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This is an extended version of two lectures I gave at the Banach Center in
February 1988. I would like to take this opportunity to thank the Banach
Center and my colleagues there for the hospitality I have encountered.

I. Introduction

When Frobenius, Burnside and Schur started representation theory of finite
groups at the end of the last century, they were considering “representations” of
an abstract finite group G in terms of matrnices, and they hoped to get
information on G by manipulating with these matrices. The prime example of
a successful application of this idea is Burnside’s theorem (1911), which states
that a group of order p*q?, p and ¢ dillerent primes, is solvable. (A purely
group-theoretical proof was given only in 1972 by Bender [Be}.,)

More precisely, a representation of G of degree n over a commutative ring
R —in early times one had R = C or Q and later a finite field F of characteristic
p dividing |G|—is 2 homomorphism

(1.1) ¢. G —-GL(n, R).
Since the group GL(n, R) embeds into the R-algebra M, (R) of (n x n)-matrices
over R, one had in a natural way an R-algebra associated with these matrices,

namely A,, the R-algebra generated in M,(R) by the matrices {@(g): ge G}.
Studying the various representations is essentially equivalent to studying the
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96 K. W. ROGGENKAMP

various R-algebras A, However, there is a universal R-algebra, the group ring
of G over R:
RG = {3 r,g].

gy
which has as R-basis the group elements; the addition is componentwise, and

the multiplication is induced from the group multiplication. Now RG maps via
the representation ¢ onto any of the R-algebras A, and thus essentially
contains all information which can be obtained from the R-representations.

Thus the original question of Burnside, Frobenius and Schur could be
phrased as follows:

(1.2) Which properties of the abstract finite group G can be recovered from
the ring structure of CG, or more generally of RG?

Since Z is the universal commutative ring, we have a natural homomor-
phism ZG — RG from the integral group ring ZG to any of the group algebras
RG. Thus if one does not want to restrict attention just to one ring R or one
particular field, it is natural to ask the question (1.2) for the integral group ring
7G.

This brings us to the theme of the present lectures: May it be possible that
for some class of rings R, the group ring RG determines the group G? More
precisely,

(1.3) Does RG ~ RH imply G ~ H?

This would imply —in the spirit of Burnside, Frobenius and Schur—that all
properties of G can be recovered from its R-representations. In the early times
of representation theory, this question was not raised, since for complex
representations — only those were considered at the beginning —lots of noniso-
morphic groups have isomorphic complex group algebras. (By Maschke’s
theorem, two abelian groups have isomorphic complex group algebras if and
only if they have the same order.)

Moreover in 1971 E. Dade [Da] gave an example of two nonisomorphic
groups G and H of order p¢® which have isomorphic group rings over every
field. Hence by studying ordinary and modular representations alone, one
cannot distinguish G and H. However, the reader should note that G and H are
not p-groups, and from p-modular representation theory one should only
expect results on the “p-part” of G from the group ring over a field of
characteristic p.

So, up to now two problems remain open:

(1.4) Does ZG ~ ZH imply G ~ H?

(1.5) Does F,G ~ F,H, G and H p-groups, F, the field with p elements,
mmply G ~ H? :
Here I shall concentrate on (1.4), the isomorphism problem.
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I1. The isomorphism probfem and units
With the group ring RG we associate the augmentation map
¢ KRG - R, Zryy!—»z;'g,

which has as kernel the augmeniation ideal I (G), freely generated over R by the
elements {g-1{,¢.. A given isomorphism of R-algebras a: RG —» RH can
easily be modified to commute with the augmentation: replace a(y) by
HNE y(xg)) ' (note that &, (21g)) s invertible).

(2.1) We assume henccforth that automorphisms between group rings are
always augmented.

G. Higman in s 1949 thesis [Hi] first considered the isomorphism
problem in connection wit!. is study of units in group rings. There he proved
the following marvellou: resuit:

(2.2) Tuxorem (Higman). Let G and H be finite abelian groups, and let
a: LG »ZH he an argmented automorphism. Then x is induced from a group

homomorphisim, ie. algis H tor every geG.

Before I sketch a proof of this, iet me draw attention to the connection
with the units U(RG)Y of Réi. Lot us denote by V(RG) the units of augmentation
one. Le.

FURGY = U(RG) (T + I (G)).

Then it is easily seen that U{RG) = V(RG)-U(R), where U(R) denotes the units
in R.
Let us look more closely at U(Z.G): Since QG is semisimple we have

QG = [ M,.(D).

where the D, are finile-dimensional skew fields over Q, and hence

S
(2.3) U(ZG) < [] GL»;, D))
i=1
is a commensurable arithmetic group.
In addition to RG being an R-algebra, it is also an R-Hopf algebra, the
Hopf algebra structure being induced from the anti-involution

(2.4) sq: RG> RG. Y rgeYrg "

geG geG

A charactenization of those Hopf algebras which arise this way from group
rings was given by Takahashi [Ta).

7 - Banach Center U 260 o2 |
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Higman actually proves a much stronger result:

(2.5) THEOREM (Higman). If ue V(Z A) is a unit of finite order in the integral
group ring of the finite abelian group A, then ue G, i.e. the only units of finite
order in V(ZA) are the group elements.

Proof. More generally, let ue V(ZG), for an arbitrary finite group G, be
_a central unit of order n. (We shall here only deal with the case where n is odd.)
Then u*, the image of u under x, is also a central unit of order n, and thus
v = uu* is a central unit in ZG with ¢" = 1; moreover, v is flixed under *;. It is
easily seen that on the centre Z of QG, Z = [ ;- K, where the K; are algebraic
number fields, *; induces the complex conjugation. Thus v lies in a product of
real fields. Since the order of v is odd, we conclude v = 1. Thus

= (Z Zgg)(z 299_1)7

geG gel

where u = Y .6 z,9. We now consider the coefficient of 1 in the above product
and conclude

1= Zzg.
Since z,eZ, we have u = +g, for some g,€G, and thus u =g,, u being

augmented. (The proof for n even is similar.)

In this connection we point out that this argument has heavily used the
fact that in Z a sum of squares is one if and only if there is only one nonzero
summand, equal to +1.

The isomorphism problem ZG =~ ZH via « as augmented algebras appears
in a new light if we assume that « commutes with =, ic.

(2.6) if o(g)=) z,h, then a(g™') =) z,h™ L.

heH heH

In this case we have

(2.7) PropPoSITION [Ba]. Let a: ZG — ZH be an augmented isomorphism
commuting with x. Then a is induced from a group isomorphism from G to H.

Proof. Let a(g) =) z,h; then
| = a(g)-a(g_l) = (Z Zhh)'(z Znh_l),

heH heH
and the same argument as above shows a(g) = h for some he H.
A consequence ol Higman’s result is the following:

(2.8) CorROLLARY. Let a: ZA - ZB be un augmented isomorphism with
A and B abelian. Then a commutes with *.

After these rather special observations we turn to the general situation.
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Given an augmented isomorphism «: RG — RH, the elements {x(g): ge G}
form a finite subgroup in V(RH) consisting of R-linearly independent elements.
Conversely, given any finite subgroup V in V(RH) of order |H| whose elements
are linearly independent over R, we have an augmented isomorphism

a: RV— RH.

S. D. Berman has observed that the linear independence is often
automatic.

(2.9) ProPOSITION [Ber]. Let R be an integral domain of characteristic zero
such that no rational prime divisor of |G| is a unit in R. Let V < V(RG) be a finite
subgroup. Then the elements in V are R-linearly independent in RG.

This result allows to phrase the isomorphism problem differently:

(2.10) Let V' be a finite subgroup in V(ZG) with |V]| = |G|; is then V~ G?
(Note that in view of (2.9) this is equivalent to the isomorphism problem (1.3)
for Z.)

One might go even one step further than the isomorphism problem, and ask:
Let V< V(ZG) and assume |V| = |G|. How is V embedded in V(ZG)? Higman
(2.2) gave the answer for abelian G. However, in general, one cannot expect that
V= G, since V(ZG) is in general not abelian, and so we have conjugation with
the units in V(ZG), which do not necessarily stabilize G, since G is not normal
in V(ZG). Moreover, even for the dihedral group D of order 8, there exists
a unit ae QD\V(ZD) such that

D #aDatelD,

and this conjugation is not inner. So for G not abelian, the obstructions to
V=G are not just the inner automorphisms of V(ZG). In this connection,
Zassenhaus [Za] made a far-reaching conjecture:

(2.11) ZasseNHAUS CONJECTURE L. Let V< V(ZG) be a finite subgroup with
|V| = |G|. Then there exists a unit ac QG with a-V.a ' = G.

Because of (2.9) this is equivalent to

(2.12) ZASSENHAUS CONJECTURE II. Let a: ZG — ZH be an augmented
isomorphism. Then there exists a group isomorphism o: G—H such that
a0~ i ZG — ZG is a central automorphism, i.e. an automorphism leaving the
centre of ZG elementwise fixed.

In view of the structure of the centre Z of QG, Z = l_[ K, this conjecture
would imply that every automorphism ¢ of Z which stabilizes ZG —note that
o induces an automorphism of QG —is induced from a group automorphism;
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this 1s a strong statement. Prior to 1985 there were some special classes of
groups for which the Zassenhaus conjecture was verified:

1) Higman's result (2.2) shows that it is true for abelian groups.
2) Ritter-Sehgal [RiSe] proved it for certain metacyclic groups.

III. Special properties of G detected by ZG

Let us return to the original question of (1.2).
A direct extension of Higman’s result was given by Glauberman and
Berman.

(3.1) THEOREM. Let a: ZG — ZH be an augmented automorphism and let

K,= Y

xeG/Cqlg)

be a class sum. Then a(K)) = K, is a class sum in ZH.

In a similar spirit, the lattices of normal subgroups of G and H are
isomorphic:

(3.2) THEOREM (Berman, Glauberman, Sehgal, cf. [Se]). Let N be a normal
subgroup of G, and let a: ZG —» ZH be an augmented automorphism. Then
(Y nen 1) = Y memm for a normal subgroup M in H.

These results also hold for RG if R is a Dedekind domain of characteristic
zero in which no prime divisor of |G| is invertible. It would be important for
our results on the conjugacy problem for defect groups to know whether the
hypotheses in (3.1, 3.2) could be weakened as follows: if the rational prime p is
not a unit in S, 1s there still a correspondence between the normal p-subgroups
1n G and those in H?

An extension of the above results was recently obtained by Kimmerle,
Lyons and Sandling, who showed, using heavily the classification of finite
simple groups:

(3.3) THEOREM [KLS]. Let a: ZG — ZH be an augmented automorphism,
and let

l=Ny<...<N,=G
be a chief series of G. Then there exists a chief series
Il=My<...<M =H

of H such that t = t and the chief factors are isomorphic, even with the same
indices: NJN,_y, ~M/M;_,,1 <i<t.

Note that this shows in particular that simple groups are determined by
their integral group rings.
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The next result of Whitcomb pushes the isomorphism problem further to
metabelian groups, and it seems to give rise to a possible induction for the
solvable case:

(3.4) THEOREM [Wh]. Let a: ZG — ZH be an augmented isomorphism, and
A an abelian normal subgroup of G corresponding under « to B which is abelian
normal in H (3.1, 3.2). Then we have a commutative diagram with exact rows:

0-1(A)G 2G> Z2G/A-0
x| = s
0—-I(B)H—-2ZH —-7ZH/B-0
Assume thut & is induced from a group isomorphism 3. G/A - H/B. Then G ~ H.

(3.5) CoroLLARY. In (3.4) assume that G is metabelian with G/A abelian.
Then G ~ H.

In fact, by Higman’s result (2.2), & is induced from a group isomorphism.

Proof of (3.4). I(A)G is the kernel of the map ZG — ZG,;A. Now Heinz
Hopf has observed that

v HAG/TA(G)—> A, (a—1)g+1(ADI(G)—a,

is an isomorphism of left ZG-moduies, where G acts on A via conjugation.
Hence the diagram in (3.4) gives rise to the diagram

0-A—-2G—2ZG/A-0

1,1 lao ,L-i
0-B—>ZH - ZH/B - 0.

We also have the commutative diagram —arising from the natural embed-
dings —

G/A=>ZG/A

el il

H/B—»ZH/B.
An easy cohomology argument now shows that the group extensions

1o4-06->G/A—>1

111 l(.‘ l@
{>B>H—H/B-I

are isomorphic, via the pullbacks along », and x,.

Note, however, that the proof does not give any information of how G is
embedded into V(ZH), also, it does not give any clue for the Zassenhaus
conjecture. As a matter of fact, the Zassenhaus conjecture (2.11) is not at all
suited for an induction as (3.3) might suggest.
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When Leonard Scott and myself started to consider these questions
5 years ago, the Zassenhaus conjecture was at first a tempting target for
a counterexample. At that time we were not successful, and eventually we
started to believe that it might be true for certain classes of groups; in fact, it
was a guide for our work on p-groups. However, recently it has turned out that
the Zassenhaus conjecture is too strong.

One might even go one step further than Zassenhaus and ask —this
question was briefly raised by Berman and Rossa [BR] for complete rings:

(3.6) CoNnyuGAcy ProBLEM. If V(RG) = V(SH), are G and H conjugate in
V(RG)?

The results which we have obtained so far let it appear reasonable to ask
the following questions:

(3.7) Let R be a complete Dedekind domain with residue field of
charactenstic p > 0. Let B, be the principal block of RG. Is the “defect group”
of B, uniquely determined up to conjugacy in B,?

IV. Our answers

A. Progress on the isomorphism problem

The next results were obtained by Leonard Scott and myself in 1985
[RS1] and 1987 [RS3]:

(4.1) Let G be a finite group such that there exists an exact sequence
1> A->G—> N-—>1, where A is abelian and N is nilpotent. If ZG ~ ZH, then
G is isomorphic to H.

Again, this is a statement of an abstract isomorphism, and it does not give
any information about the embeddings into V(ZG).

(4.2) THEOREM. Let G be a finite solvable group, and assume that ZG ~ ZH.
Then for every prime p, G/O,(G) is isomorphic to H/O,(H), where O, (X) is the
largest normal subgroup of X of order prime to p. In particular, the Sylow
p-subgroups of G and H are isomorphic.

As we shall see below, in this case one can say more about the embedding
of H into V(ZG).

B. Drawbacks and progress on the Zassenhaus conjecture

Leonard Scott and I have tried hard to prove the Zassenhaus conjecture
(2.12) for abelian-by-nilpotent groups, however unsuccessfully. Eventually we
started looking more carefully for a counterexample. We constructed a coun-
terexample to (2.12) [RS2]:
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(4.3) THEOREM. There exists a finite metabelian group G and an augmented
automorphism « of Z.G such that «- ¢ is not a central automorphism for any group
automorphism ¢ of G.

This shows that the Zassenhaus conjecture is false, even for metabelian
groups. It was known to hold, however, for nilpotent groups of class 2 and for
certain metabelian groups [RiSe].

Before we found the counterexample, we made some positive progress on
the Zassenhaus conjecture [RS]:

(4.4) THEOREM. Let G be a finite nilpotent group, and assume that ZG = ZH
as augmented algebras. Then there exists a unit a in QG normalizing V(ZG) such
that aGa™' = H, i.e. any finite subgroup U in V(Z.G) with |U| = |G| is conjugate
to G in QG.

\

(4.5) THEOREM. Let G be a finite group with a normal p-subgroup N such that
for the centralizer of N in G we have C;(N) c N. (Alternatively phrased, G is
a p-constrained group with 0,(G) = 1) Assume that x is an augmented
automorphism of ZG. Then the Zassenhaus conjecture holds for G and a(G), i.e.
G and x(G) are conjugate in CG.

We point out that (4.5) applies in particular to p-solvable groups G with
0,(G) = 1. A comparison between (4.3) and (4.5) shows how sensitive the
Zassenhaus conjecture is to the internal structure of the underlying group.

C. Progress on the conjugacy problem

As we have remarked above, ZDg, the group ring of the dihedral group of
order 8, has another subgroup U ~ Dy in V(ZDg) which is not conjugate in
V(ZD,) to Dg; however, U and Dy are conjugate in QDg by a matrix with
determinant 3. Now 3 becomes a unit in Z,, the 2-adic integers. Moreover, we
have the philosophy that for a p-group P, the natural group ring is not ZP, but
rather ZpP, the P-adic group ring. This was one of the reasons why we
concentrated on Z_,P. Another reason is the following: In order to prove that
the isomorphism problem has a positive answer for p-groups P, one wants to
use induction on the order of P. Neither the isomorphism problem nor the
Zassenhaus conjecture are suited for induction. In fact, if the automorphism
a of ZG is on the quotient ZG/N conjugation with a unit ae QG/N, there is no
reason to believe that a can be lifted to a unit in QG normalizing Z.G. However,
if one considers‘ p-groups over Zp, and if g is in V(ZPP/N), then it can be lifted
to a unit in V(Z,P), and we can use induction. Following this philosophy, we
were able to extend our result on p-groups [RS], and obtained in 1986 the
following result [RS3]:

(4.6) THEOREM. Let G be a finite group with normal Sylow p-subgroup, such
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that 0,(G) = 1. Let a be an augmented automorphism of Z pU. Then there exists
a unit ue V(L G) such that uGu™' = 2(G).

The theorem we have proved is actually more general: Let G be
a p-constrained group with 0,(G) = | and let N = O _{(G). lf 2 is an augmented
automorphlsm of Z G, stablhzmg I; (N)G. then G and «(G) arc conjugate in

V(Z,G).

ThlS result applies in particular to p-groups, as one might have expected
according to our philosophy. However. what is really surprising is that the
above groups are by no means all p-groups (the symmetric group on 3 elements
satisfies the hypotheses of (4.6) for p = 3). and that cven the p'-parts of these
groups can be detected p-adically. Note that for a g-group Q. ¢ = p.

V(2,0 = ] GLin,. R).

where the R, are unramified extensions of Zp. Also, for groups which satisfy the
hypotheses of (4.6), the Zassenhaus conjecture is true. Again, comparing (4.6)
with our counterexample to the Zassenhaus conjecture, (4.3)—recall that our
counterexample is metabelian —one sees how delicate these problems are.
We have stated in (4.4) that the Zassenhaus conjecture is true for ZN,
provided N is a nilpotent group. Our result {4.6) is so strong that it allows to
compute the Picard group of ZN semilocally [RS], and from that we have:

(4.7) THEOREM. For nilpotent groups N, the conjugucy problem has in general
a negative answer for both V(ZN) and V(Z,N).

Let us pause for a moment to contemplate about further possibilities: Let
G be a finite group with a normal Sylow p-subgroup and with O,(G) = 1. Then
a consequence of (4.6) is the following: Let U < ViZ, ,G), with U =~ G, and such
that the elements of U are linearly independent over .L Then U and G are
conjugate in V(Z ,0). 1 do not know whether the hyr Dothesm that the elements
of U are linearly mdependent can be dropped. Our results, and the evidence we
have gathered up to now, make it reasonable to ask whether V(ZPG) has the

(4.8) SyLow PropPERTY. Let G be a [inite group with a normal Sylow
p-subgroup P such that 0,{(G) = 1. Let U be a finite p-subgroup of V(Z G). Is
U conjugate in V(Z G) to a subgroup of P?

One consequence of this would be that for groups as above. the vertices of
indecomposable Z,G-lattices would be unique up to conjugacy in V(Z,G).

The result (4.6) can be interpreted as a first step to prove Sylow’s theorems
for finite subgroups of V(RG), provided G 1s a p-group. In an attempt to give an
answer to this question we were guided by the fact that for a finite group H, the
connectedness of the spectrum of the cohomology ring H*{H, F ) is equivalent
to Sylow’s theorems for the p-subgroups of H. We tried unsuccessfully to mimic
John Carlson’s proof that the variety of an indecomposable module is
connected [Ca].
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More preasely, let V' be a profinite p-group, and denote by H*(V, F ) the
continuous (even-dimensional for p odd) cohomology ring of V with coef-
fictents in F,, the field with p eclements. If the spectrum of H*(V, F)) is
connected. we say that the variety of Vis connected. We shall write VC(V, F )
for the variety of H*(V. F).

Though we could not rcach our original goal. we were able to prove for
R a complete Dedekind domain of characteristic zero with residue field of
charactenstic p:

(4.9) THEOREM. The following conditions are equivalent for a p-group G:

(1) Every finite p-subgroup U of V(RG) is conjugate in V(RG) to a subgroup
of G.
Oy For every p-subgroup P of G, the natural inclusion

Nq(P) P — Nyge(P)/P
induces o continuous map
VONPYP, F,,) — VC(NI-”“,-,(P] P, Fn).

which is « bijoction.
an}y The varicty of Ny et PV Pois connected for cerery p-subgroup P oof G.

(In the statement of the result we have used N (B) to denote the normalizer of
B in A4).

We want (o point out that the statements (i) and (ii1) are not true in general
for profinite p-groups: in fact, we have examples of unit groups of orders where
(1) is false. It would be interesting to have a group-theoretical criterion for when
(1) is true for profinite p-groups.

Let us return to i discussion of (4.8) 10 case G 1s a p-group. Some years ago
we found a proof of (X8} for G a 2-group [R1]. Later on we were able 1o handle
groups of order p*, and we developed a sketch of the proof in the general
p-group casc in November 1985 [S!]. Since in this proof we had not worked
out all the details, we only made at the Arcata meeting in 1986 the conjecture
that (4.8) is true for p-groups. In October 1986 we learnt that Al Weiss from the
University of Alberta [W] had a different proof of (4.8) for p-groups:

(4.10) SuBGrROUP RIGIDITY THEOREM. Let G be a finite p-group, and
U a finite subgroup of V(ZPG). Then U is conjugate in V(Z{,G) to a subgroup of G.
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