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1. Generalized Sommerfeld half-plane problems

1.1. Imntroduction. In the book by B. Noble (1958), e.g., the famous
Sommerfeld diffraction problem is studied by means of the so-called Wiener -
Hopf technique. a function-theoretic method developed for solving certain
mixed boundary value problems. This has been generalized to mixed b.v.ps.
for pseudodiffercntial equations particularly by G. 1. Eskin (1973) in his
book.

Here we are going to present some generalizations of the classical
Sommerfeld problem leading to systems of two-part Wiener-Hopf functional
equations. Only a few explicit solutions are known which could serve as
standard problems for more general mixed boundary value problems with
linear boundaries. First we shall describe the Wiener-Hopl method for the
Sommerleld problems with equal boundary conditions on both laces of the
half-plane before passing to cases with different conditions and for systems of
semi-infinite parallel plates. Lateron, in Chapter 2, we are concernced with
multiple-part Wiener-Hopf equations which arise from mixed boundary and
boundary-transmission problems in the theory of unsteady plane subsonic
flow. Higher dimensional WH-problems exist in the theory of diffraction of
electromagnetic or elastodynamic waves. Much less is known in these fields
and a general theory of multiple-part WH-cquations is still to be developed.

1.2. The classical Sommerfeld problems. Let there be given the screen
s as the hall-plane !(x. v.z)eR": x> 0.y =0, —x <z < ! and a plane
wave

(L.1) D, (x, y):=exp[ik(x cos O+ y sin 0)] -
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where k =k, +ik,; ky, k3 20 (k # 0); 0 < 0 < &, falling upon the screen s.
One is then interested in the reaction of the screen, i.e., one wants to know
the reflected, transmitted, and diffracted waves below and above the plane of
the screen.
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Fig. |. Plane wave falling upon a half-plane as screen s.

Depending on the character of the incident wave as an E-polarized wave
with the vector of electric intensity being parallel to the z-axis, that is parallel
to the edge of the screen s, or a H-polarized wave with the magnetic vector H
parallel to the edge or — in case of acoustic waves — with a soft or hard
boundary we are lead to the following boundary value problems for the total
wave potential @,,(x, y) in R2-space:

(1.2) 4+kHd,=0 in R’
with the boundary conditions
(1.3a) lim @, (x,y)=:D,{(x, 20 =0 for x>0
or o
0 0P,
(1.3b) lim b, . (x,y) = (x, +0)=0 for x>0.
y=+0 5 dy

Now, if we decompose,

b (x, )+ Pys(x, y), 1> 0,
14 D (x.y) = inc (X5 Y} + P (X, ) y

Pire (X, VR Py (x, Y)+ Pye(X, ), ¥y <0,
we have the additional asymptotic conditions

(1.5) Py (x, y)=0(1),  grad Pyu(x, y) = 0(r™%)
as r = \/x__-i-_y — 0 (edge condition) where 0 < 8 <1 and
(1.6a) Par(x, y),  grad Pue(x, y) = O(1),
(1.6b) a¢—zk d(x,y) =012

or
as r = \/’xz +y? = + 00 (Sommerfeld's radiation condition).
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Representing the scattered field by simple and double layers along the screen
as

ac

1 0P, P,
(1.7) Pyn(x, y) = —2—J{Hb“(kxf(x—é)%yz)[@”—"(c, +0)— a""-(é,—O)]—

0

¢
— - HY e o= =),y [Pan . +0)~ PunC, —O)J}dc

shows the following asymptotic behaviour of the total scattered field
P (x, ¥):= Py (%, y) = Pyin(x, y):
0 ™) for x— +o,

(]8) (psc(xﬂ J’) = %O(e-kzrsmé) for r o +<x)’

in 0 <o <arg(x, y) <2n—0. We shall apply the Fourier transformation
with respect to x

(1.9) P (1, y)i=—— Ief“%(x, yydx, ieC,

and see that it exists in the strip S:= {ieC: —ow0 <Re 4 < + o, —k,cos(
<Im i <k;}. We denote the jump of the normal derivative by J(x) for
x > 0 in the case of Dirichlet data —¢&***? and the jump of the boundary
value on the screen by Q(x) in the case of Neumann data —ik sin 0 &/***9,

The Helmholtz wave equation (1.2) which holds also for the scattered
field is then transformed into

dy?

2
(1.10) I:d—+(k2—).2)]tf’sc(i,y)=0 for y20

with the general solution
(L) @, y)

B {A,(A)exp[—y\/iz—kz]+B,().)exp[y,/lz—kz] for y>0
A, (A exp[—y /A2 —k*]+ B, (ADexp [y /A2 —k?] for y<0

with the square root /A —k* defined by

(112a) Ja2—k* = Ji—k-JA+k

=22 =k*|"2-exp {i[arg(i— k) +arg(A+K)]},
(1.12b)
—3n/2 < arg(i—k) < m/2 and —n/2 < arg(A+k) < 3n/2,
1.e, with branch cuts from k to +ioc and from —k to —ioo such that
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Fig. 2. Branch cuts and strip of holomorphy flor Aok = 7

Re \/)-.2—‘.'1{_2 >0 in the strip —k, <Im 4 < +k,. Due to the condition of
boundedness we have B, (1) = A,(41) =0 and we may put A,(4) = B,(4)
= A(4) in case of the Dirichlet data when ®!'(x, +0) = ¢'(x, —0) for all
xeR, ie,

(1.13a) B,.p(4, y) = Ap(Aexp[— Iyl 22 —k*]
P o,
while in the other case we have due to (;“i(.\-. +0) = —fﬁﬁ'—(_\:, —-0):
cy Al
(1.13b) G n(4 y) = + Ax(Dexp[ |y 22— K2

Applying now the F-transformation to the jumps yields

(‘kﬁsc, A a(ﬁcc,D " | T N AT -
(1.14a) ""F;-D("’ +0)—707—(A, —0) =J, ()= =2 /A ~k* Ap(A)
and
(1.14b) b, i, +0)—d y(4, ~0) =0, (2) =2 Ay(2)

where the Fourier transforms J, (4) and Q. (4) are holomorphically ex-
tendable to the planes Im A > —k,cos (. Denoting the unknown boundary
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D,
values of &, ,(x, 0) for x < 0 by E(x) and for — ¢

X (x, 0) for x <0 by V(x)
Cy

we end up with

(1.15a) b, pli, 0) = Ap(2) = E_(A)+[i /2n(4i+k cos )]

and
é o -

(1.15b) a—a‘— (4, 0) = 52—k2~AN(/l) V. (A)+-—S-l—2— (A+k cos 0).
7Y \ T

Substituting these terms into equations (1.14a,b), respectively, we obtain the
Wiener-Hopf functional equations

- . ] j+ ()\.) _ . 1/__‘_ N e -1
(1.16a) E_ (/...)+§--;:;Tf:zi = —[i2n(A+kcos 0)] ",
. P e——:  ksin 0
(1.16b) V- (+50. () JaF =k = ---f-l-;l—-(,wk cos )"
2

holding for —k,cosf <Im 4 <k2, —o < Re 2 < + .

Multiplying (1.16a) by ., /i —k and dividing (1.16b) by 7—k and
decomposing the resulting functions on the right-hand sides into a plus- and
minus-function gives — due to the attenuation of the functions as |Re 4| — x

(1.17a) Jo(3) =2 kjmcos 0/2- _i+k-[i+k cos 0]
and, respectively,
(117b) Q. (4)
=2 \/fk/_n -sin ()/2-[\,"1-#_k().+k cos )] ! for Imi > —k,cos 0.
The functions £_(2) and V_(4) are given by

- ] 2k
(1.18a) E_(4)= [l+i—-— cos 0/2:' [i \/ZR (A+k cos 0)]!
AT
and

. k sin () ii—k |
1.1 V.(J)=-—=[i+k 0] ! ( N -
(1.18b) () = ' [#+k cos 01 \ \6}\- cos ()/2)

\..Tt

for Im /4 <k,.

After inserting J, (4) and Q. (4) into equations (1.14a,b) and then into
formulae (1.13a,b) we arrive at the representations for the Fourier trans{forms
of @w(/l, ¥)

exp[—Iyl 42 —k%]
VA—k(i+k cos )

(1.192) b (7, y) = = /k/m -cos 0/2-
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and

exp[— |yl /A2 —k’]
JA+k(A+k cos 0)
For more details see the book by B. Noble (1958).

(1.19b) & n(h, y) = +i./2k/n -sin 0/2-

1.3. A generalized mixed Sommerfeld half-plane problem. Let now the
screen s be of such a type that the total field potential ¢, vanishes on the
upper face but the normal derivative é¢,, /¢y on its lower one. This problem
has been studied by A. E. Heins (1980/81), the present author (unpublished),
and A. D. Rawlins (19785), treating it by an ad hoc integral representation.
Here we shall show the lines of arguments like in Section 1.2.

|

D‘r/ Pyix.01=0 6
& x.y)exoli 4 3P o x
inc x,y)-expl:kbrcosﬂ+ysun9)]| N {(x-0)

] ¢|0'(x-y)= ¢inc(1ny) +¢;c(x.,\’)

N

Fig. 3. Sommerfeld hall-plane s with different boundary conditions

The boundary value problem for the scattered field potential @_(x, y)
then is following:

Find @ (x, y)e C*(R*\s)n C'(R\!0}) such that

(1.20) (A+k)D (x,y) =0 in R*\s
where k =k, +iky, k,, k; =0, k £ 0, satisfying the boundary conditions
(1.21;1) liTo d.(x, y) =: P _(x, +0) = —eoxose,

y for x>0
(1.21b) yl—i.[?o %SE(X, y) = %%(x, —0) = —ik sin 6 ¢/*=*

with the additional edge and radiation conditions (1.5} and (1.6a,b), respectively.

Again we apply the Fourier transflormation with respect to x and arrive
at formula (1.11) for &_(4, y). Due to the condition of boundedness of
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@, (x, y) as |y| = oo and consequently of &_ (4, y) we are left with formula

A(Ayexp[—y A —k%]  for y>0,

122 hy) = { N
B(A)exp(y JA*—k*] for y<0O

instead of formulae (1.13a,b). Dropping the index “sc™ and writing Qf’i (4, )
for the unilateral Fourier translorms which are holomorphically extendable
into the upper and lower half-plane, respectively, we obtain the following
relations

(1.23a) d_(i, +0)+ D, (4, +0) = A(4),
& _

(1.23b) (4, =0+, (i, —0) = B(A)

0
and after differentiating (1.22), " = -,
oy

(1.23c) D_(4, +0)+ @, (4, +0) = — JA2—k? - A(4),
(1.23d) (i, -0+, (i, —0) = /A =k -B(J).

Due to the continuity of @(x, y) and all its derivatives across y =0, x <0,
we need not to distinguish between +0 and —O0 in @_ and @_. The
quantities @, (4, +0) and @, (4, —0) are given by the boundary data:

(1.24a) &, (4, +0) = [i/2n (A+k cos 6)] ",
(1.24b) &, (4, —0) = k sin 0[/2n (A+k cos ]!

for Im A > —k,cos 0. Elimination of 4(4) and B(A) leads to the following
2 x 2-Wiener—-Hopf functional system involving the four unknown functions
E(2):=&_(4,0), V(4):= &~ (4, 0), holomorphic for Im i < k,, and &, (4,
+0) and @, (4, —0), holomorphic for Im 4 > —k,cos0:

s a _ . A2—k2
1.25a) JA—KPEA)+ V() +d, (4, +0) = f ,
( A 4+ V) ( ) \/2—1t(1+k cos @)
s . —_— s k sin 0
(1.25b) /A2 —k* E(A) = V(A)+ JA 2~k P, (4, —0) = .
v v 2n(A+k cos 0)

We introduce now new vector functions by

- ¢, - w] [ﬂ—kﬁu)]
1.26: _(A):=| "~ = _
(1263 - [qbz_u.) Py ik

holomorphic for Im 4 <k,
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and

> %(A)J 1[\,@1-@@, —0):|
1.26b L= | Y .
— Pe [4’24’“ 2[ &, (1, +0)/  A+k

holomorphic for Im A > —k,cos 0

and may rewrite the system (1.25a,b) in matrix form after diving by \/j:-l—c
before

Jﬁqi
- i+ k - -
(1.27) Som=| vV &, (H+70)

1 Atk

A—k

1

where 7(4) is the known 2-vector [unction

Y N I o
(1.28) ﬂm::rvﬁ*‘+k?"Wfof]{zvanu+kanon”‘
iA+k—ksin 0/ G—k.

In order to solve the WH-system (1.27) we have to factorize the 2 x 2-
function matrix K(/) into K~ (4)-[K"* (+)] ' with non-singular holomorphic
matrices K" (4) in the respective half-planes Im A 2 F k,. This has been
done by Rawlins (1980) and independently by Meister (1980) while Heins

(1981) has treated the problem by establishing a system of Wiener—Hopf
D,

integral equations of the first kind for the unknown quantities f’;i(x, +0)

¢

and @_(x, —0) on the screen y =0, x > 0. He transforms the equations
(1.25a,b) into a system of singular integral equations along the branch cuts of
the square root \/}Tz—kz which he is able to solve explicitely. This cor-
responds to a method called the Wiener—Hopf-Hilbert method introduced by
R. A. Hurd (1976) investigating a generalized Sommerfeld diffraction problem
with two different impedance boundary conditions, viz.

od,

(1.29) (x, +0)+ik-a, P, (x, +00=0 on x>0

oy

with real a, :=sinn,.

Since K(4) is holomorphic and bounded in the whole complex i-plane,
except the two branch cuts from +k to +ioc where the square roots just
change only their signs when crossing from one bank to the other we get

(1.30a) K(+0)=K_(t+0)-[K,(n]! for t=k+ip, 020,
and

(130b) K(+0)=K(1) [K,(t+0] ' for t=—k—ig, g=0
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Here we assumed that K, (4) may be continued holomorphically into the cut
half-planes Im 4 < —k, and Im 4 > +k,, respectively. From (1.30a) we may
eliminate K, (t) and turn up with a vectorial Riemann boundary value
problem for K_(4) along the upper branch cut C_:

(1.31a) K_(t+0)=K(+0)- [K(t—0)] '"K_(t—0)
and similarly for K, (4) along the lower branch cut C,:
(1.31b) K,.(t+0)=[K(t+0)] " K(r—0)-K, (t-0).

New we have on C,:

-
(132a)  G():=K(+0)[K(—=0] ' =] . V'

=
and on C_:
(132b)  H(1):= [K{+0)] " K(t—0) = — =k
— m 0

where the square roots are always taken as boundary values on the right
hand banks of the cuts C.. Thus it is easy to show that holds G(-1)
= H(r) for teC_. When we extend the branch cuts C, to vertical lines
Re ~= +k,, —x <Im~s < +oc, then we have discontinuous vectorial
Riemann boundary value problems with G(r) and H(r) replaced by the unit
matrices on the complementary parts C’, and C” of these lines with respect
to the branch cuts C..
Writing the matrix relation (1.31a) elementwise we sce that

t—k
(1.33a) Kl—l([+0)=%—\/?;k-l(zl(l—()) for teC,,
K7y (1-0) for 1eC,
ﬁ'K_ (t—-0) for teC
(1.33b) K{z(t+0)=%' t+k 32 0 eC,,
Ky;(1=0) for teC,,

t+k .
(1.33¢) KZl(t+0)_%\/t_—k'Ku(f—0) for teC,,

K3, (t—0) for teC_,
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t+k
(1.33d) Kn(r+0)=% :’;'KIZ“—O) for teC,,
K;,;(t—0) for teC,.

The relations (1.33a,b) and (1.33c,d), respectively, are scalar discontinuous
Riemann boundary value problems of the same type, viz.

t—k
(1.343) V‘(t+0)={_\/t+—k Vy(t=0) for teC,,
Vi(e—0) for teC’,
and
f+k
V2(t-0) for teC,.

Thus multiplication and division, respectively, yields

-1 for teC,,

1.35 Vi, V. 0) =
( a) 1 2(0+0) {+1 for teC’,

and

t—k_ et
(1.35b) Vl/Vz(t+O)={T+—k [Vi/V2(1—0)] for teC,,

Wi/ V2 (t—0) for teC,.
Now a special solution to (1.35a) is given by
(1.36a) PA =W V,(A)=1//A—k

and all other solutions, having polynomial growth at infinity and only an
algebraic singularity at 4 =k, are given by linear combinations of

(1.36b) P, (A):=(A—=k) /2 with meZ.

In order to solve the reciprocal Riemann b.v.p. (1.35b) we take logarithms
and get

(t.37) S(t+0) =log V,/V,(r+0)
_%—log Wi/Va (t—0)+log (—(r — k)t + k)} for reC,,
1 log Vi/V,(t—0) for teC,,

with solutions behaving only algebraically as 4 -k or to
(1.38)

A=k [ log(—(t—kft+k) dt (A—ky"
SH = -4 j Jick  =ateT i

with nelZ.

7

k
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Fig. 4. Lines along which the Riemann b.v.p. is to be solved

" The integral I(4; k) may be evaluated explicitly by calculating the loop
integral along C, U C_:

(1.39) ﬁ j log((t— kMt +k) dit _ log(—(A—KAL+k)

&

Jt—k t—2 A—k

Fig. 5. Calkulating the integral I(4; k)

24 - Banach Center Publications 15
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We have log(—(¢t— k)t +k)) = log{(t—k){(t + k))+ir on the +-bank of C.

k

(1.40a) J log(~(t—k/t+k) ~ dr
. \,/;_k CI!_A
[ log(=(e—ky+k)  dr P &
-1 — - —2ni- ! .,
y Ji—k CII—-A k \/tTk'C:I--/L
e i
—{r— k
(1.40b) j N J log (rﬁg(w ) dr
Vi—k t—A
v -k

\//:’; t—4 \,-/;...:_k \/ff —k+ \///1 -k

—ix

=2”‘J 1 dt 2 log\/t—k— /A—k/™"

1= =i

Thus get
_log (tk — Atk +4))
JA—k

(1.40c)

fa

mi +lj‘log((r—k)/(t+k))i e ki Ak

log
. I 3 / .
A=k mk Ji—k lci I=s Ji=k — J2k+i -k
from which relation we obtain
1 —A mi Ue—i Sr—k
(1.41) 1(A; k)= + _10g_+_‘__|0 Vv2k—iy

2Bk 272 ki Jik

log\/ +lg \/2‘(_'\/1 k +mi
V2k+iJi-k

Thus we get from formula (1.38)

(142)  Vi/Va(d) = —JA—k-[/2k+i /A—k]""-exp lc (A —k)~1/2)

where only in the case of n =0 there exists a solution with algebraic
behavior near 4 = k and A = oo. After multiplying then equations (1.36b) and
(1.42) we obtain

(143a)  [V(D]? = —an(—Kk"[J2k+i/i=k]"'. meZ,
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and after dividing

(143b) (VD) = —an(i—k" ' [V2k+i/i—k], meZ.

After taking square roots with both possible signs and substituting into
equations (1.34a,b) one sees that in

(1.44a) Vi) = i Jan(A— k"2 - [ 2k +i JA—k]",
(1.44b) Va(A) = Fi Jan(A—k™ "2 [ /2k +i /i—k]'?

we have to take m odd for the upper and m even for the lower sign. We thus
obtain

(1.45a) Kii()=iJa, A=k [ /2k+iJA—k]"'2,

(1.45b) Ki2(W) =i/ao [2k+i JA—-k] 172,

(1.45¢) K; (W)= —ia, [J2k+iJA—k]',

(1.45d) K5 () =iJag (—k) P [/2k+iJA—k]'".

The determinant is given by

(1.46) det K™ (4) = +./a, a0 (—1-1)= =2 /a, aq

so we could choose, due to det K(4) =2 and
K=K (- [K* (D], iJa iJa = -1,

€.g., a, = ap = 1, and can calculate the matrix K* (1) as

(1.47a) Kﬂ(l)=%:[\/i+i\/l—k]"2+[\/2_k—i./,l—k]"z},

(147b) K} () = —— [/2k—i JA— k]2 = [\/2k+i /A—K]""2),
2 /i—k

-y

;+k|[\/ﬂ—i\/l—k]”2—[\/2—k+i A=k,
(1.47d) K;A).):ZIﬁ{[\/QT(.H =K1+ [ 2k —i JSi—k]'}.

These functions are holomorphic for Im 4 > —k;, since their branch cuts are
only from —k to —ioc. When 4 passes from one bank to the other of the
upper branch cut C, \/ﬂ goes over into — \/).Tk but the change of signs
cancels.

With the explicit knowledge of K* (1) and their inverses, respectively, we

may solve the two-part WH-system (1.27) by multiplying from the left with

(147¢) K35 (A =%
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[K: ()17" and then splitting [K~ (A)]~'-F(4) =:§(4) additively into §, (4)
+5. () according

id4+
. 1 s(1)dr
. (A= +— -
(148)  5.(4) 2ni _[ T—A
0L — ¥

for Im_/1><5+ > —k,cos 0 and Im A <é_ <k,
such that
(1.49a) b-H=K (D5.(1) for ImA<d_ <k,
and
(1.49b) S =K*(D5, (4 for ImA>8, > —kycos 8

for which formula we may calculate E(4), V(4) by (1.26a) and &, (i, —0),
@', (4, +0) by (1.26b).

Since §(z) behaves like O (7]~ '/?) due to (1.28) as |Re 1| » o and the first
row of [K™(A)]" ! like O(z]”*'*) and the second like O(|7|'/*) as |Re 7| »
we get §_,(A)=0(4 ¥ and §_,(4) =0(|4~"*) as |Re 4| — oo, respecti-
vely, which yields according to formulae (1.45)

(1.50) é- () =004
which gives
(151) EA)=0(4"", WA)=0(1) as i-o in Imi<d,

the last formula actuaily should be o(1) in order to be a Fourier transform.
Similarly we obtain ¢, (Ay=0(4 *) as A—» o in ImA>d,. A careful
investigation, ke Rawlins (1975) and Heins (1980) did, gives

(1.52a) ®:(x,—0)=0(x'") as x-+40
and

0P, 3
(1.52b) —2(x, +0) = 0(x~ ¥4 as x— +0.

oy

Remarks. Several authors studied generalizations to the above mixed
half-plane problem in connexion with the effect of an acoustic wave in a
subsonic stream upon a semi-infinite vortex layer extending downstream of
the half-plane. See, e.g., papers by Jones and Morgan (1972, 1973, 1974) or of
electro-magnetic waves acting in anisotropic, dielectric materials, like in
Hurd and Przezdziecki (1967, 1976, 1977) and the literature quoted there.
Now we may also assume two different media in the half-spaces y > 0 and y
< 0, with wave-numbers k, and k;, respectively, such that on y =0, x <0,
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transmissions conditions have to hold while on the screen s, y =0, x > 0, we
have boundary conditions as before. See, e.g., van Splunter and van den Berg
(1979) for the case of a strip s instead of a haif-plane and equal Dirichiet
boundary conditions on both banks of s. The case of mixed boundary
conditions will be published by the present author elsewhere.

14. Some generalized mixed boundary value problems for systems of
semi-infinite plates. In the book by B. Noble quoted at the beginning one
finds also the discussion of the diffraction of plane waves by two parallel
plates

(1.53) s, USy = f(x, )eR* x>0,y =

H

a

and of a circular semi-infinite pipe # of radius a in R*-space:

(1.54) R:=!(x,y,2)eR* 2<0, x> +y? = 9" = a?)

or of a periodic infinite system considered by Heins (1947) or by Meister
(1970) with finite blade length and skew incident electro-magnetic fields.

Here we want to formulate the Wiener—Hopf functional systems in the
Fourier transform A-plane in the case of mixed (Dirichlet-Neumann) con-
ditions on a pair and an infinite periodic system of semi-infinite thin plates
without stagger in the geometry.

HO

Doy (%.a+0)=0 o

%a;,, {x.a=-0)=0

— — o — —— — — ———— — - —— — ——
¢tiuct x
g @ (x-a+0)=0
Iy ©rortx-
-~
Ptix.-a-0) = 0 5,
H,
Pinc= @xplik{xcos § +ysin 6)] | Prerr= Rexp [ik (xcos 8 - y sin )]

Fig. 6. Plane wave falling upon a pair of plates with different boundary behavior

There are of course several possible cases, viz. one with equal behavior
of both plates and the other one with the boundary conditions interchanged
such that the semi-infinite strip S, := {(x, y)e R%: x = 0, |y < a} acts like a
duct with Neumann (or Dirichlet) inner boundary data.

Applying the Fourier transforms with respect to x in the three y-regions
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corresponding to the half-spaces H;, HZ, and the strip S=S_uUS, we
obtain for bounded solutions as |y} —» x:

(1.55) @, )

AN A) exp[—y \,';1727—7(5] for y > a,
= % A,(A)-exp[—y,/).2—k2]+B,(}.)-exp[yV’r/fz—kz] for |y <ua,
B (A)-expy A2 —k?] for y< —a.

Now splitting the boundary values of ®(x, y) on y = *a like in section 1.3
and denoting by @, (4, +a), ', (4, +a) the corresponding unilateral Fourier

transforms we arrive at the f[ollowing relations; where 7(4):= /22 —k?:

(1.56a) S_(i,a+0)+D, (4, a+0) = AT ())-e™ 7,

(1.56b) b (A4, a—0+P,. (1, a—0) = A, () e "+ B, (4) ™,
(1.56¢c) @_(i, —a+0)+P, (i, —a+0) = A, (D)™ + B, (A e,
(1.56d) é_(i, —a—-0+P. (i, —a—0) =B (e ©

and similar relations for @' (i, +a+0):

(1.57a) @& (A, a+0)+ P, (4, a+0) = —7- A (4)e ¥,

(1.57b) & (A, a—0)+d, (L, a—0) = —y'4,())e '-B,(1)e,

(1.57¢) d_(i, —a+0)+9, (1, —a+0) = —y |4, ()" —B,(L)e ),
(1.57d) &_ (4, —a—0)+d, (A, —a—0) =7y B (})e ™.

Now we make use of the continuity of all derivatives of ®(x, y) for x
< 0, so we need not to distinguish the boundary values of &_(4, +a) and
& (4, +a) from above and below, respectively. Due to the incident field we
have

x

J_e‘“-exp [ik(x cos 0+ a sin 8)])dx

0

VE;

(1.582) &, (4, +(a+0) =

= exp(+ika sin 0)-[i /2n (2 +k cos )]
and
(1.58b)

&', (4, +(@-0) = —_,2—L j- &** ik sin 0-exp [ik(x cos 0+ a sin 0)]dx
VR '
0

= k sin 0-exp(+ika sin 8)-[/2r -(A+k cos 6)] "
holomorphic for Im A > —k,cos 0.
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The elimination of the four factors A'*), 4,, B,, B!’ in equations (1.56)
and (1.57) leads to a system of four Wiener—Hopf functional equations for the
remaining four unknown plus-functions é,(1,a-0), &, (2, —a+0),
&, (4, a+0), and &, (4, —a—0) as well as for the four unknown minus-
functions

E..(i):=d_(4, +a) and Veald):= @' (4, +a),

_ 1. 1. A
(1.59a) E,N)+-V(A)+-F, (i, a+0) = ~b, (4, a+0),
v Y

. 1. 1. X
(1L59b)  E_ ()—-V_ ()= B, (i, —a—0)= — &, (i, —a~0),

/ i

(1.59¢) EA‘,(A)—-};IZ,().)+$+(La—O)—

i

. 1 P £
—e—za)'E—a(l)"'_:e—Z“T V—a(")_e_ -’-ﬂ)’(p+ (;" _a+0)

L

—_ Zu-'.

-, (4, —a+0),

1.
=&, (4, a—0)—

4

. | N o
(1.59d) E_,(A+-V_,(A)+P, (4, —a+0)—
‘}’

- 2ay

—e 2 E (2)— Vil)—e 2, (1, a—0)

~

/

— 20}'

&, (1. a—0).

| I
=—A—¢’+(/.l., —a+0)+e
7 7

Alter adding the equations (1.59a) and (1.59b) and (1.59c) and (1.59d) and
afterwards subtracting the corresponding we obtain

" " ! "
(1.60a)  [E,(D)E_(A)+ Va(AFV_(H]+
1 . A . .
+o [P0 (2, a+ OF P, (4, —a=0] = — &, (1, a4 OF &, (4, —a—0),

(1.60b) (l¢e‘2‘”)[1:3a(/1)i5-a(1)]—%(1ie'z""’)[Ea(iFV-a(i)]+

+[B. (4, a=0)+ B, (i, —a+0)](1Fe )

lie—lay

[, (4, a—OF &, (., —a+0)].

ar

/
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We multiply these equations ,/A—k and introduce

- A= [, () + E-, (]
. 4_ = L /
(1.61a) ¢ [P, ()= V_,(A)]

Jik

holomorphic for Im 4 < +k,,

JA+k[P. (A, a—=0)+D, (A, —a+0)]

(1.61b) ¢, ()= _I—[é;(l, a+0)— &, (1, —a—0)]

Atk

holomorphic for Im 4 > —k,cos@, and

) Vi—k [EA)-E_, (D]
(1.61¢) v_A:=] 1

JA—k
holomorphic for Im A < +k;,,
) JA+k[B(A, a—0)— b, (A, —a+0)]
(1.61d) ¥eld)= ! [#, (4, a+0)+ &, (1, —a—0)]

JAt+k

holomorphic for Im A > —k,cos 6.
This leads to the following two 2 x 2-WH-systems:

(Va(A)+V_o(2)]

1 A—k 0 1
A+k A
(1.62a) Tk P (A)+ (1—e~2®) A—k X
1—e 2 _(1+e 2 [ A+k

A+k

x$+ () =rF*(4) (known)

and
=T o
(1.62b) -+ Caan Ak X
1+ - 2ay - 2ay A’_—k (1+e ) -— 0

xW,(4) =7(A) (known)
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or

1 —2ayy ( t) (3 1)
PR I (ETa LR
S sow) A+
2

with the right-hand sides known. These two systems reduce to the system
(1.27) as a — + oo. Here the two 2 x 2-function matrices have to be factorized
in front of ¢, (A) and ¥, (1). This has not yet been effectively done.
Finally we want to discuss the effect of scattering of a plane wave
incident upon a periodic system of semi-infinite plates with Neumann and
Dirichlet boundary conditions on the same sides of the screens s, neZ.

[(1 Fe Za}’) r( i)('l) r( 1) (A)]

4
P 30 I
l ¢l!\ll:ﬂ
L
?,..$, — partial :
diHfracted |
plane waves i @, (x.040)=0
________________ ;
s, . Pulx.a-01=0 s,

| —
duct
\\ Iﬂ"x +0, =0 /‘0

f £ 0lx.-0)=0 x
|

|
| — o
|

duct

¢, zexplikixcosd +ysm0)l

Fig. 7. Plane wave falling upon a vertical cascade of plates

Due to the quasi-periodic behavior of the incident wave, ie,
(1.64) P, (x, y+na) = "D, (x, y)

we are looking only for such scattered waves & _(x, y) which exhibit the
same behavior. Then we may confine ourselves to the standard strip
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S:=!x, »eR: —w<x<+0w,0<y< a,. Due to this periodic structure
we have to expect plane reflected waves in front of (x < 0) the plate system
and ducted waves between two adjacent plates as it was shown in Heins
(1947) and Meister (1970) for pure Dirichlet or Neumann data on the plates
s,. Here again we shall assume a positive imaginary part k, of the wave-
number in order to avoid separation of the plane waves incorporated in &_
in order to apply the classical Fourier transformation. Here we assume only
the asymptotic behavior @_(x, y),

(1.65) grad @ (x. v) = O(exp(—k,cos 0-|x])) as |x|— .

Denoting the values of &, (x, y) on x <0, y =0 and =u by E(x) and
e E(x) and V(x) and ¢*"° V(x), respectively, the representation of the
Fourier-transform &(4, y) of the scattered ficld in the standard strip S leads
to

(1.66) DA, y) = A(Z)e P +B(i)e*

and the boundary values on y =0 and y = a, respectively,
(1.67a) EA+d, (2, +0) = A(A)+ B(2),

(1.67b) e* O EGY+ D, (4, a—0)= A1) e “"+ B(i)e”™,
(1.68a) V(A)+@, (4,00 = —y[A14) - B(4)],
(1.68b) VN4, (G a—0)= —7[A(M)e = B(i)e*].

After eliminating A(4), B(4) and inserting the known transforms of the
boundary data according to

(1.69a) @, (4 +0) = [i /2n(A+k cos )] ",
(1.69b) &, (1, a—0) = k sin 0-&“"°[_/2n (A +k cos 0)]

holomorphic for Im 4 > —k,cos ), we obtain

. P | N
(1.70a) (1 —exp(ay+ika sin 0))E(4)—:(l —explay+ika sin 0)) V(1) —

. 1. -~ s
- (4, a=0)— -, (4, +0) = -, (4, +0)—€;_--¢’+(i, a—0),

4

(1.70b) (1 —exp(—ay+ika sin U))E(l)+%(l —exp(—ay+ika sin 0)) V(i) —

« |
—e NP (4, a-0)+-P, (4, +0)
b

-ay

e

=—&, (i +0)+— &, (1, a—0)

-

i

where the right-band sides are known functions. After adding and
subtracting the last equations we get
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(1.71a)  [1—e*"cosh(ay)] E(4) +e**"%y~ 'sinh(ay) V(1) —
—cosh(a;')-tfh .a—0)= -, (/. +0)—»"1! ~sinh(a}')-<5'+ (A, a—0)
and
(1.71b)  e“®". 3 ginh(ay) E(4)4-[1 — ¢ cosh (a7)] V () +
+&, (A, +0)+7-sinh(ay) P, (7, a—0) = cosh(ay): &, (4, a—0).

When we introduce the unknown function vectors

= A —kE -. )
(1.72a) b_(3):= [Vf E)
Pk
holomorphic for Im 2 < —k, and
R S iaksind), B - _
(1.72b) b, (d):= [\' ntke Polte u O’J
&, (4, +0)/ /7 +k

holomorphic for Im 4 > —k,. We may rewrite the system (1.71a, b) as the
following 2 x 2-WH functional system

-
b=

(1.73) b ()+K(d a, 0)- ¢, (1) = [M(i: a, )] ' F(4) = §(4)

where we have
\/;.T k[] i -sin(ak sinf)) J
1 P ) — O in i
(1.74a) K(i: a.0):= ; /+k cosh(ay) —cos(ak sin 0)

1 _
—E[cothg(y—iksin())+cothg(y+ik smo)J

1
i[cothg‘(y— ik sin 0) + coth g(}r+iksin 0)]

2+ k N i:s;ig(ak sin ()
s~k cosh(ay) —cos(ak sin 0)

and

» Pk L
1 _elaksmﬂcosh (a.” \/ii_k elaksmﬂsinh(a-y)
(1.74b) M()): = I_: i
ioksin® . - hiav ; |- iaksin 0
& sinh(ay) l+k[ 4 cosh(ay)]

The matrix K(4; a, 8) has not yet been explicitly factorized. Here

r' iy [cosh(ay)—e~'**"%] 4 ksin 0 - sinh (ay)

\,/Z_n [cosh(ay)—cos(aksin8)](A+kcos) /A +k
iy sinh(ay) — k sin 0 [cosh (ay) — e***"?]

\-f‘r2~1f [cosh(ay)—cos(aksin0)](A+kcos ) /4 — kJ

(1.74c)  §(A):=

is known.
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1.5. Diffraction by plane screens in R’-space.  Generalizing the
classical Sommerfeld haif-plane problem described in Chapter 1 many people
have studied the problem of diffraction of acoustic and electromagnetic
waves by plane thin screens X in R*-space. Here we are interested only in the
diffraction by a quarter-plane Z:={(x, y, z)e R*: x,y >0, —o0 <z < 0!
by an incident wave @, .(x, y, z) particularly being a plane acoustic wave

(1.75) b, . (x, y, z) =explik(x cos @, +y cos ¢, +z cos P,)].

Again we assume that the total field or its normal derivative vanish on
both sides of the screen thus leading to the following boundary value
problem:

Find @ = ®_(x, y, 2)e C*(R*\X) being a solution to Helmholtz's equation
(1.76) (d3+kHP(x,v,2)=0 in R\Z

satisfying, for x, yeX, one of the following boundary conditions

(1.77a) P(x,y, £0)= -, (x, y, 0)
or

¢ ¢

A + = ——&, > 10
(1.77b) 0zd>(x, y, +0) P inc (X5 V5 0)

and additionally the asymptotic conditions
(1.78) ?(x, vy, z) = O(1), grad @ = 0(g; %)

as @:=/X3+x3 or g;:= \/xf+x§_ — 0 with 0 < B <1 (“edge conditions”)
and

or

as r:=\/372+yz+z2 —x, k=k, +ik,eC* ™.

0 e 27\
L79)  (x, v, 2) = O(D), (——ik)¢(x,y,z)=0(—r—)

If we try to solve these problems similarly like in Chapter 1 we shall
now apply a two-dimensional Fourier transformation F, with respect to the
variables x and y

ao ao
.

o 1 '
(1.80) @(1,, 43, 2):= e J J exp[i(4d;, x+ A, )] P(x, y, z)dxdy

and arrive, similarly to (1.13a,b) in case of k, > 0 at

(1.81a) Ppldy, 43, 2) = Ap(4y, A)exp[—|zly(4,, 41)]
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for Dirichlet data on 2 and

(1.81b) By(Ay, Az, 2) = +Ax(Ay, A)exp[ =zl 7(4,, 1,)]
for Neumann data on X where
(1.82) Y4y, 43):= JAT+ A3 -K? with Rey>0

and the branch cuts taken in C2%-space along ./A3+ 42 = +(k+ig); 0>
such that the “poly-strip” s:= {(4;, 4;)e C*: (Im 4;)*+(Im 2,)* <k} is a
domain of holomorphy. Denoting the four unilateral Fourier transforms
by ++. —+, —— and + —, respectively, and keeping in mind the
continuity of all derivatives of ®(x, y, z) ofl the screen I we get

(1.83a) Ap(4y, 4;)
=—@ (A1, Az, 0+ B, (A1, Ay, O+ DP__ (A, A5, )+ B, _(4,, A5, 0)

and
(1.83b) y-An(4, 4;3)
0 - 0 . . 0 -
=== (41, 42, 0+ —P_, (4, 43, O+ -P__(4;, 4,, 0)+
0z 0z 0z

0 -
+ ¢+—(';'l’ AZa 0)’
0z

respectively. After introducing the unknown jumps of the potential

X J . J .
20,04, 4):= I:E¢++ (41, 43, +0)_5;¢++(Al’ Az, O)]

and
20, (A, A= [, 4 (44, i2, +0) =D, , (41, 4, —0)]

across the screen X we arrive at the two special four part Wlener—Hopf
functional relations

(1842) 3™ '(dy, Ao) T oy (hy, A)—B_ L (4, 45, 0)—
—b__ (A, hg, =, (A, Ag, ) = =B 44 (44, 45, 0)

and

A (3 Jd - . d .
(1.84b)  y(41, 42) Qs (A1, 2 =5 P-4 (A1 A0 O) =P _ (44, 45, 0)

0 . b
__¢+ - (ll’ ;'Zv 0) = _Mlm'i(ilr /12, 0)
0z 0z
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involving four unknown transform functions each being holomorphic in pairs
of complex half-planes like Im 4, > —¢,, Im 4, > —¢, such that g +¢3
< k% and so forth.

The above formulated problems have been treated, e.g., in Radlow (1961,
1965). They may easily be generalized to almost arbitrary plane domains Z
representing the screens — or several disjoint of them. The functional
relations (3.10a,b) are actually two-part problems with rtespect to the
projectors P;Aand sz\ s corresponding to the Fourier transforms of the space
projector Py = ys and Qy:= P .= Yo .

in order to solve equations (1.84a,b) we have to lactorize y(4,. 4,) with
respect to these two projectors into

(1.85) V(A A3) = (44, ’.hz)')’nz\z(iu 43)

where in the case of X being the Ist quarter-plane in R* the factor ;. is
holomorphic and different from zero in the cartesian product of the hall-
planes Im 4, > —¢q,, Im 4, > —¢,. Thus multiplying or dividing equations

(1.84a) or (1.84b) by 7'n2~s(;"* /;) we have to decompose additively

(1.86a) 75 '(A1s 42) T5lhys Ad) =72y (Aas A2) Pz By, 22, 0)
= =&, (44, 4, 0)'?,2\5()-1, A)

or

, . _ I
(1.86b) Y(dy, A2) Qx(4y, 12)—“/,,21\5(115 ;~2)'Pnz\£'a—zd’(lla /2, 0)

o - . -
= —Ez‘ ¢mc(41, j~2') 0).}’.21\}:(11’ AZ)

from which formulaec we get

(1873) j[(ils }*2) = —')’z(il, AZ)'pE[‘}’RZ\I(tl’ 12)¢?iﬂ0(tl’ T2, 0)](2'1’ AZ)
for Imi, > —¢q,, Imi> —g¢q,

and
- oAl 0 -
(1.87b)  Q@5(2, 4)) = —y: ' (44, 42)'P£[7n\lz(fh Tz)g‘pinc(fh 12, O)]('ll’ A2)
for Im#4 > —gq,, Imi> —q,.

These transform functions then may be inserted into

—27(4, A1) Ap (1, 72) = Zf.‘:u'l- 43) and 245(4. Ap) = Zéz(}bn, 4A3)

in order to obtain representations of ®,(4,, 4,, z) and ®x(4,, A;, z), respect-
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ively. The main problem which remains is the effective factorization of
7(41, A5) with respect to the class of two-dimensional Fourier transforms
whose original functions have supports in R?-space on X and R*\Z,
respectively. The problem of diffraction of electromagnetic waves by a right-
angled dielectric wedge or more general semiinfinite obstacles all of them
filled with shightly absorbent materials has been dealt with by several others.
Meister and Speck (1979) gave already a detailed account on the problems.
So details are deleted here.

2. Plane subsonic flow past oscillating profiles

2.1. Introduction. Flutter phenomena for single airfoils in free space or
in wind-tunnels, for elastic blades in a turbo-machine, or for hydrofoils have
been observed since the thirties. Many authors have tried to develop models
of increasing complexity to describe theoretically the aerodynamic and
aeroelastic effects on the vibrating foils and in the surrounding flowing gas or
fluid. A general theory predecting the forces acting on an arbitrarily moving
profile in two-dimensional subsonic flow of an inviscid or even viscous gas is
still missing, since the corresponding mathematical problem will be a non-
linear mixed initial-boundary value problem for a system of flow quantities.

So it i1s quite clear that most of the authors in the past made strong
assumptions which resulted in linearizations concerning the governing
differential equations and the geometry of the profiles. Here we want to
mention just a few authors who developed the linear theory of unsteady
profile flow: Kissner (1940), Kissner and Schwarz (1940), and S&hngen
(1940) (among others) studied harmonically oscillating and arbitrarily
deflected single profiles which were assumed to be thin, slightly cambered
and performing movements of small amplitudes — compared to their chord-
length /5. They assumed the fluid to be inviscid and incompressible, so they
arrived at a mixed boundary value problem in two-dimensional potential
theory for the composition of the interval [ —/,, [,], representing the chord
of the profile, and its wake (/,, L) with [, < L < co. The distribution of
bound and free vortices on the chord and wake, respectively, lead them to a
system of singular and Abel-type integral equations for the unknown vortex
densities.

These methods have been generalized to the case of infinite systems of
such kinds of profiles in a cascade, ¢.g.. Billington (1949), S6hngen (1953,
1955), Chaskind (1958), and Meister (1958, 1960). The latter used conformal
mapping techniques and the methods for solving Hilbert's functiontheoretic
boundary value problems for periodic functions in the complex plane.

Allowing for flow separation at fixed points on the profile several
authors studied the two-dimensional flow of inviscid fluids with function-
theoretic methods. like. e.g.. Sisto (1955). Wu (1957). Parkin (1957). Tulin
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(1963), Woods (1963) and Davies (1970) for single profiles and Sisto (1967),
Meister (1970) for cascades.

As early as in (1938) Possio started to investigate the two-dimensional
subsonic flow past an oscillating thin profile by establishing a singular
integral equation resulting from a double-layer representation of the
acceleration potential solving the time-independent wave equation. A
different approach has been worked out by Timman in his thesis (Timman
(1946)) and in Timman and van de Vooren (1949) using Mathieu functions’
expansions of the solution. In 1970 a pupil of mine (Speck (1970)) derived a
system of integral equations after applying the Wiener-Hopf technique. This
will be displayed here lateron.

Concerning the subsonic flow past profiles in a wind-tunnel Runyan and
Watkins (1953), Jones (1953) and Miles (1956) set up integral equations for
the vortex of pessure densities on the chord of the profile. The present author
started in 1962 his investigations of subsonic plane flows past harmonically
oscillating thin profiles in cascades applying a generalization of the Wiener—
Hopf technique. For details concerning unsteady cascade flows see the survey
paper by Meister (1967).

22. Formulation of the mixed boundary value problems. Denoting the
velocity of the basic flow far in front of the profiles by U, the speed of sound
in the moving gas by a,, the Mach number by M = U/a,. The velocity
potential @, for the small perturbations satisfies the wave equation

1/4d U o \? ® —0
(2.1) 4 Qo_a_3(5+ 670) 0(X0, Yo, 1) =
in the domain D, = R exterior to the profiles and their wakes and, possibly,
between the wind-tunnel walls or the [ree surface and the bottom of a
stream. In the case of harmonic time-dependence a time-factor e ' is
assumed. The perturbation pressure field may then be calculated according

» i, J
(2.2 p(xg, Yo, 1) = —@o U (‘"“ U—)d’o(xo, Yo, f)

ot 0xo
with the density g, of the gas in the basic sicady flow.

Before introducing a reduced potential @(x, y} with respect to dimen-
sionless coordinates x, y we shall describe roughly the changing boundary
conditions on the projections of the thin profile and its wake in case of a
single one. On [ -1y, 8l,] with a fixed —1 < 8 < +1 the flow is attached to
the oscillating profile which means the rformal derivatives of @, are known.
61, shall denote the point of flow separation on the upper side of the profile
such that a thin cavity bubble is assumed to extend downstream from 6l, to
¢o on the upper and from I, to ¢, on the lower side. The bubble terminates
at ¢ = lp and is followed by a thin vortex sheet extending from ¢, to + 0
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This model corresponds to that one introduced in Woods (1963) in the case
ol an incompressible gas.

It is assumed that the pressure be prescribed along the bounding lines of
the bubble and that there are no discontinuities in the pressure and the
normal velocities across the free vortex wake behind the bubble.

yoT
W* (xgt) ! Cavity bubble Free shed vortices

| plxg. 1)

Fig. 8. Geometry of the flow past the profile p

By means of the following substitutions we arrive at the mixed bound-
ary value problem for the reduced velocity potential in case for a cascade of
profiles (ne Z) or a single one (n =0) in free space or in a wind-tunnel
(n =0, but 0®/dy(x, +1/2) =0 for xe R additionally):

(23) xo=Tox J1-M> yo=Toy,
(2.4) w*:=wl/U and k:=w*M//1-M?,
(2.5) Do (X0, yo. 1) = Ty-Re[P(x, y)-exp(—i(kMx + wt))].

Determine @ C* (D) C' (D) where D is the region exterior to the
cascade and its wakes C:= {(x, y)e R*: —I<x< +o0,y=n,necZ) and D

its closure with exception of the “corner points” x = —1 =0l ¢, y =nj,
=1/ Ty J1-M?, ¢:1=¢o/T, \/1‘— M2, such that
(2.6) (A+kHd(x,y) =0 in D,
od
(2.7a) E—(x, n+0)
y

—_—————

=gl ()= wH(To J1-M?-x)e"™* M for _]<x <,

‘P
(2.7b) —8_\—-(x,n—0)=g,,' (x) for BI<x <,
cy |
(2.8a)
ik 0 JI-M? e e
—— e |B(x = [ (x)i= =Y etikMrpt (T M-
( M+(.,x)‘1"(\,n+0) S (x) o0 ¢ p. (To x)

for Ol<x <e,

25 — Banach Center Publications 15



386 E. MEISTER

ik ¢ X
(2.8b) (—'——+——-)¢(x, n—-0=f(x) for l<x<c,
M
(2.9a)
ik 0 ik 0
RN P S _
( M+Fx) (x, n+0) ( M+5x)¢(x'n 0) for ¢ <x < oo,
and
¢ t
(2.9b) L @(x, n40) = — d(x, n—0)
Cy dy
and additionally the following asymptotic conditions shall hold:
(2.10a) P(x, y)=0(1),
(2.10b) grad ®(x, ) = 0(r, %)
Jor roi= J(x+D*+n? =0 (“leading edge condition™),
(2.11) P(x, y) and grad ¢ (x, y) = 0(1)

(x, ) =01, n+0) and (x,y)—>(l, n—0) (“condition of smooth flow
separation”),

(2.122) @(x, y) = 0(1)

(1.12b) grad @(x, y) = O(|log r,)

as r,.= \/(;w — 0 (“closing condition at the end of cavity bubble™),
(2.13) d(x, y) and grad @ (x, y) = O0(1)

. _ 2 2 h ” . .
as |x| - oc or r = x"+y" — oc and ® shall not contain terms corresponding
to incoming waves (“radiation condition”).

After integrating the boundary and transmission conditions (2.8a,b) and
(2.9a), respectively, we end up with the Dirichlet conditions on parts of the
linear boundary:

(2142)  Blx, n+0) = Ff (x):= CF ™™ 4 | 7 (¢) e~ M6~ g

f for l<x<ec,
(2.14b) P(x,n-0)=F_ (x):=C, e“’“"”+]‘fn‘ (&) e~ WE— UM g

r for I<x<c¢

where the constants C,;” must be fixed by the conditions (2.11) while (2.9a)
gives rise to

(2.15) ®(x, n+0)—D(x, n—0) = De* M for c<x<
with the D to be fixed by condition (2.12b).
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Since partially the boundary values of @ and those of ¢®/Cy, respect-
ively, are known we shall introduce their restrictions to the five x-intervals
-and try to solve the corresponding first and second boundary value prob-
lems with prescribed data on y=n+0, xeR and then equate both
solutions thus obtaining a system of relations among the known and
unknown boundary values on the both sides of the lines y=n, neZ
(or = 0). For this purpose we introduce

(2.16) E,(x):=D(x, n) for x < —I,
(2.17a) Fi,(x):=®(x, n—-0) for —l<x<6l
(2.17b) Fia(X)+71,(x):= @(x, n4+0)
(2.18a) Fiy,(x):= P(x, n—-0),

<x <l
(2.18b) o)t pan()i= d(x, niy oF dsx<l
(2.19a) Fi,(x):=@®(x, n—0),
(2.19b) Fuu()47a.(x):= ®(x, ne0) OF [S$x¥<¢
(2.20a) Fyp(x):=@(x, n—-0),

<
(2.20b) Fop(d) 4 yan(x):= Blx, n40Q)  OF €SX<

thus the y,,(x) describing the jumps of the potential across the corresponding
jth intervall. Similarly we set

(2.21) V,(x):= a—iQ(x, n) for x< -1,

(2.22a) H,,(x):= aﬁtb(x, n—0),
J; for —1<x<6l,
(2.22b) Hl,,(x)+u1,,(x):=a—y¢(x, n+0)

(2.232) H,,(x):= ai ®(x, n—0),
ay for Ol<x<l,
(2.23b) Hyp(X)+ pap(x):= 6_y¢(x’ n+0)

(2.24a) H,,(x):= icl"(x, n—0),
ay
for l<x<e,

(2.24b) H3,(x)+u3,,(x):=(%d5(x, n+0)

(2.25) H,,(x):= a—aytb(x, n+0) for ¢<x< 0.
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Enlx) ) Vn (x} F'In + Vn lH‘|n+{l’1n F2n+ 72n'HZn+y’2n F:'Jn+ ;'Bn ﬁH3n+#3n FLn"’ Yin 'Hl.n

Fln 'H1n —{ FZn 'HZn

To o A # Lo € L

k"

F.

n H

F_.,H

In &n 1A

Fig. 9. Intervals with differently prescribed data

2.3. Application of the Fourier transformation. Let

R 1 [ .
(2.26) J )= (Ff)NA):=~== J e f(x)dx

denote the classical Fourier-transform which may be extended to the
Schwartz space " of tempered distributions such that the well-known rule
holds for any ¢e.¥”

(2.27) i%‘-f’(/‘.; — (—iA(FD)) =(—il) D).
X

Taking now regular distributions, that are functions not growing faster than
polynomials, with respect to x and depending at least twice continuously
differentiable on y we may transform the Helmholtz equation (2.6) into the
following one

2

¢ 1.
(2.28) [( —i2)? +5;'2 +kZJ¢(/1, y)=0

for ~feRand n<v<n+1, neZ, or y20.

To simplify the calculations let us take here the case of a single profile.
The condition (2.13) then leads to the following two representations for the
image function @(i.y) in y >0 and <O, respectively, according to the
Dirichlet or Neumann data given on y = 0:

(2.29a)

[Fi(D+5(0]) -exp(—y J2T=K%),  y>0,

4 S
(229b) b (A y)=E()+ Y Fi(A))-exp(y JAE—k?), ¥y <0

or
(2.30a)
. L& expl—y JAT—kP)
. (2, )= —V(+ Y (H(A)+ (A1) Y y>0,
+ (4, ) | j;l i JV \/mz
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and

[P

4
(230b) & (4, ) ={V(H+ T B .y <0,
i=1

VAE=k?
where [i,(4) =0 and the square root is defined according

(231
AE—kE = Ji—k- \Jh+k = 22—k exp [{[arg (i —k) +arg (L +K)])
with

(232) —3r/2 <arg(A—k) < n/2 and —7/2 <arg(i+k) < 3n/2,
respectively, such that \/2%—k? ~ |4 as |4| —> > as a real variable.

Equating now the right-hand sides ol equations (2.29a) and (2.30a) as
well as (2.29b) and (2.30b) yields the following generalized Wiener--Hopf
system of functional equations by additional summing and subtracting,
respectively:

(2.33a)  2E(N)+2F, () +5, (D+F () +2F, (M) +
+ L A+ Ay (22~ k2 = ()= —[F(A)+7,(2)] -

[P+ 33 (D] = Fy (=5, () — i, () 27—k
and

both on R, with known right-hand sides 7,, 7,. On the left-hand sides there
are collected all unknown transforms of functions with supports in the
intervalls Io. 1;;j =1, ..., 4; cR,. In case of finite [ and ¢ all the transforms
labelled by 1, 2 or 3 are entire functions of exponential type in the complex
#-plane while the functions E(4). ¥'{4) are holomorphic in the lower hall-
plane Im i <0 and H,(4), 7,(+) holomorphic in the upper half-plane
Im 2 > 0, respectively.

Since the boundary values of @ and those of their normal derivatives are
not elements of the same space — particularly due to the different
asymptotic behavior near the “switch-points” —/, i, +/ ¢, ncw unknown
transform functions have to be introduced first to study the system (2.33a,b)
as a vectorial five-part Wiener-Hopf system on a Banach space 4 of
functions on R;. If the wave-number k in (2.4) is assumed to have a positive
imaginary part k, > 0 then it is reasonable to sharpen the asymptolic
condition (2.13) to O(e “¥)for r — » in 0 < arg(x+iy) <2x and O(1) for
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x - + oo which gives rise to E(1), V(4) =o(l) for A— o in Im 4 <k, and
H,(%), 3.(4) = o(1) in Im 4 > 0 due to the Riemann-Lebesgue Lemma but a
more careful investigation using Abel-type theorems of the Fourier
transformation says

(2.34a) E(2), 5. =0(4"
and
(2.34b) Vi) =001,  Hy (2 =0(4 "logld)

as |4} - o in the appropriate half-planes. Since \/Iii is holomorphic in
Im 2 <k, and \/).+k in Im 4 > —k,, respectively, we have

(2.352) Y@= e E(R) A=k = 047",
(2.35b) W)= e V(37 —k = O(AF 373

in Im 4 <k, while

(2.36a) WO ()= "% F, (4)- \/I:__j‘. = 0(4 3
(2.36b) WP =e " A (A JA+k = 0(A "2 logl|A]).

So we see that these four functions belongs to If(R,) where g > 2. This leads
us to study the Wiener-Hopf system of the modified boundary values, e.g., in
spaces IP(R,) for | < p <2 (1/p+1/q =1). The functions bearing an index 1,
2 or 3 in equations (2.33a,b) have to be modified in a similar way but there
are always two possibilities existing depending on the decision whether the
entire functions of exponential type should become plus or minus functions
that they have an algebraic behavior as 4 — oo in the upper or lower half-
plane, respectively, and exhibit an exponential growth in the complementary
half-plane, e.g.

(2.37a) e M5 (A JSA+k=0(]"") as A-oo in Imiz0
and '
(2.37b) e M5 (D) SAi—k=0()"") as iAo in Imis<O.

After all we end up with a five-part-system

3
(2.38) P (A+ Y A Pi(D+AD) P (D) =S5()
ji=1
on R, where ‘f’i(i):= (f’iff’)(l); '?j(i):= (f’j ¥)(4) with continuous
mutually disjoint projectors P on FIP(R,) being the transforms of the
“space-projectors” P, = y'y, P; = y; with the characteristic functions for R,
Ji:=[0,1+01], Jo:=[(1+0)1, 2], Jy:=[2l, |+c], respectively.
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We shall not list the details of the general case here, since one may find
them in Meister (1978). So we shall confine ourselves to special three-part
problems.

24. Two special cases of three-part mixed boundary value problems

(1) First let us choose 8 =1 and ¢ =/ then we arrive at the three-part
Wiener—-Hopf problem corresponding to a thin oscillating profile of finite
length 2/,. This has been treated, e.g., by F.-O. Speck in his master’s thesis
(Speck 1970). All quantities with indices 2 or 3 drop out in equations
{2.33a,b) and the last one reads

(239)  2PUY /A= K2+ 7 () + 20 (A2 =k = 5(4)
_iD expli(A-k/M)] 2, (A)+ iy (4)
U AtkM NZtr:

where the functions on the left-hand side are unknown. Putting, in a first
step,

(2.40a) b~ (D):= ¥ VA JSA—k,
(2.40b) Gt (=45 (h) Atk

we arrive at a classical two-part WH-functional relation after rultiplying
(2.39) by 1¢'*./i+k and pushing the H,-term to the right-hand side:

pom—

(2.41) ¢~ (A +d* (A) =5, (A —e* A (W) Si—k.

This may be solved quite simply just by an additive decomposition of the

function on the right-hand side. When s(4) denotes a function holomorphic

in the strip s,:={4ieC: —xv <Rel<+x, —a<Imid < +a} then we
denote by

+di+ o

. 1 S(r)dr

(2.42) SEA) =(P.5)(N):= iz—m—_ J‘ SULY

+éi-

T— 4
for Im~s2 F0,0<0 <a,

its additive components which are uniquely defined for §(4) = 0(1) as |Re 4]
— o¢. Applying the projection operator P, onto (2.41) we end up with the
two equations

(2.42a) é* () = 57 (D) — (B, (" Ay (r) /7= k)Y
holomorphic for Im 4 > — > —k,, and
(2.42b) $~ (1) =57 (- (P (€™ Ba(r)JT=K))(A)

holomorphic for Im 4 < < k,.
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In a second step we solve again a two-part problem by introducing
(2.432) U ()= te M5 () Ja—k,
(2.43b) G ()= e M ALY i +k
multiplying (2.39) now by se ™ \/[/T——l;, and pushing the term with V(1) to
the right-hand side. Additive decomposition then yields the two relations
(2.44a) U* () =33 (—(P. (7™ V(1)) /T +k))(4)

holomorphic for Im 2 > —d > ~k,, and

(2.44b) U4 =57 (A= (P_(e7 " V()T +k)) (4.

Now the equations (2.42b) and (2 44a) constitute a coupled system of integral
equations for ¢~ (i) and Y () due to gquations (2.40a) and (2.43b).
This alternating system may be written in the following form

. . fr+k o |
(2.45a) ¢ (A+P_ (ez"'\/%——--l// (r))(/_):s; (A),

—————

(2.45b) Yt A+ P, (“’-'"\/—----—d: (r))(f)—sz (2)

where the §; and 35 are known up to the constant D connected with the
amplitude of shed vortices in the wake x >l After inserting the first
equation into the second one, we arrive at

Tr B 2k E“ J2ila o+k i+
(246) y'(2)-P, (e \/r+kP_( \/—I\w (a))(/) h* (%)

c=§Y(H)—P, (e‘ Zike \/i; oy (r))(}.)-

or — due to P, +P_ =1 the identity operator —

- ) —k - . ok . -
5] 5 2lr 2ila — ht(,
(2.47) (P+¢ \/t+kP )(P+e \/cr AP )1/1 h*(4)

holding for Im 4 > —d > —k, and constituting a product of two Wiener—
Hopl operators (WHOs) in the Fourier transform space, with reciprocal

T+k
Toeplitz operators as they are also called, with such kind and even more
general piecewise continuous and almost periodic symbols on the real line
were performed, e.g., Sarason (1973, 1977) and Duducava (1979). An explicit
inversion of equation (2.47) is not known to the present author.

b ft—k o )
“Symbols™ ¢ \/ﬁa. Investigations concerning general WHOs, or
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The system (245a,b) may be solved by on iteration technique,
corresponding to the Schwarzschild procedure for the diffraction by a wide
slit, when [ is not too small. For this purpose the line integrals defining P,
in formula (2.42) are deformed into loop integrals along the branch cuts {from
k loirv. and —k to —ix. respectively. since only. the square roots entering

Fig. 10. Deformation of integration lines L ,

into the integrals are not holomorphic in the half-planes Im 2>k, and
Im 2 € —k,, respectively. We finally end up with

T

S G ktiode

2.48: h™(4) —-—— -2t ¢ =357 (4
(2483 §T(A - | e \/ s eriiom W™

3= 0

holding for Im 4 <d <k,,
. o2tk 0 — 2ik ¢ (—k—io)do

5 v S e Y : EE v
(248D) W (24 o e \/ 0 oZiGrk 2

=0

holding for Im 4 > 48 > —k,.

The solution to this system is known when the values of ¢ (—k —ig) and
W (k+ig), 0 =2 0, are known, respectively, which are to be calculated [rom
the alternating system of integral equations with Hille—~Tamarkin-kernels:

(2.49a) ¢ (—k—io)— ‘f K(o, Q¥ (k+ig)de = 5{ (—k—id),
0

(2.49b) V' (k+io)+ [ K(o, 00~ (—k—ig)dg = 53 (k+ic)
0
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where K(o, g), 0,0 >0 is given by
2ilk l —2ik
(2.50) K(c, 0):= en—ie-?'v- "—Q—'(g+a—2ik)-1

which makes sense also for real k > 0. Since it is not square integrable the
kernel defines a linear and compact operator only from I#(R,) to L?(R.) for
p>1and q > 2 For /- + oo it becomes zero so that the operator norm will
be <1 for [ > I(k) yielding then a contraction mapping. For these [ (2.49a)
may be solved by the iteration technique.

(i) Let us now consider the special case of 0 = —1 and ¢ = + o
corresponding to a flow which separates at the leading edge with a narrow
cavity extending to infinity. Now all quantities which are labelled 1 or 4 have
to be dropped in eqs. (2.33a,b). Again we are lead to a three-part WH
functional system. Introducing, in the first step, the functions

(2.51a) dr(A):=2ME(4) JSA—k,
(2.51b) ¢35 (A):= 24 V(A /i —k

being holomorph for Im A < k, and atenuating as 4 — oo there, while

(2.52a) by (A) = ¥ Fy(h) Ji+k,
(2.52b) b3 (A= M- [, (A))/i+k

being holomorphic for Im 2 > -k, and tending to zero as 4 — 20 there, we
may rewrite the equations (2.33a,b) as

A=k
zﬁ:(i)] | VATk @)J N

+ [ NINFEY: ] _ [e ik, (A)] — 50
e M [2H4 (A) + fis (D)) /A~ k ¢ SAvk-F )]

Now the 2x2-function matrix L(4) has to be factored according
L™ (4)-[L*(4)] ! where L*(4) are holomorphic and non-singular in the
respective hall-planes Im 4 2 Fk,. But this is the matrix which appeared
already in the generalized Sommerfeld half-plane problem in Chapter 1. So,
after multiplying (2.53) from the left by L™ (4)~! and then decomposing
additively we arrive at the system corresponding to the equations (2.42a,b):
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(2.52a) ["’T ”)] =Lt () (P, [L™ (@] $(0) ()~

¢35 (1)
- fiy ()T +k D( 2
e [2H, (1) + i3 (1)) /T —k

for ImAi>—-6> —k,

—L+(/1)'(f’+ [L‘(f)]_‘[

and

O
(2.52b) [ J);W]—L () (P_ L™ (0] 3@)(@)

it T+ k
—L- | P[L~ (]! e T /—D A
( )( (L™ (1)] [eirl[2[13(t)+ﬁ3(T)]/N,‘T—k (4)
for ImA<é <k,.

Since the quantities H; and [, are still unknown we need a second system
containing these and the ¢, and ¢, . To this end we introduce the functions

(2.53a) Ui D= e ME, () A=k,
(2.53b) U3 (A):=e ™ 3, (A /A~
being holomorphic for Im 4 < k,, while
(2.54a) Uy (A):=e Ay (A)/A+k
(2.54b) U3 (A):=2e " Hy () /A+k
being holomorphic for Im 4 > —k,. Then we get the following WH-system
| i—k
Atk |01 (A)] A [1171* (i)]
2.55 -~ _ / + T+ +
(23) ko [wz () / \/ i)
i—k

+[2e““E(,1) JA— J [e ia A —kﬁl(i)]
YAy SA—k A Sk, (A)

or after multiplication by the inverse of the first matrix

e bt )
(259) [l//z (A] 3l 2 /‘+ /’—’i-- [Wz (A)]

V(%)
E(d)/i—k—
LA ik f+k _ —111[[71(’) P2/ A— J L840,
/ [F1(A+72 ()] /A +k
EN)JAi+k — 1
(A) A+ F
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Now by factoring the matrix M(4) in the first line into M~ (A)[M* (2)] !
then multiplying the last equation by [M™(4)]™' and finally splitting
additively, we arrive at the second system

i (2)

(2.57a) [ 19 l)J =M~ ()(P_[M™(1)] ' §* (1)) (2) -

-M" ().)(13_ [M™ ()] 'e™ [I%‘(r) \/:_;_k— l:/(T)/\/SEJ)(&)
E(t)/t+k+ V(1) /t—k
for Im 4 <d <k,,
and
Pi(4)

2.57b .~
(2578) [w;m

J =M (AP, [M ™ (1)} '§* () (A)—

—M*(A) (P+ [M ()] e~ [1;:(1) VTR =V 'F_J’,k_J)(;g)
E(r) Jt+k+ V(r)/\,-"r —k

for Im/s> -0 > —k,.

The two systems (2.52b) and (2.57b) contain the four unknown functions
(,‘5{‘2(/1) and ¥ ,(4) using the vector notations

(2.58a) X (J):=[L (41" [d)' ('})J,
d’z (4)

5 o [eE @y

2.58b Y, (A):=[MT (A1 5L

(2.58b) (4):=[M"(4)] [% ().)J

(2592)  X.(A)+P_ (¥ [L™ (0] ' CO)M* (1) Yy (1)} (4)
=(P_[L ()] 'S@)4)  for Im i <3 <k,,
and

(259b) YV, (H+ P, e ¥ M (0] [CH] LT (X (9]1h)
=(P,[M™ (0] 'S*(e)(4) for Imi> —d> —k,,

where
1 0
C(r):= 7+—IE T+k
T—k T—Kk

such that with
(2.60) K(t: k. ;=¥ [L (1)] - C(1)M"™ (1)
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the system (2.59a,b) i1s an alternating reciprocal one. By substituting (2.59b)
into (2.59a) we arrive at

X_()—(P_K(t)P, [K(a)] ' P_ X_ (0))(/1)
—(P_K(P_)(P_[K(o)]" ' P_)X_ =h_(})

(2.61) i o
=(P_[L7 (0] '§(0)(A)—(P_K(x) P, [M™ ()] ' §(o))(4)

for ImiZi<d <k,.

This 2 x 2-system contains the product of two WHQOs with inverse symbols
like in the case (i) which was a scalar one. It can be shown that the operator
in the first Itne of (2.61) is a Fredholm--Riesz one on certain spaces I”(R,).
An explicit inverse i1s unknown up to now. Using deformations ol the
integration paths in the projection operators P, one may transform this
system into one with Hille-Tamarkin-kernels. We omit details here.

Remark. 1. The present author discussed also the cases of oscillating
profiles in a wind-tunnel, in a cascade or hydrofoils in a similar way. In these

cases the simple square root \/)_2 k2 has to be replaced by more com-
plicated functions which are meromorphic in the whole 4-plane. For the
details cf. Meister (1978).

2. Meister and Sommer (1979) discussed also the case of arbitrary
time-dependence applying the Mikusinski calculus with respect to the time r.

3. In the case of a rotating blade-row with oscillating blades in an
annular channel the corresponding boundary value problems have been
derived by the author and his co-workers (1982). The mixed boundary value
problems may be transformed into multiple-part WH-systems for an infinite
number of unknown transform functions after applying an eigenfunction
expansion with respect to vanishing normal derivatives on the inner and
outer cylinder of the annular channel. The details of these investigations
are published elsewhere.

3. Diffraction of elastic waves by three-dimensional
semi-infinite bodies

Now we are going to study the behavior of elastic waves propagating in R*-
space which is divided into N semi-infinite regions G; filled by different
homogeneous isotropic absorbing materials. We assume that Gauss’ theorem
may be applied to every bounded subdomain G;(R):= mKR(O) Let a
primary field characterized by the displacement vector field U -(x), the stress
tensor field S, (x), and the body force field K (x) be given in G, with the
density g,, the Lamé coefficients 4,, u,, and the damping coefficients n,. Our
problem then is the following one: :
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Find
U,;(x)e C*(G) n C1(G) nC(G)),
j = Is ceey Na S()C) = (akl (x))k.1= 1,2.3e Cl ((—;_;) m Cl (Gj)

where G; denotes the closed regions with the exception of edges and vertices of
their boundaries. These fields shall satisfy the equations of a harmonically time
dependent motion

(3.1) div §;+(w? g;+iwn,) U;+K; = 0

where K i= O for j# 1. Hooke’s law is assumed to hold, ie.

. .- oud Uy
(3.2) S; =A;div U; (Ouder=1.2, +,u-'(—— X
! ! ;K= 123 ! 0x 0x;, k1=1,2,3
Across the common non-void boundaries 60G;n0G;_(; j=1,..., N; the
total displacement vectors and surface tensions shall pass continuously, ie.,
(334) Uj,lm'ﬂﬁj_l = Uj—l,mllaG_,-_l
and
(3.3b) Sj o ”leGj+Sj—1.tot nj-llij_l =0

where n; denotes the outward directed unit normal vector to 0G; such that n;_,
= —n; at common boundary points. (These are the simplest transmission
conditions.)

In the neighborhood of edges and vertices we claim that S;, VS, V®Uj
behave in such a way that the integrals occurring in the following context
converge absolutely. Additionally as r - oo we claim

(3.4) U, v@U,;, S, divS;=0(e"%)
with some q > 0.

We are going to derive an N-part composite Wiener-Hopf system for
10-vectors having

09, h=1,2,3, o, 1<k I<3, 0;:=divU

as components.
Let T denote any symmetric continuous bounded tensor field with
div Te L' (G), assume the existence of a continuously differentiable bounded

~ oV _
vector field with VPV := (——'—) el!(G), G a bounded regular
0%y Jxi=1,2.3
domain, then the following integral theorems hold:
(3.5) {divTdx = ;Tn do,
B B

(3.6) [r®Vdx = j n®V do
B B
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where n®V:= (n, V) ;- 1.2.3 denotes the tensor product of ¥ and the surface
normal vector m. Now we choose T:= Se'* and obtain
(3.7) [ [div S+iS¢]dx = a§ ¢*Sndo.

B B

Taking S =S, and B = G;» Kg(0) and letting R — 50 we obtain the result
due to the relations (3.3b) and (3.4):

N .
38) ¥ [[divS;+iS;&]dx+ | €™ [div S, +iS, {]dx = 0.
G; Gy

j=1
Denoting the three-dimensional Fourier transform by F and P;S; = xg;_S

we get
N

(3.9) Y (FP;div S+i(FP;S)& = —FP,divS, —i(FP,S,)¢.

i=1

Inserting the left-hand side of (3.1) we obtain

!

N
(3.10) = > (w?g;+iwn)FP;U+i
=1

f=

N
(FP;S)¢
=1

= —FP,divS,—i(FP,S,)é+FP,K,=: FP, R,
where the vector field R, is known in G,.

Now we insert U;,, ™ for V in (3.6) and obtain

(3.11) 6{efxﬁ[V@)Uj_m+i§®U,.,,O,] dx = § e~ (m,®@U,;,)do.

j oG

Summing from 1 to N and splitting U, into U.1+Upr and taking into
account the relations (3.3a) we arrive at

N
3.12) ¥ [ [reU,+it®@Uldx = — | ¥ [PQU,, +i¢®U, ]dx.
j= 1 GJ G]
Now after adding the equations of the transposed tensor fields (F@U )"
and i(¢®U )7, respectively, we make use of Hooke’s law and arrive at

ARYS A - -
(3.13) Y (—FPjS—ﬁFPj6’1+iFPjU®§+i§®FPJ-U)
j=1 \HKj H;

= —FP,(Fr®U,+(V®U,)")—iF (P, U,®¢+E@P, U,)=: FP| W,

which is a known tensor field. Here we have introduced 0:= div U.
The final equation we are looking for is derived from the most common
form of Gauss’ theorem, viz.

(3.14) [ div(U;, e=)dx = | e [div Uj o +i U} o0r E]dx
. G

Gj f]

= [ (U, n;>do.

9
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Splitting U, into Uy and U, and summing we obtain
N

(3.15) Y (FP0+i(FP;U, &)= —FP, 0, —i<FP, U, & =: FP,F
i=

being a known function.

The equations (3.9), (3.13) and (3.15) constitute the announced system
of Wiener—-Hopf equations for 10-vectors (FP;0, FP,U, FP;S). The
corresponding N 10 x 10-matrices of functions on R? are only partially
occupied by clements diflerent from zero. A careful investigation gives the
following N maltrices MUY (&; /i, uj) from which we write down one
representative

(3.16) _ ) ) -
1 iy iy iCy o 0 o O O ©O
0 M,, 0 O ¢ i &, 0 0 O
0 0 M,; O 0 & 0 i& i&y 0
0 0 0 M,y 0 0 & 0 & i,

M(E A, 1) = —AH ZICI 0 0wt

0 i, i& 0 T 0
0 iy 0 i ,u_1
—Aiu 0 2i§, O o
0 0 iiy i&, 0 Tl
—Au 0 0 2, ot

where M, = —(ew*+iwn) for 1 =2, 3, 4.

After taking suitable linear combinations of the equations of this
Wiener-Hopf system it is possible to decouple the system in such a way that
there results a 3 x 3-system containing only the unknown three components
of the displacement vectors UY while the six components from the stress
tensors may be calculated from the remaining six equations. The matrices
corresponding to the equations of motion

1; AU +(4; + ) grad div U9 +(g; 0 +in;0) U+ K = 0
are given by
l‘j'flz‘*‘(&j""#j)fxz_(wz Q;+iwn;)
(3.17) A;:= (4 + 1) &2 84
(j'j+uj) &3¢,
(4t 1) S0 &2 (2j+ 1) &y &5
l‘j|f|2f*“()-j+#j)é%—(wsz‘Hwﬂj) (Ai+u) ¢85
(A+u)éasc, ”jlélz'*'(;vj'{'#_i) 65—((020_;"*".(0'71‘)
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the determinant of which is

(.18)  det A; = (i [é17 —(@? gy + iny )" (3 + 2u) 181 —(w? ¢ + icom).
Let .

N -~
(3.19) Y A& P;,U=P, 0  (be known)
i=1

where the 3 x 3-function matrices A;({) are simultaneously unitarily equiv-
alent to

(3.20) - D) =:T*(DA,DT()

where we have the N diagonal matrices

w181 —(0? o)+ iwm)

321 D;¢):= 0
0
0 0
1 181% —(w? g5+ iwny) 0 ., j=1,..,N
0 (A +2u) 18)* — (* @ + icwmy)
and the orthogonal matrix )
R T
g+ 1dVEt+ed il
&) ~&& &

(3.22) T():=

VE+E e+ K
0 JEa+ad &

L 4 2

With the representation of the A;(¢) by (3.17) and multiplicatiop then by
T~ (&) = T*(¢) gives with the transformed components T*(&) P;-U =: P;-U
which are also mutually orthogonal to each other due to

(PO, B0y = 1*B,U, T* B, 0>

= [(T*P;0(0), T* P, U(9)), ¢

(3.23) " . )

= [TOTOPUQ, AU &
R

= [ (P00, P.U@) =8, 1012,
n;

N = - —
(3.24) Y D;Q)P;U=T*P,§ (known).
i=1

26 - Banach Center Publications 15
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This 3-system of N-part Wiener-Hopl equations decomposes into three
scalar ones due to the diagonal form of the matrices D;().

Now we shall invoke a general theorem from Melster and Speck (1977,
1979) which constitutes a sufficient condition for continuously inverting a N-
part Wiener—-Hopf operator (WHO):

THeOREM. Let B;:=F '®;({)-Fe ¥ (#) be a translation invariant
operator acting on the Hilbert space # := (LZ(R"))"l Jor n, me N with symbol

matrices ®;()e GL(m, C) and ®;e(L* (R} Af A (E)] denotes the (&-
and j-dependent) maximal absolut eigenvalues of the Hermitean matrices

e

(3.25) (E—®; ()" (1- ®;(&)e (L=(RY)" ™"
then
(3.26) Z B, P;ii = ve L*(RY)™

is continuously invertible, 1.e., WN e l(H)if

N
(3.27) > 14 mar (o < 1
i=1

(e.g., which is the case for

(3.28) A= ”)“j,max(é)”l,w(k") < 1/N Vi=1,...,N.

Proof. Wyiu:= ZF '®;(8)-F-P;ii =7 will be multiplied by the

umtary operator F: L (R")"'—+ Lz(R")"‘ Denoting P = FPJ-JF‘l and i:= Fi,
v:= Fv we get

(3.29) FWyii:= Wyu: Z ®; (&) Pjii = Fir =

j=1

Ch

The N orthogonal pr0_|ectors P; adding up to the identity keep this property
as transformed ones P Now we write the last equation as

a

N
(3300 - Wyl = ii— Z(I ®,() Py =7,

A sufficient condition for the continuous invertibility of Wy is simply the
following one

N
(3.31) |3 (1-®;0) Pl < 1
i=1

in order to apply Banach’s fixed point principle.
In order to estimate the operator norm in the last inequality one has —
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keeping in mind that the operators on #:= F.# are just multiplication
matrices:

N
(3.32) nz(l ®; (&) Pllyoiri= sup || ¥ (1—@;(&) Pl ;-

"”y,/— ji=1
So we estimate the term below the sup-sign

(333 X 0-o;) Pyl (lel— ) Py’

<(% 10-0,@NE s 3. 1Psi%)

V

(put ||u1|% = Z P;4li?)

and

(3.34) ”(l — q’j(é))”i(-i} = sup “(l —®;(%)) '?“ff
[l6ll =1

= sup {I-®;(&)7, (1-®;()0)> s

o1l =1

= Sup (1~ OV (1- ;D) F, 555

< sup [ ((F-;(8) (I-@;(0)5(8) 5(8) 0 dc
161 5= 1,,,.

< sup J. IA} rndx é)l U(é) U(f) dé Jmax-”l?“f{" = Aj.max
(161] = 'y

where

Aj.max SupIAj max (é)l = ” 'j, max (é)”Lm(Rg) for f = la seey N.

EeR"

Now we see immediately that

N
(335) Z||l (i < L A <1

is a sufficient condition here.

Remark. In the case of the ®;(S) being diagonal function matrices we
may weaken the condition to the corresponding modulus |1{"(£)| and A{
:=sup|AP (&) and then

EcR"

N
(3.36) Y AP <1 for I=1,...,m.

§i=1
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In order to apply this result let us multiply (3.24) by the diagonal matrix

(3.37) Y():= [ 0
0

with auxiliary parameters x», 4, u. We then put

(nlEP—=)~"

(ni¢l? =)™ 0 0
- 0
) 1

0 (A+2m) 11> —3)”

(3.38)  1-®@;(&):=1-y($) D;(%
(a1~ (x =) o 0 '
plgl"—x )
0 (#—F‘j)lf""—(x"xj) 0
= B -
0 0 (l_ij+2”_2“j)|é|2_(x_xj)
i (A+2m)|E1? —x i

and then will have the eigenvalues of the Hérmitean matrices (I—d)j(é))* x
x(I—®;(¢)) given as the diagonal elements of

(339)  Ly(®:=¥(0) w(©D;(D;()

: ]

= 1) 181 = (e = )| 0 0

11817 =3
2
_ 0 l(u—uj)wﬁ—(xz—x,-)l 0
|nlEl? — |
0 KA — A4 26 =2p) 1% —(x — )|

_ (211817 — )

In order to fix x, 4, 4 to meet the condition, we have to calculate the
maximum values of each element with respect to £e R3, ie, t:= £ = 0. The
asymptotic values as t — +0 and t —» + oo, respectively, for this elements
(1) are given by

(3403) ']_i.IPO_L-”)(() = Il -xj/xlz, =1, 2,3,
(3.40b) llil;nm S22 =1 - p/?,
. A+ 2u:
3.40c ] D =1 -LH .
( ) ,_.linmj; (* ’ A+2u
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These are finite and non-negative so the maxima do exist and are positive.
They may be found by differentiating with respect to t > 0, e.g. The exact
sufficient conditions on the parameters u;, 4;, x;,j=1,..., N; and 4, p, x
have to be worked out in order to ensure the condition for the applicability
of Banach’s fixed point theorem to be valid.
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