Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

A general theory of polyhedral sets and the corresponding T-complexes

Seria

Rozprawy Matematyczne tom/nr w serii: 266 wydano: 1988

Zawartość

Warianty tytułu

Abstrakty

EN

CONTENTS
Preface......................................................................................................5
Introduction...............................................................................................6
1. A class of model categories.................................................................10
1.1 Categories with models......................................................................10
1.2. Cone-complexes...............................................................................12
1.3. Three standard constructions..........................................................14
1.4. Marked cone-complexes and the category Poly...............................16
1.5. Consequences of the marked face structure of a polycell................19
1.6. Subcategories of Poly appropriate as model categories..................23
2. Posets and shellability.........................................................................26
2.1. Shelling............................................................................................26
2.2. The class ET of model categories....................................................29
2.3. Face posets of S-polycells...............................................................32
2.4. The equivalence SPoly → SPos.......................................................36
3. Equivalences of categories of T-complexes.........................................40
3.1. T-complexes.....................................................................................40
3.2. The isomorphism ∆TC → ∆₁TC........................................................42
3.3. Structures and collapsing.................................................................45
3.4. Particular collapses in Sd X and VX..................................................47
3.5. The collapse $A(∆^n)$ in Sd $∆^n - p ∆^n$.......................................55
3.6. The functor $e_ℳ$, from ∆₁T-complexes to ℳ T-complexes...........62
3.7. The natural equivalence $r_ℳ ∘ e_ℳ ≃1$.....................................63
3.8. The equivalence of categories.........................................................65
4. Degeneracy structures in ℳ T-complexes...........................................67
4.1. An approach to degeneracy structures in ℳ T-complexes...............68
4.2. Pseudocylinder structures on SC-complexes...................................70
4.3. Rectifiers on pseudocylinders..........................................................74
4.4. Degenerate elements in an ℳ T-complex........................................77
4.5. Functors between categories of T-complexes..................................83
4.6. Suggested proof of Claims 5.4 and 5.10..........................................86
5. Comments and possibilities for further work........................................92
Appendix. S-shellability of cone-complexes.............................................98
Glossary of symbols..............................................................................106
References...........................................................................................109

Słowa kluczowe

Tematy

Miejsce publikacji

Warszawa

Copyright

Seria

Rozprawy Matematyczne tom/nr w serii: 266

Liczba stron

111

Liczba rozdzia³ów

Opis fizyczny

Dissertationes Mathematicae, Tom CCLXVI

Daty

wydano
1988

Twórcy

  • Department of Pure Mathematics, University College of North Wales, Bangor, Gwynedd L57 2UW, United Kingdom

Bibliografia

  • [1] J. F. Adams, On the cobar construction, Proc. Nat. Acad. Sci. Washington 42 (1956), 409-412.
  • [2] Appelgate and M. Tierney, Categories with models, in Seminar on Triples and Categorical Homology Theory. Springer. Lecture Notes in Math. 80.
  • [3] N. Ashley, T-complexes and crossed complexes, Ph. D. thesis, University of Wales, 1978 published as Simplicial T-complexes and crossed complexes: a non-abelian version of a theorem of Dold and Kan, Diss. Math. 165 (1988).
  • [5] N. Ashley, CW posets, preprint, 1982.
  • [6] A. Björner and M. Wachs, On lexicographically shellable posets, Trans. Amer. Math. Soc. (to appear).
  • [7] R. Brown, Higher dimensional group theory, in R. Brown and T. L. Thickstun (eds.), Low Dimensional Topology, Vol. I, London Math. Soc. Lecture Note Ser. 48, Cambridge Univ. Press, Cambridge 1982.
  • [8] R. Brown, Non-abelian cohomology and the homotopy classification of maps, preprint, 1982.
  • [9] R. Brown, An introduction to simplicial T-complexes, to appear in an issue of Esquisses Math, with the Ph. D. theses of M. K. Dakin.
  • [10] R. Brown and P. J. Higgins, The algebra of cubes, J. Pure Appl. Algebra 21 (1981), 233-260.
  • [11] R. Brown and P. J. Higgins, Colimit theorems for relative homotopy groups, J. Pure Appl. Algebra 22 (1981), 11-41.
  • [12] R. Brown and P. J. Higgins, The equivalence of ω-groupoids and cubical T-complexes, Cahiers Topologie Géom. Différentielle 22 (1981), 349 370.
  • [13] R. Brown and P. J. Higgins, The equivalence of crossed complexes and ∞-groupoids, Cahiers Topologie Géom. Différentielle 22 (1981), 370-386.
  • [14] R. Brown and P. J. Higgins, Crossed complexes and non-abelian extensions, in Int. Conf. on Category Theory, Gummersbach (1981), Springer. Lecture Notes in Math. 962 (1982), 39-59.
  • [15] R. Brown and P. J. Higgins, Crossed complexes and chain complexes with operators (in preparation).
  • [16] H. Bruggesser and P. Mani, Shellable decompositions of cells and spheres, Math. Scand. 29 (1971), 197- 205.
  • [17] K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), 831 877.
  • [18] M. M. Cohen, A Course in Simple-Homotopy Theory, Springer, New York 1973.
  • [19] M. K. Dakin, Kan complexes and multiple groupoid structures, Esquisses Math. 32.
  • [20] G. Danaraj and V. Klee, Which spheres are shellable? Ann. Discrete Math. 2 (1978), 33--52.
  • [21] R. D. Edwards, The double suspension of a certain homology 3-sphere in S⁵, Amer. Math. Soc. Notices 22, (1975), A-334.
  • [22] M. Evrard, Homotopie des complexes simpliciaux et cubique, preprint.
  • [23] G. Ewald and G. C. Shephard, Stellar subdivisions of boundary complexes of convex polytopes. Math. Ann. 210 (1974), 7-16.
  • [24] H. Federer, Lectures in Algebraic Topology, Brown University, Providence, R. I., 1962.
  • [25] R. Fritsch, Simpliziale und semisimpliziale Mengen, Bull. Acad. Pol. Sci. Ser. Math. 20 (1972), 159-168.
  • [26] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory, Ergeb. Math. Grenzgeb. 35, Springer, Berlin 1967.
  • [27] V. K. A. M. Gugenheim, On supercomplexes, Trans. Amer. Math. Soc. 85 (1957), 35-51.
  • [28] S. Hintze, Polysets, □-sets and semi-cubical sets, M. Phil, thesis, University of Warwick, 1973.
  • [29] J. F. P. Hudson, Piecewise Linear Topology, Math. Lecture Note Ser., Benjamin, New York 1969.
  • [30] D. L. Johnson, Topics in the Theory of Group Presentations, London Math. Soc. Lecture Note Ser. 42, Cambridge Univ. Press, Cambridge 1980.
  • [31] D. M. Kan, Abstract homotopy I, II, Proc. Nat. Acad. Sci. Washington 41 (1955), 1092-1096 ; 42 (1955), 225-228.
  • [32] D. M. Kan, Is an SS complex a CSS complex?, Adv. in Math. 4 (1970), 170-171.
  • [33] K. H. Kamps, Kan-Bedingungen und abstrakte Homotopietheorie, Math. Z., 124 (1972), 215-236.
  • [34] K. Lamotke, Semisimpliziale algebraische Topologie, Springer, Berlin 1968.
  • [35] A. T. Lundell and S. Weingram, The Topology of CW-complexes, van Nostrand-Reinhold, New York 1969.
  • [36] W. S. Massey, Singular Homology Theory, Springer, New York 1980.
  • [37] J. P. May, Simplicial Objects in Algebraic Topology, van Nostrand, Princeton 1968.
  • [38] C. P. Rourke and B. J. Sanderson, ∆-sets I: Homotopy theory, Quart. J. Math. Oxford Ser. (2) 22 (1972), 321-338.
  • [39] T. B. Rushing, Topological Embeddings, Academic Press, New York 1973.
  • [40] G. W. Whitehead, Elements of Homotopy Theory, Springer, New York 1978.

Języki publikacji

EN

Uwagi

Errata Page, line: 5⁴ For: Asley, 1988 Read: Ashley, 1988

Identyfikator YADDA

bwmeta1.element.zamlynska-5249ebed-3daf-4fca-866d-334e4e45afee

Identyfikatory

ISBN
83-01-08117-1
ISSN
0012-3862

Kolekcja

DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.