now, let (f, g)ee and (h, k)ee. Then

(fR)® = fh* = fighth = f*hgk = (fh)*(gk).
In the same way,
(gk)* = (gk)*(fh).

Thus (fh, gk)ee and ¢ is stable. Therefore, ¢ is a congruence relation
over @. Clearly, (g, g%)e¢ for all ge@, thus every e-class is a subsemigroup
of G. The equalities

(gh)? = g*h* = g°h® = g*h*hg = (gh)*(hg) and  (hg)® = (hg)*(gh)
(the latter is a sequel of the former) show that (gh, hg)ee for all g, heG.
Thus G/¢ is a semilattice, i.e., G is a semilattice of &-classes.

It remains to prove that each e-class is an inflation of a left zero
semigroup. In effect, let H be an e-class containing an element geG. Con-
sider the self-mapping ¢ of H: ¢(h) = h% Precisely as in the proof of
the first part of Corollary 2, we can see that ¢ is an endomorphism of H
onto an idempotent subsemigroup C. By the definition of ¢, idempotence
of C and definition of H, C is a left zero semigroup. It remains to note

that fh = fh? = fh%*f = ¢(f)@(h) for all f, heH, and thus H is an inflation
of C.
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If G is an abstract semigroup and P is an isomorphic representation
of G by functions, one may introduce a binary relation & on G: (g, h)e&
iff the functions P(g) and P(h) are compatible. Clearly, { depends on P.
& is called a compatibility relation.

The following problem is of interest: what is an inner character-
ization of compatibility relations, what properties must a binary relation
over G have in order it be a compatibility relation? This problem was
solved in [7]. Compatible semigroups are precisely those for which the
universal binary relation G X G is a compatibility relation. Thus, Theorem 1
could be deduced from the results of [7] (this was actually done), however,
in this paper we gave a proof which does not depend on [7].

Another (still unsolved) problem is of interest: what are those scmi-
groups for which the only compatibility relation is the identity relation?
In other words, characterize semigroups G having the following property:
if P is any isomorphic representation of G by functions and g, he@G, g # h,
then P(g) and P(h) are not compatible (P 850).

Main results of this paper are connected with the results of another
paper [4], where the semigroups, which are isomorphic to function semi-
groups linearly ordered by the inclusion relation, are characterized. The
trend of the theory of function and transformation semigroups which
the present paper pertains to is the so-called relation algebras (see [3],
[6] and [8]). '
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