CONTENTS Introduction.............................................................................................................................................5 I. Preliminaries.........................................................................................................................................7 1. A review of classical results in the theory of Laplace integra............................................................7 2. Boundary values of holomorphic functions......................................................................................10 2.1. Distributions as boundary values of holomorphic functions.........................................................10 2.2. Hyperfunctions in one variable....................................................................................................12 3. Mellin analytic functionals, Mellin hyperfunctions and Mellin distributions.........................................14 4. Laplace distributions.........................................................................................................................18 4.1. Convolution of Laplace distributions.............................................................................................21 5. Ecalle distributions.............................................................................................................................23 5.1. Alien derivatives of Ecalle distributions.........................................................................................24 6. Paley-Wiener type theorem for Mellin analytic functionals.................................................................25 6.1. Phragmén-Lindelöf type theorems................................................................................................29 7. The cut-off functions and their Mellin transforms...............................................................................30 8. Modified Cauchy transformation in dimension 1.................................................................................31 II. The theory of generalized analytic functions..........................................................................................33 9. Definition of a generalized analytic function........................................................................................34 10. The Mellin transform of a generalized analytic function.....................................................................35 11. Characterization of GAFs in terms of Mellin transforms.....................................................................37 12. The Borel and Taylor transformations in the class of GAFs..............................................................40 13. Operations on generalized analytic functions...................................................................................40 14. Resurgent functions.........................................................................................................................44 14.1. Alien derivatives of resurgent functions......................................................................................46 14.2. Taylor-Fourier representation of resurgent functions..................................................................47 III. Applications to singular linear differential equations..............................................................................48 15. Special functions as generalized analytic functions...........................................................................48 16. Fuchsian type ODEs with generalized analytic coefficients................................................................52 17. Fuchsian type PDEs with "constant" coefficients................................................................................58 18. GAFs in several variables..................................................................................................................73 19. Fuchsian type PDEs with generalized analytic coefficients................................................................78 Appendices.................................................................................................................................................84 I. The symbol of a distribution in the sense of A. Weinstein. Conormal distributions...................................84 II. Nonlinear singular differential equations.................................................................................................88 1. The case of ordinary differential equations..........................................................................................88 2. The case of partial differential equations.............................................................................................93 References...................................................................................................................................................94 Symbol index.................................................................................................................................................97 Subject index................................................................................................................................................99
Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland
Bibliografia
[A] E. Andronikoff, Intégrales de Nilsson et faisceaux constructibles, Bull. Soc. Math. France 120 (1992), 51-85.
[B] J. M. Bony, Second microlocalization and propagation of singularities for semilinear hyperbolic equations, Taniguchi Symp. H.E.R.T. Kataka, 1984, 11-49.
[Br] H. Bremermann, Distributions, Complex Variables and Fourier Transform, Addison-Wesley, 1965.
[C] J. B. Conway, Functions of One Complex Variable, Grad. Texts in Math. 11, Springer, 1973.
[E1] J. Ecalle, Les fonctions résurgentes, Publ. Math. Université de Paris-Sud, several volumes.
[E2] J. Ecalle, Singularités irrégulières et résurgence multiple, in: Cinq applications des fonctions résurgentes, preprint 84 T 62, Orsay 2-42.
[E3] J. Ecalle, Finitude des cycle-limites et accéléro-sommation de l'application de retour, preprint 90-36, Université de Paris-Sud.
[GS] I. M. Gel'fand and G. E. Shilov, Generalized Functions, Academic Press, New York, 1964.
[Ka] A. Kaneko, Introduction to Hyperfunctions, Math. Appl., Kluwer, Dordrecht, 1988.
[Ko] H. Komatsu, An introduction to the theory of hyperfunctions, in: Lecture Notes in Math. 287, Springer, 1973, 1-43.
[L] J. Leray, Le calcul différentiel et intégral sur une variété analytique complexe, Bull. Soc. Math. France 87 (1959), 81-180.
[Ły1] G. Łysik, On the structure of Mellin distributions, Ann. Polon. Math. 51 (1990), 219-228.
[Ły2] G. Łysik, The Taylor transformation of analytic functionals with non-bounded carrier, Studia Math. 108 (1994), 159-176.
[Maj] H. Majima, Resurgent equations and Stokes multipliers for the generalized hypergeometric differential equation, preprint, Ochanomizu University, 1990.
[M] B. Malgrange, Introduction aux travaux de J. Ecalle, prépublication de l'Institut de Fourier, Université de Grénoble, 20 (1984).
[Mo] M. Morimoto, Analytic functionals with non-compact carrier, Tokyo J. Math. 1 (1978), 77-103.
[N] N. Nilsson, Some growth and ramification properties of certain multiple integrals, Ark. Mat. 5 (1965), 463-476.
[Pl] M. Pliś, The Mellin analytic functionals and the Laplace-Beltrami operator on the Minkowski half-plane, Studia Math. 99 (1991), 263-276.
[PCN] E. Pham, B. Candelpergher et C. Nosmos, Visite aux sources, prépublication de l'Université de Nice, 1989.
[Schl] H. Schlichtkrull, Hyperfunctions and Harmonic Analysis on Symmetric Spaces, Progr. in Math. 49, Birkhäuser, Boston, 1984.
[Sl] L. J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, 1960.
[Sz] Z. Szmydt, Fourier Transformation and Linear Differential Equations, PWN-Polish Sci. Publ., Warszawa, and Reidel, Dordrecht, 1977.
[SZ] Z. Szmydt and B. Ziemian, The Mellin Transformation and Fuchsian Type PDEs, Math. Appl., Kluwer Acad. Publ., 1992.
[T] E. C. Titchmarsh, The Theory of Functions, Oxford Univ. Press, London, 1949.
[Tou] J. C. Tougeron, Gevrey expansions and applications, preprint, University of Toronto, 1991.
[VDZ] V. S. Vladimirov, Yu. N. Drozhzhinov and B. I. Zav'yalov, Multidimensional Tauberian Theorems for Generalized Functions, Nauka, Moscow, 1986 (in Russian).
[We] A. Weinstein, The order and symbol of a distribution, Trans. Amer. Math. Soc. 241 (1978), 1-54.
[Wi] D. V. Widder, The Laplace Transform, Princeton Univ. Press, Princeton, N.J., 1946.
[Zie1] B. Ziemian, Taylor formula for distributions, Dissertationes Math. 264 (1988).
[Zie2] B. Ziemian, Elliptic corner operators in spaces with continuous radial asymptotics II, in: Partial Differential Equations, Banach Center Publ. 27, part 2, Inst. Math., Polish Acad. Sci., Warszawa, 1992, 555-580.
[Zie3] B. Ziemian, Continuous radial asymptotics for solutions to elliptic Fuchsian equations in 2-dimensions, in: Proc. Sympos. Microlocal Analysis and its Applications, Publ. RIMS, Kyoto Kokyuroku 750, 1991.
[ZieK] B. Ziemian and H. Kołakowski, Second microlocalization and the Mellin transformation, Publ. RIMS Kyoto Univ. 26 (1990), 785-801.