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This is a survey of recent developments concerning orders of finite lattice type
and their Auslander-Reiten quivers. In Section I, special types of orders over
‘complete valuation rings are described: maximal orders, hereditary orders,
subhereditary orders, Backstrom orders, generalized Backstrom orders, group
rings, Gorenstein orders, Schurian orders and orders of global dimension 2. In
Section 2 general properties of almost split sequences and Auslander—Reiten
quivers of lattices over orders and of socle projective modules over artinian
algebras are described. Section 3 deals with Auslander—Reiten quivers of
special types of orders: Firstly, the connection between the Auslander-Reiten
quiver of an order and the Auslander-Reiten quiver of a certain subcategory of
the finitely generated modules over an artinian algebra is derived. This is of
particular interest for subhereditary orders, and becomes even more trans-
parent for generalized Bickstrom orders. We then report on Gorenstein orders,
simple curve singularities and on group rings. Finally, the Auslander-Reiten
quivers of Schurian orders are discussed; these are intimately related with the
Auslander—Reiten quivers of infinite partially ordered sets of finite width.

This is an extended version of a series of lectures 1 gave in the Banach
Center in Warsaw in April 88. I would like to take this opportunity to thank
the Banach Center and my colleagues there for their hospitality.

§ 1. Special types of orders

Let R be a complete principal ideal ring with maximal ideal »'R and
residue field f. (Examples are R = Z, the p-adic integers, and R = f[¢], the
ring of formal power series over ) We denote by K the field od fractions of
R and let A be a separable finite-dimensional K-algebra.

This paper is in final form and no version of it will be submitted for publication elsewhere.
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(1.1) DEFINITION. A unital subring A of A is called an R-order in A if

(1) A is a finitely generated R-module,
(i) K-A4 = A, re. A contains a K-basis ol A.

The aim of the local representation theory of the R-order A is the study
of A-lattices, i.e. left A-modules which are finitely generated over R, and which
are R-torsion-free. We denote the category of left A-lattices by ,9°. Then IM°
is an additive category which has kernels, but not cokernels. ,9° is
a Krull-Schmidr category, i.e. every M € ,9° has a unique — up to isomorphism
—decomposition into indecomposable A-lattices. Hence

(1.2) ,9M° is well understood once one understands the indecomposable
A-lattices and the homomorphisms between them.

Before we come to this problem we shall list some special types of orders.

A) Maximal orders

Since A is a separable, it has the structure
{

(1.3) A= [TD,

i=1
where D, is a finite-dimensional skew field over K with centre L;, a separable
extension of K. An R-order is called maximal provided it is not contained in
a proper overorder. All maximal orders in A are isomorphic, i.e. they are all
conjugate by elements in A\{0}. A typical maximal order has the structure

(1.4) r=11@,
i=1

where , is the unique maximal R-order in D,. Note that I' is then Morita
equivalent to the product of the 2s. The indecomposable I'-lattices are
projective and are precisely the modules

(1-5) Qi = (Qi)nin-

Since A is separable every R-order A is contained in at least one maximal
order.

B) Hereditary orders

An R-order I is said to be hereditary provided that every left I'-lattice is
projective. The structure of hereditary orders can—up to isomorphism --be
described as follows ([Ha], [Bru], [Ja5]):

(Ql)nl Ql l'QZ)ml

Q

(1.6) I = @) x ©m, ? x...
m,e, - mn,a, -

(Ql)ns (QZ)m

4
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where Q, is a maximal order in D; with IT,Q, = rad Q,. I" is Morita equivalent
to the corresponding ring, where all n,, m,, ... are equal to 1.

The following property of hereditary orders is essential in the sequel
(LAG], [Jas5]x

(1.7} Let I' be an R-order in A. Then the following are equivalent:

(1) rad I' is projective.
(i) A, = A)(rad ) = {xe A: x'radl" cradl'} =T.
(i) A,nA, =T, where A, is defined similarly.

The next result shows that hereditary orders are of more importance to
arbitrary orders than are maximal ones:

(1.8) Let A be an R-order in A, Then
4,(A)= A, (rad A)nA(rad 1) = {xe A: x'rad A+rad 4-x = A}
is equal to A if and only if A is hereditary.
Defining inductively
A,(A) = 4,(4,-((4),

there must exist an ny = ny(A) such that 4, (A) is hereditary, since ascending
chains of orders in A must terminate. This uniquely determined order will be
called the hereditary order associated to A. It will in general not be maximal.
For the sake of simplicity we shall denote it by I'(A).

C) Construction of general orders
Given an R-order A in A, we pick a hereditary order I' in 4 containing A.
Since A i1s of finite index in I, there exists an neN such that
(radIN)" < A.

Let B = I'/(rad I')" — note that this artinian algebra is serial and hence is very
well understood in view of (1.6)—and U = A/(rad I')". Then A is a unital
subalgebra of B and A is the pullback of

A-T
(1.9) |
ANAN-B

Conversely, given B = I'/(radI')" and any unital subalgebra A of B, the
pullback A in (1.9) is an R-order in A. With the pair (A, I') we associate the
artinian algebra

B +By
(1.10) G—[O m]

where B, is viewed as a (‘B, U)-bimodule.
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D) Subhereditary orders

Let A be given, and assume that we can find a hereditary order I" such that
(1.11) radl" = A,

Then A is said to be subhereditary. In this case B is semisimple, and as U above
every unital subalgebra can occur. I' is then not necessarily unique, but we still
call it the associated hereditary order. In this case the algebra

B 3By
G =
[0 A
has a projective socle and no simple ring direct factor. Such socle projective
algebras were also studied by Simson [Sil—4] and Nishida [Nil-3]. It can
be shown that every artinian f-algebra which has a projective socle and no

simple ring direct factor arises —up to Morita equivalence —in this way [R2,
Lemma 2].

E) Backstrom orders

These are very special types of subhereditary orders, where instead of
rad " ¢ A—note that this is always equivalent to rad I’ = rad A —we require

radl' =rad A

for some hereditary overorder I" of A. In this case € (1.10) is hereditary with
rad?€ = 0. These orders were first considered by Bickstrom [Bd]. These
Backstrom orders can also be described internally as follows:

(1.12) An R-order A in A is a Bdckstrom order if and only if there exists
a hereditary order I' > A such that for every indecomposable projective A-lattice
P, rad ,P is a I'-module.

(1.3) EXAMPLE.

(e RR R R )
mnoa R RR
A=< |nn o' n R|:a=d=2" modn, f=§f modnL
annn B R
LLnnn n B )
is a Biackstrom order with hereditary order
R R RRRT
n RRRR
I'=|nr 1 RRR
n t RRR
ln 7= n n R
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Fig. 1
In this example € is the tensor algebra of the graph of Fig. 1.

F) Generalized Backstrom orders

A subhereditary order A 1s called a generalized Bdckstrom order provided
the hereditary order I’ can be chosen such that € in (1.10) is hereditary. The
internal description of generalized Bickstrom orders is as follows: There exists
a hereditary overorder I' © A such that for every indecomposable A-lattice P,

(1.14) rad ,P = X®Q,
where X is a projective A-lattice and Q is a I'-lattice.

(1.15) The oriented quiver of A—in case R/rad R is algebraically closed.
Let ‘B, be the set of isomorphism classes of indecomposable projective
A-lattices P and P, the isomorphism classes of indecomposable I'-lattices X.
The guiver of A with respect to I' —note that I' need not be unique —is defined
as follows: The vertices are in bijection with the elements in B = P, U P, —
note that an indecomposable I'-lattice X can very well be a projective A-lattice;
in this case X occurs both in B, and in B,, i.e. it is counted twice. To define
the arrows. let P be an indecomposable projective A-lattice. We write

(1.16) rad, P~ @ P"e @ X,

i=1 j=1

where P,, 1 < i < n, are indecomposable projective nonisomorphic A-lattices
which are not I'-lattices, X;, 1 <j < m, are indecomposable nonisomorphic
Ilattices, and X'® denotes the direct sum of s copies of X. We then draw n,
arrows from (P) to (P), where (M) denotes the isomorphism ¢lass of M, and m;
arrows from (X;) to (P).

(1.17) ExampLE. Let

R R R R
AZnRRR,

nnR\R

n n n R



454 K. W. ROGGENKAMP

where R— R means that the corresponding elements are congruent modulo .
We put

R RRR

n RRR

n n RR

m nmn R

The projective indecomposable A-lattices are

R R R R
n R R R
P, = , P,= , Py= ;
Yl P n 3 R\R
n T n R
the indecomposable [-lattices are

R R R R
x. =", x =% x,=1% x, =%
la 2 n | IR IR
n ) n R

Note that P, = X, and P, = X,. The set
‘B=“]31\'J‘J32={P1,P2, P3}U{X1,X2,X3, X4}

has 7 points. Then rad ,P, = X,, rad ,P, = X, (though X, = P,), rad P,
= X,® X, (though X, = P,). Hence the quiver of A with respect to I' is as
shown in Fig. 2, where small Latin letters represent the isomorphism classes of

Xy —— D>

X2

N

P3

/

X3

X, ——= B

Fig. 2

the capital Latin letters. Note that the quiver of A with respect to I' is not
connected though A is indecomposable as a ring.
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G) Group rings of finite groups
Let G be a finite group. Then

RG ={Y r,g: r,eR}
geG
is the free R-module with basis {g},.c and multiplication induced from the
multiplication in G. By Maschke’s theorem K G is separable and thus RG is an
R-order in KG, the group ring. RG has an additional property: it is a symmetric
Gorenstein order (cf. [H]).

(1.18) We shall list some group ring explicitly [R8]: Let M,, be the
Mathieu group and B the principal block at p=11. Then B is equal to

(R)HT(R),W (1R} x10

(Rhiox11 (Rhioxio (R)oxs  (11R)gx10  (11R)oxis  (11R)ox10
(Rlioxs (Rhoxio  (I1R)ioxis (11R)jox10
(R)16xo (R)isx10  (Rlisx1e (11R)16x10
(Rhioxs |(R)ioxio ’(R)Lons (R)iox 10

(R)1ox10 (Shex1e (R)10x10

where S = Fix¢ (R 13/1)), C5 is the cyclic group of order 5, and the congruences
are given as pullbacks

R—R-R R-S- 8§
! l and | 1.
R -F, R -F,,

The congruences here are taken modulo 11. The Brauer tree is depicted
in Fig. 3.

Fig. 3

H) Gorenstein orders
An R-order A is called a Gorenstein order provided
(1.19) A* = Homg(A4, R)

is a projective A-lattice, both on the left and on the right. In case A ~ A* both
as left and as right modules — note that this does not mean as bimodules — A is
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called a symmetric Gorenstein order. The importance of Gorenstein orders is
best illustrated in terms of lattices. For any order A, ,9° has enough projective
objects. These are precisely the projective left A-modules. The injective
A-modules are never A-lattices. But still the category ,I° has enough
injectives; in fact, let P be a projective right A-lattice. Then I == Homg(P, R) is
an injective object in ,9M°. Since an indecomposable projective A-lattice P has
a unique maximal submodule in KP, it follows from the above construction
that an indecomposable injective A-lattice [ has a unique minimal overmodule
I" o1 in KI

(1.20) An order is Gorenstein provided every injective A-lattice is also
projective and conversely.

I) Schurian orders

Let A = (K), be a simple split K-algebra. An R-order 4 = I' = (R), is said
to be Schurian if A contains a complete set of orthogonal primitive idempotents
{e;: 1 <i < n}. For simplicity we shall assume that ¢; = ¢; are the usual matrix
idempotents. W.lo.g. we may assume

A =(n""'R),, n;eN,=Nu{0},

with n; =0 and ny+n; =2 n; for all i,j,k=1,..., n

The partially ordered set P(A) of A is defined as follows [ZK]: P(A) has as
vertex set {1, ..., n} xZ, with vertices (i, 2), 1 <i < n, xeZ, and the partial
order < is generated by the relations

(i, 2)<(j, f) (written also (i, z)—{j, )
provided either
() i=jand a<f<a+], or
(i) B =oa+n;.
An infinite partially ordered set P, occurring this way as P(A) for a Schurian

order A, will be called a Schurian partially ordered set.

For later application we list in Fig. 4 the critical partially ordered sets
[KI12].

o—9

o—0

eo—0

e—0

o o—> @9 —r-9——>0—»0
.Y.

*—0
o—r-@0—r0—>0

Hh §—-0—9

Fig.



J) Orders of global dimension 2

One should note that 9° has homological dimension n if and only if
A has global dimension n+ 1, and hence comparing the representation theory
of artinian algebras with the study of lattices over orders, the orders of global
dimension 1, ie. the hereditary orders, play the same role as the semisimple
algebras, and the orders of global dimension 2 should play a role similar to that
of the hereditary algebras. But contrary to the artinian situation, the orders of
global dimension 2 are not so casily described. Moreover, orders of global
dimension 2 arise as Auslander orders [ARo].

One can, however, give a criterion for subhereditary orders to be of global
dimension 2 {R14]:

(1.21) Let A be un R-order in A such that there exists a maximal order
I withradI'c Ac I, and let G = @'-, G; be a minimal left I'-progenerator,
decomposed into irreducible T-lattices. Then A has global dimension at most two
if and only if

(1) hd ((G)+hd (GF) <1, 1 i<t

(1) A/rad I' has global dimension at most two.

Remark. This result is easily applied to construct explicit examples of
orders of global dimension at most two: Let 2 be a f-algebra of global
dimension at most two, and assume that U has a faithful representation

{
To: Wo>B =[] (t),
i=1

such that the simple B-modules §;, 1 <i<i, are as U-modules either
projective or injective. Then the R-order A constructed in Section C will have
global dimension at most two.

So the first step must be to {ind algebras of global dimension at most two.
Natural candidates for 2 will be hereditary f-algebras. To find other algebras
of global dimension two one can make the following construction [R15]:

(1.22) Let U be a t-algebra with gl.dim A < 2, B a hereditary Y-algebra and
G, an (U, B)-bimodule with hdy(G,) < 1. If for each indecomposable projective
left B-module P either Gy,@gyradyP =0 or G,®aradgP is U-projective, then

A G,
=10 s

is a t-algebra with gldim@ < 2.

Another type of orders of global dimension 2 can be constructed as path
orders: Let A be a Schurian order.

(1.23) The single-valued quiver of a Schurian order. (1) A single-valued
quiver is a quiver Q = (I'y, I'}) together with a map v: I'; - N, where I, is the
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set of arrows in @, and I, are the vertices. In addition we assume that each pair
of vertices of Q is connected by some oriented path, but there should be no
path of length one from xelI', to x, ie. there should be no loops in I.

(1) The path order A(Q) of Q is defined as follows: Let {1, ..., s} = T,.
Then A(Q) is an order in (K), with diagonal entries R and the (i, j)-entry
7*@)-R, where a(i, j) is the minimal integer m such that there exists an oriented
path from i to j of valued path length m. Obviously A(Q) is a Schurian order, it
1s two-sidedly indecomposable, but not necessarily basic.

R R

(1.24) ExaMPLE. (ii)) The order considered in A =[ ‘R
id

] has quiver

12,

0

Fig. 5

(i1) Let Q@ be as in Fig. 5. Then

'R n R RR]
n RRRR
AQ)=|n n R R R
nan Rn
_nnnnRJ

In [RW1-2] a necessary and sufficient condition is given for A(Q) to have
global dimension two, thus characterizing Schurian orders of global dimension
two. Since these conditions are rather technical, we only give sufficient
conditions on Q to give rise to an order A(Q) of global dimension two.

Let Q =(I'y, I',,v) be a single-valued quiver, and assume that the
subquiver @ consisting of the vertices I', and only those arrows which have
valuation zero is a tree. In addition, assume

(a) v(I'y) < {0, 1};

(b) Q has no zero cycles, ie. oriented cycles of total valuation zero;
(c} through each point x there is a 1-cycle (i.e. of valued cycle length one);
(d) each arrow is part of a 1-cycle;

(e) there are no “superfluous” arrows (e.g. in Fig. 6, y is superfluous),
(D Q does not contain a full subquiver which can be “shrunk” to (1.24, i1).
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Fig. 6

(1.25) THEOREM [RWI1-2]. Let Q be a single-valued quiver satisfying the
above conditions. Then A(Q) has global dimension two, and is basic Schurian and
two-sidedly indecomposable.

Fig. 7

(1.26) ExampLE. If Q is the quiver shown in Fig. 7, then

R R R | has global dimension two.

§ 2. Auslander—Reiten sequences and Auslander—Reiten quivers

Let 4 be an R-order in A4 (as in § 1), let A be a finite-dimensional I-algebra, and

denote by &(U) the torsion-free U-modules with respect to a hereditary torsion
theory [St].

In the first part, let MM° be either ,IM° or F(A). By ind M° we denote the
indecomposable objects in M® —note that the Krull-Schmidt Theorem holds.

(2.1) DeriNiTioN. (i) Let X, Yeind M°. Then a homomorphism y: X - Y
is said to be an irreducible map if  is not an isomorphism and whenever there

is a factorization
\ /
z
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with Z € IR°, then either « is a split monomorphism or f is a split epimorphism.
(i) We say that an exact sequence in I°

€ 0-X5XDX" -0
is an Auslander—Reiten (or almost split) sequence il
(a) € is not split exact;
(b) X', X" eind MY,
(c) whenever there i1s a homomorphism
B: Z-X" (x: X'>Z) in IN°

which is not a split epimorphism (split monomorphism), then there is
a factorization

X 9 -x" X' ¥ X
z z
We say that M° has Auslander—Reiten sequences if, whenever X" is not
projective in MM® (X’ is not an injective object in IMM?), then there exists an

Auslander—Reiten sequence €. Since then € is uniquely determined, we use the
following notation (in the Auslander—Reiten sequence €):

XII — T\:[]]O(X’) — T(X’), XI = T»Elol(X”) = T_I(X”).

(2.2) THEOREM. IM° has Auslander—Reiten sequences.

(2.3) Remark. 1f M = MM is the category of A-lattices, the existence was
established by Auslander-Reiten [Aul, ARe] and in [RS]. For M = F(A) in
special cases the existence was shown by Bautista-Martinez [BM] and in [R6].
The general case was established by Auslander-Smale [AS1].

There is a close connection between irreducible maps and Auslan-
der—Reiten sequences: Let

!
O—PN (i) @ EIM)_)M_-)O’ E,Elnd mzoa

i=1
be an Auslander-Reiten sequence; then ; and ¢, are irreducible maps.
Moreover, for every irreducible map a: X =M (t: N> Y), X ~ E (Y ~ E}) for
some i (j) and & (1) is “essentially” ¥, (¢)).
(2.4) Construction of Auslander—Reiten sequences in ,JM° [R3]. Let M be

an indecomposable nonprojective A-lattice and let P M —0 be its projective
cover sequence. Then we obtain the exact sequence of right A-lattices

0 - Hom (M, A)— Hom,,(P. A)— tr(M)—0,
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where tr(M) « Hom ,(Ker,, A) is the transpose of M. We denote the functor
(—)* = Homg(—, R) as dual, D(—). Then we obtain the exact sequence

0 - tr(M)* > Hom (P, A)* - Hom ,(M, A)* >0,
and
Dtr(M) = tr(My* = 1 (M) =217 (M)

is the kernel of the Auslander-Reiten sequence.
In order to compute the Auslander-Reiten sequence itsell, we apply
Hom (M, —), and get the exact sequence

0—Hom (M, 5 "(M))-»Hom (M, Hom (P, A)*) %
Hom (M, Hom (M, A)*) > Ext}(M, t;'(M))—0.

The image of ¢ is—up to natural isomorphism—given by Hom (M, M)*,
which turns out to be an injective lattice over End (M), and as such
has a unique minimal overmodule X. Then ¢(X) is the simple socle of
Ext}(M, 7, '(M)) as an End ,(M)-module. The Auslander-Reiten sequence of
M 1is then represented by an extension coming from this socle.

(2.5) Remarks. (i) One should note the difference of construction for
lattices over A and for modules over an artinian f-algebra UA: Let X be an
indecomposable nonprojective Y-module. Then we take the projective cover
sequence of X:

P,-P —-X-0,
and construct the exact sequence
0 — Homy (X, A) » Homy(P,, U)— Homy(P,. A) - try(X)—-0.
Then
Ty ' (X) = Hom,(try(X), f).

(1) By studying Auslander—Reiten sequences one obtains not only infor-
mation on the indecomposable A-lattices, but also on the interrelation between
them via irreducible maps. (Note that one of the main features of Auslan-
der-Reiten sequences is that if X is not projective (not injective) in ind ,9N°,
then 7,(X) (resp. 7,'(X)) is indecomposable.)

The study of Auslander—Reiten sequences has led to important results (just
t0 name some):

(2.6) THEOREM. (1) [S]. A4 is of finite lattice type if and only if for any
finitely presented functor

F: JR®— 9n°

the Jordan-Zassenhaus theorem holds.



462 K. W. ROGGENKAMP

(i) [Aul], [S]. 4 is of finite lattice type if and only if for every M € ,IM°, the
functor Hom ,(—, M) has a finite length, where Hom ,(—, M) is the quotient of
Hom ,(—, M) modute homomorphisms which factor via projective A-lattices.

(2.7) THEOREM [BBI1]. Let A be an order of finite lattice type and let
Meind MR° be nonprojective. If

O-t ' M) @DE,-M-0
i=1

is its Auslander-Reiten sequence, with E,cind (MM, thent < 4, and if t = 4, then
at least one of the E; must be a projective and injective A-lattice.

Proof. The proof of the above result by Brenner in [BB1] i1s formulated
for artinian algebras only; however, if one replaces the length function in the
artinian case by the rank over R in the case of lattices, it carries over to orders.

The Auslander—Reiten quiver of A is formed by “glueing together” various
Auslander—Reiten sequences. More precisely:

(2.8) DEFINITION. (i) Let M, N = ind ;M° Then
Irr(M, N) = rad Hom (M, N)/rad’Hom ,(M, N)

is called the bimodule of irreducible maps; it is an End ,(M)-End ,(N)-bimodule.
Since Irr(M, N) is an artinian module, we have the natural numbers

ay.y = length of Irr(M, N) as an End,(M)-module,
ay n = length of Irr(M, N) as an End ,(N)-module.

The Auslander—Reiten quiver W(A) of A has as vertices the isomorphism classes
in ind ;M°, and there exists a bi-valued arrow

[M] (am, N.aM . N). [N]

if Irr(M, N) # 0 and gy, v and «), y are defined as above. (Here rad Hom ,(M, N)
iIs to be understood as follows: We have the {unctors Hom (—, N) and
Hom ,(—, M) with radicals (the radical of a functor is the intersection of its
maximal subfunctors) rad Hom ,(—, N) and rad Hom ,(M, —), and the func-
torial description of Auslander—Reiten sequences shows that

[rad Hom ,(—, N)/rad*Hom ,(—, N)](M) ~
[rad Hom (M, —)/rad*Hom ,(M, —)](N).)
For brevity we write
rad(M, N)/rad’(M, N)

for the above isomorphic modules [Au2].
(i) Meind ,9M° . is said to be stable if for every neN
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M) =1,( (M) and 3" (M) =1 (1" V(M)

are defined, i.e. there are no projective or injective objects in the 7-orbit of M.
A (A) is the full subquiver of W (A) whose vertices are the isomorphism classes
of stable modules; A (A) is called the stable Auslander—Reiten quiver.

(iti) M eind MO is said to be periodic if it is not an injective A-lattice and
t"(M) ~ M for some neN.

It follows directly from the functorial description of Auslander-Reiten
sequences that Irr(M, N} are indeed the irreducible maps; in particular,
ay.x 1s—provided N is not projective — the number of times M occurs in the
Auslander—Reiten sequence of N, and a), » is—provided M is not an injective
A-lattice-the number of times N occurs in the Auslander- Reiten sequence of
7(M). If one has an Auslander-Reiten sequence

0 NZL @ EMY L M —0
then the {¥/,;}; <j<nq constitute a basis for Irr(N, E;) as an End ,(M)-module
and dually.

We point out one feature which distinguishes the Auslander—Reiten
quivers of orders ol finite type from those ol infinite type: In the finite
representation type case, any homomorphism between indecomposable objects
is a sum of compositions of irreducible maps.

(2.9) If one applies this to y,: M — M, multiplication by =, then there is
a path of irreducible maps from M to M; hence the Auslander-Reiten quiver of
an order is never flat. For irreducible maps between lattices we have the
following restriction:

(2.10) LeMMA. Let M, Neind ,MM° and ¥: M >N an irreducible map.
Then either

(i) Y is surjective, or
(i)  is injective and Coker  is torsion-free, ie. M ~ KMy N, or
(1) ¥ is @ monomorphism onto a maximal submodule.

This follows immediately from the definition of irreducible maps and holds
equally well for F(), the torsion-free A-modules.

In the artinian case, since an irreducible map is either a strict monomor-
phism or a strict epimorphism, there cannot be an irreducible map : X - X.
Because of the possibility (iii) this cannot be ruled out in the case of lattices —it
occurs for maximal orders. For the Auslander-Reiten quiver this means that
there is a loop of length one. Since many of the arguments in the artinian case
depend strongly on the nonexistence of such loops, it is necessary to find out
when orders do have loops in their Auslander-Reiten quiver. This was
a question posed to me by M. Auslander around 1976. The answer was given
by A. Wiedemann in his 1980 thesis.
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(2.11) THEOREM [Wi 4]. Let A be a two-sidedly indecomposable R-order.
Then the following statements are equivalent:

(i) There is Meind M° and an irreducible map . M — M.
(1) The Auslander—Reiten quiver of A has the following form:

Cecez2e...020
1 2 3 -1 t

If R/n-R is a finite field, then

(i) A is Morita equivalent to a Bass order I' of the following form [R1, IX,
6.17]: T is a Bass order in the separable skew field D with maximal order Q and
Qfrad Q ~ I'/rad '], £ = 0. or I is maximal.

The proof is based on the lemma of Harada-Sai and uses

(2.12) THEOREM [Wid]. Assume A is two-sidedly indecomposable. Let 4 be
a connected component of W(A ) and assume that the R-ranks of the A-lattices in
A are bounded. Then A is of finite lartice type and A = A(A).

This is known as the first Brauer—Thrall conjecture.

(2.13) Remarks. (i) An important application of (2.12) is the [ollowing:
Assume one has a two-sidedly indecomposable order A and by some technique
one has constructed a f{inite number of indecomposable A-lattices which
constitute a connected component of the Auslander—Reiten quiver. Then (2.12)
implies that one has found all indecomposable A-lattices.

(i) The second Brauer-Thrall conjecture asserts that, provided R/n-R is
infinite and A is of infinite type, there are infinitely many integers n, such that
for each n, there are infinitely many indecomposable A-lattices of rank n,. This
was verified in [RR1] provided the second Brauer-Thrall conjecture holds in
the artinian category € (§ 3.1)—which was proved in [NR].

(m1) It i1s surprising to me that loops in the Auslander-Reiten quiver can
only occur in the case of finite lattice type, and morcover, that one can give an
explicit description of the orders with loops in their Auslander- Reiten quiver.

(1v) The result of (2.11) allows us to use the results of Riedtmann [Ril-2]
in the version of Happel-Preiser- Ringel to get the structure of connected
components of the stable Auslander-Reiten quiver containing a periodic
vertex.

In order to do so we have to introduce a considerable amount of notation:

(2.14) DerFiNiTIONs [HPR]. (1) A quiver I = (I, ') consists of the set of
vertices Iy and the set of arrows I',. We shall always assume that I does not
have loops or doublt arrows. If xe "y is a vertex, then we denote by x ™ the set
of starting points of arrows with endpoint x, and similarly for x~. If for all x,
the sets x* and x~ are finite, the quiver I is said to be locally finite.

(i) A Riedtmann quiver 4 = (I, I',, 1) is a quiver (I',, I',) together with
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an injective function
©: I'o—Ty,

defined on a subset I'y of I'y, satisfying (tx)” = x* [BG].

So given an arrow «: x — y there exists a unique arrow y— 7x; this arrow
will be denoted by oa. A Riedtmann quiver 4 is called stable provided 7 is
defined on all of I, and is also surjective. Any Riedtmann quiver has a unique
maximal stable subquiver. A vertex xeI'y will be called periodic if t"(x) = x for
some neN.

(ni) For a quver (I'y, I,), a function a: I'y—»NxN will be called
a valuation and I = (I'y, I'y, a) a valued quiver. The image of a: x —y will be
denoted by (a,, a;) or (ay,, a.,). A valued Riedtmann quiver is a Riedtmann
quiver (I'y, I'y, 1) together with a valuation a for (I'y, I'y) such that a, = a,
a,, = a, for all &z y—x with xeTI'y. This valued Riedtmann quiver will be
denoted by 4 =(I"y, I'y, 7, a).

Ifnow I' =(I'y, I',, a) is a valued tree, then on ZI' = Z x I' a valuation is
defined by

! I3 /
Ana) = 4y = Qg(na)»  Ana) = da = Ag(n,a)-

This way ZI' becomes a valued Riedtmann quiver ZI' = Z(I'y, I',, a).

(2.15) TueoreMm ([Ril-2], [HPR]). Given any stable valued Riedtmann
quiver A with a periodic vertex, there is a valued oriented tree I' and a group
G of automorphisms of ZI' such that A is isomorphic to ZI'/G. Moreover, I is
uniquely determined by A. It is called the tree class of A.

Note that this result depends heavily on the fact that 4 has no loops.

(2.16) DeFINITION. Let 4 be a stable valued Riedtmann quiver,
4=(l,, I'y, a, 7). A subadditive function on 4 is a function f: I'y — N satisfying

S)+f(x) 2 ¥ f()ay.

yext

f is said to be additive provided we always have equality. We say that f is
periodic with respect to t il for every x there exists neN such that

J(x) = f(Z"x).

The following theorem was proved by Happel-Preiser—Ringel for connec-
ted stable Riedtmann quivers having a periodic vertex. Webb [Wel-2] has
noted —for his applications to group rings—that the result also holds for
periodic functions.

(2.17) Tueorem ({HPR], [Wel-2]). Let A be a stable valued Riedtmann
quiver which is locally finite and connected. Assume there is a subadditive
function [ on A which is periodic with respect to T.

30 - Banach Center t. 26, cz. |
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(1) The tree class of A is either a Dynkin diagram, or ¢ Euclidean diagram,
or one of A, AZ, B, C,, D, (cf. the list in Fig. 8).

(1) If fis not additive, then the tree class of A is a Dynkin diagram or A .

(1) If [ is unbounded, then the tree class of A is A,.

(2.18) The above-mentioned diagrams are illustrated in Fig. 8.

(i) A, o—e—o . o—eo—e
Ee o—o—I——o—o

(1,2)
8, e—e—e...0—0—o
£y O—O—I—O—O—C
(2,1
Ch o—o—o...0—o—0
Eg O—O—I—Q—O—Q——.
* (1,2)
O, —=e...0—0—¢ £, o R
'Y
1,3)
G; e—e
(i) -
Ap
g “1‘,‘) AT (2,2)
. (1,2) (2,1) . Ay e—e 2 e
5,
~ {1,2) {1,2)
- (2,1 {1,2) B, e—e—¢. . . 0—o—»
Ch o—eo—o . . 0—o—o
. ° ~ * 2,1
o, *——=eo...0—8 80, e—o...0—0
[ ] ° L]

[ ]
£ o—o—o—I—o—o—o ) (12)
Fuy '
£y ’_'—I_*— o —— . (2,1}
Fiz
_ (1,3)
G, o—eo—e
(i) 4, o—eo—e...0—so ...
. (3,1)
{1,2) G2z

B o&—o-—0,,.0—0

(2,1)

Cw &—0—o. . .0—0 . .
°

D, —e. .. 00— .
®

Fig. 8. (i) Dynkin diagrams, (ii) Euclidean diagrams,
Ae ...0—e—0 .. (iii) infinite diagrams
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Using this and (2.11) one obtains

(2.19) TueoreM ([HPR], [Ril-2], [Wi4]). Let A be an R-order which is
two-sidedly indecomposable, and A a connected component of the stable
Auslander—Reiten quiver U (A), containing a periodic vertex.

(i) If A4 is finite, then either A =L, =CesSese...e5 e (n vertices),
or A=2ZI'/G and I'—i.e. the tree type of A—is a Dynkin diagram.

() If A is infinite, then I' = A .

Moreover, all Dynkin diagrams and L, do occur.

At the end of this section we turn to preprojective partitions, a concept
which is motivated by the study of artinian algebras. Let S = {I', f;, X} be
a f-species [DIRi] and let N be the tensor algebra of S over f. Then there is
a natural notion of preprojective and preinjective 2l-modules: the 2-modules
lying in the same connected component —in this case all projectives lie in one
connected component —as the projective (injective) W-modules. The simple-
minded generalization to arbitrary f-algebras does not make sense, since in
general projective 2-modules (injective A-modules) lie in different components.
The natural generalization from the tensor algebras of species to arbitrary
f-algebras was given by Auslander-Smale [AS2] and their results have
a natural generalization to orders. (The idea of all this goes back to the proof of
the first Brauer-Thrall conjecture for artinian algebras [NR].)

So we start again with definitions:

(2.20) DeriNITIONS. (i) Let D be a subcategory of ,JR° a cover € of D is
a subcategory € < ind ,9R® such that for every De D there exists a surjective
map

t
®C*->D, C(,eC.
i=1
A minimal cover 1s a cover in which no lattice is superfluous. (If such a minimal
cover exists, it is unique.)
(ii) A preprojective partition of ,MM° is a sequence of subcategories P,
P,,...,P, 0 <i< oo, such that
(2) ind ,IM° = UiBOPi'
(B) P, is a finite minimal cover for | J;»;P;.
(iii) Lattices in add(| Ji<. P;) are called preprojective, where add(—)
denotes the additive category generated by (—) [AS34]. '

The dual notions are those of a preinjective partition and of preinjective
lattices.

The crucial point in this is the word “finite” in (f).

(2.21) TueoreM [AS2]. ,M® has a preprojective partition. And it also has
a preinjective partition, which is dual to the preprojective partition.
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The importance of these preprojective (preinjective) partitions is shown by
the next result.

(2.22) THEOREM [AS2-3]. (i) P, = O for some i < oo if and only if A is of
finite lattice type.

() P, =9 if and only if A is of finite lattice type.

(i) If P, # 9, then it does not have a finite minimal cover.

§ 3. Finite type orders and their Auslander—Reiten quivers.
Auslander—Reiten quivers of orders as Auslander—Reiten quivers
of certain artinian module categories
(The classical situation)

In this section let A be an order with associated hereditary order I (cf. § 1C).

As in (1.10) we put D = [sg ”3“], where ™ = A/(radI')" and B = I'/(rad I')"

and (radIN)" < A. The D-modules will be represented as triples l:g, ¢], where
UemodUA, VemodB and ¢: BR®yV—U 1s B-linear.

(3.1) DeFiNiTION. The full subcategory €(D) of modD is defined as
follows: The objects are those D-modules [g, qa] where U is B-projective, ¢ 1s

surjective and ¢lyg, is injective. (If it is clear from the context, we shall
omit ¢.)

We shall denote the nonisomorphic TI-lattices by Q,,1 <i<s. The
permutation of I is defined as [ollows: Since I' is hereditary, Q, is an injective
I'-lattice and hence has a unique minimal overmodule @ which is also
I'-projective, and hence Q;” ~ Q,,. Then ¢ is a permutation on {1, ..., s}.

The next result, which was independently obtained by E. Green and 1
Reiner [GR] and [RR1], gives the connection between ,M° and mod D.

(3.2) THEOREM. Let (A, I') and © be as above. Then the functor §:
LIM° - E(D), induced by

M_»[I"-M/I-M

M/I-M ], where I = (radI')",

is a representation equivalence.

(3.3) THeoreM [R19]. €(D) has enough Extgp-projective and Extgp,-in-
jective objects.

(1) The indecomposable Extgs,-projective objects are:
(@) &(P) for P an indecomposable projective A-lattice,
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(b) F(t(Q)), 1 <i<s, where
0-Q,—~E-1(Q)—~0

is an almost split sequence in ,M°, provided Q, is not an injective A-lattice.
(ii) The indecomposable Extg s, -injective objects are.
(@) &(J) for J an indecomposable injective A-lattice,

(b) §Q), 1 i<

(3.4) THeoreM [R19]. (D) has almost split sequences, and the Aus-
lander—Reiten quivers of ,M° and of €(D) are the same up to the Auslan-
der-Reiten translation: The Auslander-Reiten quiver A(€(D)) is obtained from
that of ,IR° by omitting the translation between Q; and t(Q), 1 <i<s.

(3.5) Remark. The crucial connection between (€(D)) and W(,IN%) is
given through the following

LEMMATA. 1. Let M, Neind A and let ¢: M — N be an irreducible map. If
F(@) = 0, then M is a I'-lattice; moreover, M is a direct summand of both rad /N
and I-N.

2. Let 0 M’ — M & M” -0 be an almost split sequence in M°. Then F(P)
is right almost split, i.e. §(P) is surjective but not split, and every nonsplit map v:

X - JFM"”) factors via F(p).

3. Let €:0 > M' > M — M"” —0 be an almost split sequence in ,JN°. If M’ is

not a I-lattice, then §(€) is an almost split sequence in €(D).

This shows the close relation between U(,M°) and A(E(D)). I would like
to point out that S. Smale has shown abstractly —without using orders —that
€ (D) has almost split sequences [Sm].

Auslander—Reiten quivers of subhereditary orders (classical and nonclassical)

We shall state the results in this section not only for classical orders
[RR1-2], but in the following more general situation [R2]:

Let R be a commutative noetherian complete local domain with field of
quotients K and let 4 be a finite-dimensional —not necessarily semisimple —
K-algebra. An R-order A in A is a subring of 4 containing the same identity as
A such that

(i) A is finitely generated as an R-module,
(i) K-4 =4, ie. A contains a K-basis for A.

Given two orders A < I" we shall consider the full subcategory (I of
the category of left A-modules with

ob(,M°(I')) = {X = R-torsion-free finitely generated left A-module
with I'-X projective over ['}.
Note. We identify K® X = K-X = A-X, X being R-torsion-free, and
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hence we can form I'-X inside A-X; however, one should observe that
I'-X is in general different from I'® ,X; as a matter of fact, I'- X is the
quotient of I'® ,X modulo its R-torsion submodule; note also that the
latter i1s a I'-submodule. One sees this by considering the natural map
re,X-r@, K-X =~ K-X, induced by the inclusion X — K- X. In particular,
every A-homomorphism in ,MM°(I') between X and Y gives rise to a I'-homo-
morphism between I'- X and I'- Y. Conceptually one can view X as a form of the
projective I'-module I'- X. It should be noted that this concept can be applied in
the more general situation of any ring I and a subring A if one considers only
those left A-modules which are A-submodules of a free I'-module.

Without loss of generality we can always assume that A is indecomposable
as a ring.

(3.6) Remarks. 1) In the classical situation, where R is a Dedekind
domain and A is separable, A is any R-order in 4 and I is a hereditary R-order
containing A, ;M°(I) is just the category of all A-lattices.

2) In the algebraic-geometric situation, where R is a regular and A is the
local ring of dimension d of an isolated singularity, I" is the normalization of
A and ,M®(I') contains just the A-modules X which become projective when
extended to I, i.e. I'-X is I'-projective. (The same applies if I' is any ring
between A and its normalization.)

Choose now a two-sided A-ideal I such that

(1)) I is also a two-sided I'-ideal,
(i) I = rad A.

We observe that then automatically I < radrl". In fact, I = radA and so I is
nilpotent modulo radR-4 cradR‘T' cradrl, ie. [ cradrl.

With this notation we put
U=4/I, B=TI/I

Then A and B are finitely generated algebras over the commutative local ring
R = R/(RnI). Moreover, the inclusion A — I' induces an R-algebra injection
A - B, and we identify A with a subring of B. We now construct the pair
category €° as follows: An object consists of a finitely generated left A-module
U and a finitely generated projective left B-module V together with an
A-monomorphism o: U —V such that

B:-Imag = V.
Morphisms in €° are commutative diagrams
Uusvy

= s
U’LV,

where a is U-linear and B is B-linear.
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It should be noted that €° can be identified with a certain category of
finitely generated modules over the artinian algebra

(23]

We now construct a natural functor
& AWIO(F)—»(EO, M-M/I-M>T-M/I-M,

where ¢ is induced by the inclusion # M->TI-M.

Moreover, if «,: M — M’ is a A-homomorphism in ,MM°(I'), then it induces
a I'-homomorphism f,: I''M - I'-M' rendering the following diagram com-
mutative:

M->TI-M
all lﬁl
M->T-M
Hence we obtain a morphism in €°
M/I-M->T-M/I-M
2} s
M/I'M—->T-M/I-M'

It should be noted that I'-M/I-M is B-projective, I'-M being I'-projective.
Moreover,

B-(M/I- M) = (I'/D)-(M/I-M) = " M/I'M.

(3.7) THEOREM [R2]. The functor & induces a representation equivalence
between ,M°(I") and §°; in particular, & induces a bijection between the
indecomposable objects in ,M°(I') and in C°.

(3.8) Remark. The essential and important point of the theorem is that it
allows one to compare the lattices in ,M°(F) with the finitely generated
modules in €° which are modules over the artinian algebra D.

(3.9) Remark. The above situation is most transparent if I = radr, ie. if we
have the inclusions

radlrcraddc Ac .

We shall assume this from now on. In this case B is semisimple over f = R/rad R
and U is a finite-dimensional f-algebra. Thus, if we consider the algebra

B ‘B
D =
o a)
then D has a projective socle. We denote by €(D) the full subcategory of
finitely generated left D-modules which have a projective socle. Then we have:
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(3.10) LEMMA. Let S, ..., S, be all the simple nonisomorphic B-modules.
Then

ob(€%) = {UeC®(D): U has no simple direct summand}.

The f-algebras D that arise in the above construction can be easily
described as follows:

(3.11) LemMMA. A Y-algebra D, is Morita equivalent to an algebra

D= I'/radl’ I'/radT”
B 0 Afradl

for R-orders A, I' with
radlFcAcrl

if and only if D, has a projective left socle, and no simple ring direct factor.

Note. In [RR2], a necessary and sufficient condition is given for the
category €(D) to have finitely many indecomposable objects provided D is the
tensor algebra of a multivalued oriented graph [DIRi], in particular D is
a hereditary algebra. In this case A is called a generalized Bickstrom order
[R16], the representation theory of which is well understood and will be
treated later.

Irreducible maps, almost split sequences and Auslander—Reiten quivers are
defined in analogy to the definitions in § 2.

We first turn to (D), where D has a left-projective socle. For a finitely
generated left D-module M we denote by tM the maximal submodule whose
socle has no projective submodule, and put fM = M/tM. The modules tM are
the torsion modules in a hereditary torsion theory [St]. The category 6(D) has
almost split sequences as was observed in [AS1] and [R6]. In [R16] the
following result of C. M. Ringel and the author was proved:

(3.12) THEOREM. If D is left socle projective, then &(D) has almost split
sequences, which are constructed as follows: Given X indecomposable in (D)
which is not an injective D-module.

(1) X is Ext-injective in C(D) if and only if in the almost split sequence for
X in the category of all finitely generated left D-modules
E: 0-X->Y-72-0
we have fZ = 0.
(ii) If X is not Ext-injective in €(D), then
0-X->¥Y1Z- fZ-0

is an almost split sequence in € (D).



REPRESENTATIONS OF ORDERS 473

We now turn to ,MM°(I). For arbitrary R it is not known whether (I
has almost split sequences, except in the following situations:

1. R is Dedekind and I' hereditary [R6], i.e. the classical situtation.

2. A is the coordinate ring of an isolated singularity (M. Auslander [Au3]
has shown that in this case the category of Cohen—-Macaulay modules has
almost split sequences, but our category is different. The existence in the second
case was proved in [R2].)

Because of the connection between irreducible maps and almost split
sequences we shall have a close look at irreducible maps and our functor §:
N - E€(D) (as introduced above).

(3.13) LEMMA. Let ¢: M — N be a map between indecomposable modules in

NN, Assume F(p) # 0. If F(e) is irreducible in €(D), then ¢ itself is
irreducible.

For Me R°® we define the size of M, sz(M), to be the number of
composition factors of K-M as an A-module.

(3.14) THEOREM (BRAUER-THRALL 13). Let A be a connected component of
the Auslander—Reiten gquiver U(,MO(T)) of ,M(I') such that:

(1) The vertices of A4 have bounded size, i.e. the sizes of the modules in
A have a uniform bound.

(i) F(A4) contains at least one module for each ring direct factor of D.

Then:

(@) A M) = 4.

(B) A(,IM(I)) is finite, i.e. ;MO(I) has only finitely many indecomposable
lattices.

(3.15) Remarks. (1) The hypothesis (ii) is satisfied if, for example, 4 con-
tains all indecomposable projective A-lattices or if 4 contains all indecom-
posable projective I'-lattices.

(2) The hypothesis (ii) is superfluous if dimR = 1 and I is hereditary in
a separable algebra A, since in this case ,IM°(I) is the category of all A-lattices,
and then one knows the result.

(3) It is likely that the hypothesis (ii) is superfluous in general (cf. [R2]).

In order to discuss the irreducible maps ¢ in ,9M°(I') we have to restrict
the morphisms in ,IMM°(I) considerably; since we are mainly interested in
indecomposable objects, this is not a severe restriction.

(3.16) DEFINITION. ,IM°(T",) has the same objects as ,IR°(I'), but we allow
only morphisms ¢: M - N, M, N eob(,IM°(I)), such that I'-Im ¢ is I'-projec-
tive.

(3.17) Remarks. (1) We still have a representation equivalence between
IMO(r)) and €°.
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(2) Lemma 3 carries over to ,MM°(T"), and consequently Theorem (3.14)
holds in R°(T).

(3) In the classical situation, where dimR =1 and [ is hereditary,
MOy = IRer,). '

(3.18) LEMMA. Let ¢: M — N be an irreducible morphism between indecom-
posable objects in MO(). If F(w)=0, then I''M is an indecomposable
projective I-lattice, and N is A-projective. (The converse is trivially true.)

In this general situation, I cannot say anything in case ¢ is irreducible in
AN (M) and F(p) £ 0. 1 would need Lemma 4 for IN° (that the
morphism sets in ,9°(I",) form abelian groups). However, Lemma 4 does not
hold in ,M°(I') and the morphism sets in R°(I",) do not form abelian groups
in general. The remedy is to turn to the classical situation:

(3.19) LeMMA. Let dimR =1 and assume that I is hereditary and A is
semisimple. Let ¢: M — N be an irreducible map between indecomposables in
LD If §(@) # 0, then F(¢) is irreducible in €(D).

in the classical situation of generalized Backstrom orders, the predecessors
of an indecomposable I'-lattice Q in the Auslander—Reiten quiver must be
injective A-lattices, and the successors of Q are projective A-lattices [R16].

It is surprising that this result also holds in the very general situation
considered here, for the successors.

(3.20) Lemma. In IR let @: Q— M be an irreducible map with Q an
indecomposable projective I-lattice and M indecomposable in ,IM°(I'). Then
M is a projective A-lattice.

I can only prove the corresponding statement for the predecessors under
additional assumptions.

(3.21) LemMa. Assume that IR®(I') has left almost split sequences. (This is
surely so if dim R = | and I is hereditary.) If Q is an indecomposable projective
I-lattice and M € MO(I) is indecomposable with an irreducible map ¢: M — Q,
then M is an Ext-injective object in ,M°(T).

Note. The lemma actually only needs ¥(¢) to be irreducible.
We assume henceforth that R is one-dimensional, that A is separable and that
A, I' are R-orders in A with I' hereditary, such that
radFreAcT,

1e. A is a subhereditary order.

In that case ,MM°(I) = IO is just the category of all left A-lattices. And so
the Auslander-Reiten quiver A(A) = U(, M%) of all A-lattices carries an
additional structure, namely the partially defined translation coming from
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almost split sequences, together with a valuation on the arrows. The same
holds for A(E(D)) (for details we refer to [R16]). The structures of the
Auslander-Reiten quivers 2(A) and (E(T)) are intimately related.

Let us recall the definition of the permutation associated to a hereditary
order I (cf. (3.1) above). Let {Q}; <;<m be the nonisomorphic indecomposable
I'-lattices. Since I' is hereditary, they are at the same time injective I'-lattices;
thus Q, has a unique minimal overlattice S(Q;), which is again a projective
I'-lattice, and hence

S(Q2) = Qu)
for some o(i)e{l,...,m}. This map ¢: {I,...,m}—>{1,...,m} is a per-

mutation, called the permutation of I.

(3.22) THEOREM. (i) If M and N are indecomposable A-lattices, and M is
not a I'-lattice, then we have for the spaces of irreducible maps

Trr (M, N) ~ Irrg o, (§(M), F(N)).

() If M is a I-lattice, say M = Q,, then for an indecomposable projective
A-lattice P

Irr,(Q;, P) ~ Irrt[(!D)(Qa(i)/radFQa(i)a TS‘(P))

(i1) The Auslander—Reiten quiver of A is obtained from that of €(D) by
identifying the injective D-module

| Qi/rad;Q;
* L Qy/rad,Q,

with the simple projective D-module

- I:Qau)/ raera“)jl
aliy = 0 .

(3.23) DerFINITIONS. (1) Let A be an R-order in A4, and let Q,, ..., Q, be
those indecomposable A-lattices which have only projective /-lattices as
successors (equivalently, have only injective predecessors in 2(A)). Denote by
® the full additive subcategory of ,IM° generated by {Q.}, <:<s.

(i) Let & be the following category: the indecomposable objects are the
indecomposable A-lattices not in ®, and for each indecomposable Qe ®, we
introduce new objects 0* and Q.

For X and Y indecomposable A-lattices not in & we put

K(X, Y) = Hom (X, Y)/6(X, Y),

where (X, Y) is the group of A-homomorphisms factoring via an object in &.
Moreover, in addition we put

K(Q", Y) = Hom,(Q, Y)/rade«(Q, Y),
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K(X, Q") = Hom (X, Q)/radg(X, Q),
R(Q", Qo) = rade(Q, Qo)/radi(Q, Qo),
RO, X)=R(X, Q") =0,

where X, Y are indecomposable objects but X # Qg and Y # Qy for
indecomposable objects @, 0, € 6. Here rad( , ) are maps which factor via the
radical in ®.

(3.24) Remark. 1t should be noted that in case A i1s a subhereditary order,
R is just the category €(D), which is by the above definition characterized
internally.

We next define the separated Auslander-Reiten quiver of A.

(3.25) DEeFINITION. The separated Auslander—Reiten quiver of A, U (A), has
as vertices:

(i) the indecomposable A-lattices which are not in &,
(ii) for each Q,e®, two new vertices [Q;"] and [Q;].

The spaces of irreducible maps between two vertices [X] and [Y] are:

(1) Trr,(X, Y) if X and Y are indecomposable A-lattices not in ®,
(ll) Irrws(d)(X, Q,’+) = 0, Irrws(,ﬂ(Qf—, Y) = 0,
(iii) Irryss)(Qi", X) = Irr(Q;, X), Trrgsy(¥, Q7) = Irr ((Y, Q).

(3.26) THEOREM. For an R-order A of finite lattice type, the following are
equivalent:

(1) Every oriented cycle in W(A) passes through a lattice in ®.
(i) A is subhereditary and U(C(D)) has preprojective components. In this
case & has almost split sequences and U(K) = A(E(D)).

If A satisfies one of these equivalent conditions, we shall call A an almost
directed order.

(3.37) Remark. Condition (i) cannot be replaced by the condition that
every Auslander—Reiten orbit contains a projective A-lattice or an object in ®.

The almost directed orders seem to be the analog for integral represen-
tations to the simply connected artinian algebras. The above theorem shows
that these give rise to simply connected socle projective categories for D.
However, for D the I'-lattices Q; (in K) become projective. If one wants to copy
some of the results from the artinian situation to subhereditary orders, one has
to develop a relative homological algebra for A-lattices (A is subhereditary for
I'), where also the I-lattices are made A-projective.

Auslander—Reiten quivers of Bickstrom orders

In this section A is a generalized Backstrom order with associated
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B ;B
hereditary order I (cf. § 1D, F). As in (1.10) we put D = [ 0 BQI%]’ where
UA = A/radI” and B = I'/radI'". Then D is a hereditary f-algebra. As above we
put

€(D) = {X emod D: socy X is projective},
C%(D) = {Xe€(D): X has no simple direct summand}.
We also have the functor from (3.2), &: ,M°—>CE%D), induced by

M I“-M/(radl")-M:I
“l MfradryM |

Before we deal with the generalized Béckstrom orders let us look at the
category (D). We assume now that D is the t-tensor algebra of a valued
oriented graph T with modulation over f [DIRi]. Before we can give
a necessary and sufficient condition for n(€(D))—the number of indecom-
posable objects in €(D)— to be finite, we have to introduce some more notation:

(3.28) A valued oriented graph T is said to be contractible if there exists
a pair of vertices @ and b linked by an arrow a‘***>b with valuation (1, 1) in
such a way that the graph obtained from T by removing the edge between
a and b is the disjoint union of a graph T, and a graph T,, such that a is
a source in T, and T, is a Dynkin diagram of type A4, such that b is a source in
T,. We then say that T is l-step contractible to the graph T,-,, which is
obtained by identifying a with b. We say that T is contractible to T’ provided
T’ can be reached from T by a finite number of 1-step contractions.

(3.29) THEOREM [R16-17]. n(€(D)) is finite if and only if T can be
contracted to a finite number of Dynkin diagrams.

If T is a Dynkin diagram, then the Auslander—Reiten quiver of C(D) is
simply connected, and every indecomposable object in €(D) is obtained as an
iterated Auslander—Reiten translate—to the right —starting with the indecom-
posable projectives (these lie in €(D)).

Recall from (3.12) how the almost split sequences in €(D) are constructed
from those in mod D. Since the latter can be constructed algorithmically, the
Auslander—Reiten quiver of €(D) is known in the case of finite type. However,
one can give a purely combinatorial description of the Auslander—Reiten
quiver of €(D) without going first to the Auslander—Reiten quiver of mod D,
provided there are only finitely many indecomposables in (D). Let T be
a valued oriented tree. Then we define the disturbed additive function of T

fri LT -1

as follows:
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(3.30) Let ZT be the translation quiver of T in the sense of Riedtmann
[Ri13]. The vertices of ZT are labelled (n, i), neZ, i a vertex of T. We view T as
embedded in ZT via (0, i). By T we denote the translation on ZT defined as t:
(n, H—>(n+1,10). Let

Jrn, =0 1f n<O.

Il i,,...,i are the sources of T, then we put
fr0,i)=1.
For the other points of T we define f; inductively. So let j be a vertex in
T which is not a source, and assume that f,(0, i) is defined for all i which have
an arrow in T to j, i—=j. Then we put
fr0, )= 3 f7(0, ).

ij
This defines f; on T. On the rest of ZT we define f; inductively. Let (n, i) be
a vertex in ZT with n > 1 and assume that f; is defined on all (m, j) such that
there is an arrow from (m. j) to (n, i); moreover, we also assume that f; is
defined on (n—1,i). We then put

fT(n’ l)‘__( Z fT('n’j)—fT(n_la l)) lf fT(n_ls l)>0,

(m,j)—(n,i)
Srin, ) =0 if fr(n—1,9)=0.

(3.31) THEOREM [R16]. Let T be a connected valued oriented tree. Then
the following conditions are equivalent:

(i) n(€(D)) is finite.

(i) T can be contracted to a Dynkin diagram.

(iii) The disturbed additive function f; has finite support on LT

Moreover, if any of these conditions is satisfied, then {(n, i): fr(n, i) # 0}
together with the arrows in ZT is the Auslander—Reiten quiver of C(D). If (n, i)

corresponds to VeQ(D), then fr(n, i) is the number of simple modules in the
socle of V.

Auslander—Reiten quivers of Gorenstein orders

In this section let A be a Gorenstein order (cf. § 1H) which is indecom-
posable as a ring. Since projective A-lattices are at the same time injective
A-lattices and conversely, every Meind A which is not bijective (i.e. not
injective and projective) is stable in the Auslander-Reiten quiver (A) (cf. (2.8,
i1)). The stable Auslander-Reiten quiver 2_(A) has an isolated point if and only
if A is a Bédckstrom order with associated graph a disjoint union of Dynkin
diagrams of type A,, A, or B,. These cases were treated in connection with
Backstrom orders. If 2 (A) has no isolated point, then A is of finite lattice type
if and only if the tree type of U (A) is a Dynkin diagram or L, (cf. (2.29), [R20]).
Moreover, all these types do occur.
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Assume from now on that A is of finite lattice type. Then the stable
Auslander-Reiten quiver U (A) is known by the above remark, and we may
assume that U (A) is connected. Thus, in order to describe U(A), one has to
find the positions in W (A) where the indecomposable bijective A-lattices B,
1 € i< s, have to be added to 2 (A). These positions are called the configuration
points. We know that in U (A) the only irreducible maps to B; come from the
indecomposable direct summands of rad,B;, and the only irreducible maps
leaving B; go to the indecomposable direct summands of B;, the unique
minimal overmodule of B;. In view of (2.11) we may assume that U (A) does
not have loops. Then the tree type of U (A) is a Dynkin diagram.

A. Wiedemann [Wi7] has developed a covering theory for the Auslan-
der-Reiten quiver of an order—this differs considerably from that for the
artinian algebras (cf. the remark following (2.8)). Using this he was able to
describe all possible configurations in U (A), provided 2 (A) has tree class A,
or D,. Moreover, for each such configuration he has explicitly constructed
a Gorenstein order which has this stable Auslander-Reiten quiver and the
corresponding configuration pomts.

In his master thesis Hummel [Hu] has—with the help of a com-
puter —determined all possible configurations in case U (A) has tree class E,
E, or Eg. Up to trivial isomorphisms, there are

11 configurations in the case of Eg,
44 configurations in the case of E,,
138 configurations in the case of Ej.

In each case Hummel has constructed Gorenstein orders with the correspond-
ing Auslander—Reiten quiver.

These results determine completely the Auslander—Reiten quivers of
Gorenstein orders of finite lattice type except in case the tree class of A (A) is
B,, C,, F, and G,. Note, however, that these cases cannot occur if for example
R is the ring of formal power series over an algebraically closed field.

Simple curve sigularities

The complete local ring of a plane simple curve singularity can be viewed as
a commutative Gorenstein order over the power series ring in one variable
over the complex numbers. More precisely, let 1 # G be a finite subgroup of
S1(2, C). Then G acts linearly on the power series ring C[U, V]. Let 4 be the
subring of fixed points; then A has 3 generators X, Y and Z, with the unique
relation f(X, Y)+Z2 The equation f(X, Y)+Z? = 0 defines in the neigh-
bourhood of the origin a surface with an isolated singularity at the origin. The
singularities occurring this way are called rational double points or Kleinian
singularities. The resolution graphs of these singularities are the Dynkin
diagrams A4,, D,, E, E; and E4 | Br]. The intersection of such a surface with
the plane Z = 0 is then a reduced plane curve singularity in the sense of Arnol’d
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[Ar]. Greuel and Knérrer [GK] have characterized the Kleinian singularities
among the reduced plane curve singularities as follows:

THEOREM. The complete local ring I' of a reduced plane curve singularity
has finitely many nonisomorphic torsion-free modules of rank 1 if and only if
r~C[X, YJ{f(X, Y)), where f(X, Y)+Z? defines a Kleinian singularity.

It turns out that in the case of a Kleinian singularity the order I' is of finite
lattice type [Au5], and Wiedemann [Wi3] has proved:

(3.32) THEOREM. Let A be a local commutative R-order of finite lattice type
such that the stable Auslander—Reiten quiver U (A) has tree class A,, D,, Eq, E,
or Eg. Then the Auslander—Reiten quiver W(A) coincides with the Auslan-
der—Reiten quiver of the category of lattices over the complete local ring of

a simple curve singularity given by one of the equations f(X, Y) = O in the table
below.

Type of the corresponding double point

Tree class of A () with defining polynomial f(X, Y)

1 A, A, X*4+y?

2 Ay A, X4 y*

3 D,, m>4 A, _, Xityi?
4 Ay mz1 4,  XPyym
5 D, n>=4, n even D, X2Y+Yy"t
6 Ay 5, 25 n odd D, Xy+y!
7 E, E, X +y*

8 E, E, X+ Xxy*
9 Eg E xX3+v3

(3.33) Remarks. 1) There seems to be some overlap. This is not so, since
U (A) with tree class 4 is of the form ZA4/a, where o is an admissible
automorphism in the sense of Riedtmann [Ril], and the overlap comes from
the fact that these cases differ by a.

2) The discrepancy between the type of the Kleinian singularity and the
tree type of the stable Auslander—Reiten quiver in cases 3 and 6 is explained by
Dieterich and Wiedemann [DW], where the Auslander—Reiten quivers are
described differently, so that they match the type of the singularity. In fact, their
description is the one via the McKay graphs.

Group rings

In this section let G be a finite group and let R be an unramified extension
of Zp. A block of RG is an indecomposable 2-sided direct summand of RG.
With each block B one can associate a conjugacy class of p-subgroups of G,
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called the defect group of B. This defect group plays the same role for B as does
the Sylow p-subgroup for the whole group ring (for details we refer to [R8]).
The general result on the finite lattice type of blocks is the [ollowing:

(3.34) THEOREM. Let B be a block of RG with defect group D. Then B is of
finite lattice type if and only if D is cyclic of order p or p*.

Historically, E. F. Diederichsen [Dd] showed in 1940 that Z,, C,. C, the
cyclic group of order n, has 3 nonisomorphic indecomposable representations.
In 1963 A. Heller and 1. Reiner [HR] proved that for a p-group P, ZPP is of
finite lattice type if and only if P is cyclic of order p or p% In the latter case
there are 4p+1 indecomposable representations, which they list explicitly.
With D. G. Higman’s theory of relative projective representations [Hi] it then
follows that RG is of finite lattice type if and only if the Sylow p-subgroup of
G is cyclic of order p or p2. It was folklore that the corresponding result holds
for blocks. This was proved by Ch. Bessenrodt [Bel-2] and in [R8].

For the description of the lattices in a block of finite lattice type one has:

(3.35) THEOREM. Let B a block of defect p. If B has e nonisomorphic
indecomposable projective lattices, then B has 3e nonisomorphic indecomposable
representations.

In case D = C(D), the centralizer of the defect group D, the result was
proved by J. A. Green [G2] in 1974. The general result—including the
structure of B—was obtained independently by H. Jacobinski [Ja4] and in
[R8-9].

(3.36) THEOREM. Let B be a block of RG with defect group cyclic of order
p?, and assume that B has e projective nonisomorphic indecomposable lattices.
Then e|(p—1) and B has (4p—2)e indecomposable lattices of vertex p*> and 2e
indecomposable lattices of vertex p.

This result was independently proved by Ch. Bessenrodt [Be 2] in case
R/pR splits B/pB and by A. Wiedemann [Wi2] in the general case.

In 1974 M. Butler [Bul] gave a new description of the indecomposable
lattices for Zp C,: using diagrammatic methods—namely reducing the problem
to the representation theory of the Dynkin diagram D,,. It turns out (cf. below)
that the Auslander-Reiten graph is indeed of type D,, [Wi2].

There are several cases where the indecomposable RG-lattices are known
though there are infinitely many of them: A. V. Yakovlev [Yak] listed them for
ZPC g and M. Butler [Bu3] for Klein’s 4-group. E Dieterich has completed the
classification of p-groups according to finite lattice type, tame lattice type and
wild lattice type as [ollows.

Without going into details, let us recall that an order can be of finite or

31 — Banach Center t. 26, cz. |
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infinite lattice type, and in the case of infinite lattice type, it can be either of
tame lattice type — in which case the lattices can be classified — or of wild lattice
type—in this case there exists a full subcategory & of Wi" together with
a representation equivalence between R and $H(F), where F is a field and $H(F) is
the category of all finitely generated modules over the free associative
F-algebra in two—noncommuting— variables. For group rings we have the
following classification, where many authors have contributed. For details we
refer to [Dil-2].

THEOREM. Let R be a complete discrete valuation ring and v(p) the
exponential valuation with respect to p (v(p)e Nu{oo}).

(i) The group ring RG is of finite lattice type if and only if one of the
following conditions is satisfied:

1) v(p)=0.

2)vip)=1and G=Cp, e< 2.

3) vip) =2 and G = C,.

4) v(p) =3 and G = C,.

S)4<vipp< oo and G=0C,.

(i) The group ring RG is of tame lattice type if and only if one the following
conditions is satisfied:

Dvipp=1and G=C,xC, or G=C,.

2) vip)=2 and G =C,.

3) vip) =4 and G =C,.

4) v(p)=o0 and G =C,.

(iif) The group ring RG is of wild lattice type in all the remaining cases.

In the finite and tame cases there is an explicit description of the lattices.

We now come to the Auslander-Reiten quivers of blocks of finite lattice
type.
(3.37) TueoreM [Ja3, R8-9]. 4 block B of defect one is a Bdckstrém order.

Assume that B has e nonisomorphic projective lattices. Pick an indecomposable
lattice M, which is not projective, and let

—r \Mh/ . '\M‘/P'

be a minimal projective resolution of M. Then the P; are indecomposable, and
their distribution is obtained by “walking around the Brauer tree” [Gl].
Moreover, IT is the Auslander—Reiten quiver of B after identification of
isomorphic modules in II.

a: 0 - M
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(3.38) THEOREM [Wi2]. Let B be a block with cyclic vertex of order p*.
Then the tree class of the stable Auslander-Reiten quiver of B is D,,.

P. Webb [We2] has given a description of the connected components of
the Auslander—Reiten quiver of blocks of infinite lattice type. He has also
shown that all lattices in one connected component have the same complexity,
and in case the defect group is not cyclic also the same vertex.

Schurian orders of finite type

In this section let A be a Schurian R-order with associated partially
ordered set P(A) (cf. § 11). We then have

(3.39) THEOREM [ZK]. Let A be a basic Schurian order. Then A is of finite
lattice type if and only if P(A) does not contain a critical partially ordered set
(cf. § 11).

Kleiner {K12] has proved that a finite partially ordered set is of finite type
if and only if it does not contain a critical subset. The proof of the above
theorem is not constructive; in fact, Zavadskij and Kirichenko conjecture: “All
indecomposable, admissible lattices over A of finite lattice type are in natural
one-to-one correspondence with exact indecomposable representations of all
exact subsets of P(A), which are mutually inequivalent.”

In order to state the main results of [RW1--2], we have to introduce some
notation. Let

R n'R n:R ... n°R]
R R nrR... 1R

R R R e R Jd mxm

be the “canonical” form of a minimal hereditary order with m nonisomorphic
indecomposable lattices, and put

n'RnR ... R mR
R nrR ... =R n'R

_R R e R n.R mxXm

We define J), = H,, and inductively J}, = Ji, - J,. If A = (n"4-R),, n;;€e N, is
a Schurian order, then

m*A =:(J3),
is a Schurian order in (K),.,. W. Rump has proved the following interesting

(3.40) THeoREM [Ru]. Let A be a Schurian order in (K),. Then A is of
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finite lattice type if and only if this holds for m* A for every meN. Moreover,
each indecomposable A-lattice “gives rise” to m nonisomorphic m* A-lattices.

Let now P = ({1, .., n} xZ, <) be a Schurian partially ordered set (cf. § 11).
A bounded representation

V={V(w) V(i o} of P overt

consists of a collection V (i, ), (i, a)€ P, of t-subspaces of the finite-dimensional
f-vector space V = V(w), satisfying V (i, ) =0 and V (i, B) = V(w) for a suf-
ficiently small and for f§ sufficiently large resp.; moreover, V (i, a) is a subspace
of V(j, f) provided (i, a) < (j, f). These representations form an additive
category R°(P), which has kernels, and in which the Krull-Schmidt theorem is
valid. The collection of isomorphism classes of indecomposable objects in
RO(P) will be denoted by ind P.

The dimension vector of V = {V(w); V(i, )} in R°(P) is the ntinite-
dimensional integral vector

Dim V = (dim, V' (i, «)).
The dimension type of V is the vector
dim V = (dim, V(w), x;,), where
Xip =dim V(i, )—dim( )  V(j, p).
U <(ia)

Note that because of the definition of a bounded representation, dim ¥ has
only finitely many entries different from zero.

The automorphism é: P— P, (i, «)— (i, a—1) induces an automorphism
o: RO(P)-»RO(P), V>V, by putting

aV(i,a) = V(i(i, o)) = V(i, a—1),
which restricts to ind P, i.e. respects indecomposability. Inductively one defines
¢'(V)=a(a""'(V)), yeN. Then one has

(3.41) TueorReM [RW1-2]. (i) RO(P) has almost split sequences and o in-
duces an automorphism of the Auslander-Reiten quiver U{R°(P)) of R°(P).
(i) The following conditions are equivalent:
(a) P does not contain a critical subset.
(b) Modulo o, ind P contains only finitely many nonisomorphic objects.

(c) A(R°(P)) contains a connected component A such that for every
Ved, DimV is uniformly bounded. In this case

DIimV<(6;...,6,6,6,..).

(ili) If P does not contain a critical subset, then
(a) End(V) ~1 for each VeindP.
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(b) For each dimension vector (dimension type) there is at most one
indecomposable representation in R°(P) having this dimension vector (dimension
type).

(c) Modulo o, the number of indecomposable representations in R°(P)
does not depend on the field t.

We shall assume for the time being that R = t[[t] and n = t. Next we define
a functor

F: RO(P(A))— MO
Before we can do so we have a closer look at a module M in ,9M° We note that
M, =eM, where e,;=¢;, 1<i<n, is a full R-lattice in ¢, KM, and
M = @7-, M;. Via the multiplication with ;e 4 = (K),, all the K-vector
spaces ¢, KM, 1 < i< n, can be identified. In particular, M, ..., M, can be
viewed as full R-lattices in a common vector space. With this identification,
M is characterized by the condition that /M, = M, 1 < i, j < n. Now we are
in a position to define §: Given V = {V(w); V(i, o)} € R°(P(A)), we put
M;=FV)= @ 1"V, a).

acZ

Then it is easily seen that the family M,, 1 <i < n, gives rise to a A-lattice.
Similarly morphisms are defined.

(3.42) THEOREM [RWI1-2]. With the above notation:
(1) If Veind P(A), then F(V)eind A.

(ii) Veind P(A) is a projective (injective) object if and only if (V) is
a projective (injective) A-lattice.

(i) If @: V-V is an irreducible map in R°(P(A)), then F(y):
FV)-> &V is an irreducible map in ,MM°. Moreover, § maps almost split
sequences in R°(P(A)) to almost split sequences in ,INO.

(iv) For V, V' inind P(A), §(V) =~ &(V') if and only if V ~ ¢"(V’) for some
yeLZ.

From this one can derive
(3.43) THEOREM [RWI1-2]. (1) §& induces a map
& U(RO(P(A))) - A(n),

and Im & is a union of connected components of W(A).
(1) (a conjecture of Zavadskij and Kirichenko [ZK]) If A is of finite lattice
type, then—up to isomorphism—ind A = &(ind P(A)), and
A(A) = W(R°(P(A))/o.

(3.44) Remarks. 1. One can show that the construction of Rump [Ru],
passing from A to m* A, just gives an m-fold covering of A(A)—replace o by ™
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2. In the case of finite representation type there is an algorithm to
construct the indecomposable A-lattices explicitly [RW1-2].

3. The passage from rings of power series to arbitrary complete Dedekind
domains is done using model-theoretic results of Ax and Kochen [AK] and of
Herrmann, Jensen and Lenzing [HJL].

Auslander—Reiten quivers of orders of global dimension 2

For an R-order A the condition gl.dim A = 2 is equivalent to the condition
that ,9M° has homological dimension 1, and so in some sense orders of global
dimension 2 should behave like hereditary artinian algebras. For hereditary
artinian algebras M. Auslander and M. 1. Platzeck [AP] have defined a natural
“Coxeter transformation”, which allows one to construct the Auslander—Reiten
quiver and the indecomposable modules. Unfortunately, examples show that
such a nice description is not possible for orders of global dimension 2. For
a small class of orders we have a positive result though:

(3.45) THEOREM [R7]. Let A be an R-order with the following properties:

(i) gldimA < 2.
(ii) There exists a maximal R-order I' with radF c A cT.
(i) A/radI' is a hereditary t-algebra.

Then the following are equivalent:

1. A is of finite lattice type.

2. Every Meind M° is of the form 1~ *(P) for some indecomposable
projective A-lattice P. Here 1~ ! denotes the Auslander—Reiten translate, i.e. the
left-hand side of the Auslander—Reiten sequence.

Contrary to the artinian case, T does not act linearly on the Grothendieck
group of A-lattices.
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