Chapter I. Preliminaries oil round and Pfister forms.......................................................... 8
Chapter II. Basic properties of the Grothendieck ring......................................................... 11 § 1. Prime ideals in G(F)...................................................................................................... 11 § 2. Elements of special types............................................................................................ 15 § 3. Local properties of G(F)................................................................................................ 20
Chapter III. Group structure of G(F) and W(F)....................................................................... 23 §1. General decomposition theorems.............................................................................. 23 § 2. Value sets of binary forms and the group structure of G(F) and W(F)................. 28 § 3. The rank of G(F) and W(F)............................................................................................ 32
Chapter IV. Equivalence of fields with respect to quadratic forms.................................... 36 § 1. G-equivalences.............................................................................................................. 36 § 2. W-equivalences.............................................................................................................. 41 § 3. Comparisons.................................................................................................................. 43
Chapter V. A Galois correspondence in the quadratic form theory.................................. 46 § 1. The binary case............................................................................................................. 46 § 2. A generalization.............................................................................................................. 54
Chapter VI. Field constructions................................................................................................ 57
Chapter VII. Open problems..................................................................................................... 60
[1] J. K. Arason und A. Pfister, Beweis des Krullschen Durchschnittsalzes für den Wittring, Invent. Math. 12 (1971), pp. 173-176.
[2] C. M. Cordes, The Witt group and the equivalence of fields with respect to quadratic forms, J. Algebra 26 (1973), pp. 400-421.
[3] R. Elman, Round forms over real algebraic function fields in one variable, Proc. Amer. Math. Soc. 41 (1973), pp. 431-436.
[4] R. Elman and T. Y. Lam, Pfister forms and K-theory of fields, J. Algebra 23 (1972), pp. 181-213.
[5] R. Elman and T. Y. Lam, Quadratic forms over formally real fields and pythagorean fields, Amer. J. Math. 94 (1972), pp. 1155-1194.
[6] R. Elman and T. Y. Lam, Quadratic forms and the u-invariant, II, Invent. Math. 21 (1973), pp. 125-137.
[7] R. Elman, T. Y. Lam and A. Prestel, On some Hasse principles over formally real fields, Math. Zeitschr. 134 (1973), pp. 291-301.
[8] L. Fuchs, Infinite Abelian Groups, vol. I, Academic Press, New York and London 1970.
[9] D. K. Harrison, Witt Rings, University of Kentucky Notes, Lexington 1970.
[10] J. S. Hsia and R. P. Johnson, Round and group quadratic forms over global fields, J. Number Theory 5 (1973), pp. 356-366.
[11] I. Kaplansky, Fröhlich's local quadratic forms, J. Reine Angew. Math. 239/240 (1969), pp. 74-77.
[12] M. Knebusch, A. Rosenberg, and R. Ware, Structure of Witt rings and quotients of abelian group rings, Amer. J. Math. 94 (1972), pp. 119-155.
[13] M. Kula, Ordered fields and quadratic forms over pythagorean fields, Uniw. Śląski w Katowicach Prace Naukowe — Prace Mat. 7 (1977), pp. 13-21.
[14] A. G. Kurosh, Lectures on General Algebra, Chelsea, New York 1963.
[15] T. Y. Lam, The Algebraic Theory of Quadratic Forms, Benjamin, Reading 1973.
[16] S. Lang, Algebra, 3rd ed., Addison-Wesley, Reading 1971.
[17] F. Lorenz, Quadratische Formen über Körpern, Lecture Notes in Mathematics No. 130, Springer, Berlin 1970.
[18] F. Lorenz und J. Leicht, Die Primideale des Wittschen Ringes, Invent. Math. 10 (1970), pp. 82-88.
[19] M. Marshall, Round quadratic forms, Math. Zeitschr. 140 (1974), pp. 255-262.
[20] J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math. 9 (1970), pp. 318-344.
[21] J. Milnor and D. Hussmoller, Symmetric Bilinear Forms, Springer, Berlin-Heidelberg-New York 1973.
[22] O. T. O'Meara, Introduction to Quadratic Forms, 2nd ed., Springer, Berlin-Heidelberg-New York 1971.
[23] A. Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), pp. 116-132.
[24] W. Scharlau, Quadratic Forms, Queen's Papers on Pure and Applied Mathematics No. 22, Kingston, Ont., 1969.
[25] A. Sładek, Grothendieck groups of quadratic forms over formally real fields, Uniw. Śląski w Katowicach Prace Naukowe — Prace Mat. 5 (1974), pp. 41-47.
[26] T. A. Springer, Quadratic forms over fields with a discrete valuation, I, Indag. Math. 17 (1955), pp. 352-362.
[27] K. Szymiczek, Grothendieck groups of quadratic forms and 6-equivalence of fields, Proc. Cambridge Philos. Soc. 73 (1973), pp. 29-36. Corrigendum, ibid. 74 (1973), p. 199.
[28] K. Szymiczek, Universal binary quadratic forms, Uniw. Śląski w Katowicach Prace Naukowe — Prace Mat. 5 (1974), pp. 49-57.
[29] K. Szymiczek, Quadratic forms over fields with finite square class number, Acta Arith. 28 (1975), pp. 195-221.
[30] K. Szymiczek, A structure theorem for Grothendieck group of quadratic forms over a field, Colloquia Mathematica Societatis János Bolyai, Vol. 13, Topics in Number Theory, Debrecen (Hungary), 1974, North-Holland Publ, Co., Amsterdam-Oxford-New York 1976, pp. 389-397.
[31] E. Witt, Theorie der quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math. 176 (1937), pp. 31-44.