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A quotient surface singularity is determined by a finite group G acting
linearly on a two-dimensional complex vector space V or, equivalehtly, by
the corresponding action of G on the local ring (¢, , of holomorphic
functions at 0, respectively on the associated graded ring which is isomorphic
to the polynomial ring S = C[u, v]. As a general philosophy, all analytic,
algebraic, geometric and topological invariants associated to the singularity
X =(V/G, 0} should be computable by those or by corresponding actions.
For instance, Henry Pinkham has shown in [7] how one can describe the
vector space Ty of (isomorphism classes of first order) infinitesimal
deformations of X by the invariants of the action of G on S and on the
cohomology groups

HI(V\{O}’ ((’]V) and Hl(V\{O‘s @V)

(where @, denotes the sheafl of germs of holomorphic vector fields on V),
using a result of Schlessinger ([10]) on T;! for an arbitrary normal surface
singularity (X, x). He was able to present a basis for Ty} in the case of a
cyclic group, reestablishing a dimension formula of the last author ([8]), and
two of the authors of the present note used his method to find such a basis
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for the class of “dihedral” singularities ([2]). However, in the remaining cases
it seemed to be hopeless to calculate 7y by the same method, even in the
case of the binary polyhedral groups T, O, I (i, the finite subgroups of
SL(2, 0), where the dual of T3 can easily be gotten from a defining equation
R(x, y,z) =0 for X by the isomorphism

- R OR R
(1) (TX) EC[X, Y, Z]/ Rs' .

ooy a

In a first version of this paper written in 1983 it was shown how one
can find a basis of the invariant vector spaces

H'(V\!{0}, G,)¢ and H'(V\{0}, ©,)°

for finite groups G =« GL(2, O) in a canonical way via easily computable
invariants like S¢. Here, we used the fact that the whole general linear group
GL(2, O) acts on the cohomology groups envolved, especially by applying
the Clebsch-Gordan formulas. With these bases and generators of S¢ it is
possible to determine explicitly the linear mappings which enter the
description of Ty by Pinkham, making his result a little more concrete
(Theorem 1). However, from the computational point of view, the systems of
linear equations one obtains this way, are still not tractable, unless one has a
priori bounds for the degrees of the base elements of T} or one knows the
dimension of Ty (as in the case of quotients by the binary polyhedral groups,
1.e., for the rational double points).

It was remarked by Horst Kndrrer that our .results become much
smoother, if one applies them to the dual space (7;)*: Using elementary
duality for GL(2, €)-modules, we deduce from Pinkham’s result a
description of (Ty)* as the cokernel of a natural mapping (Theorem 2). This
result, however, is only a special case of a general formula for (T})* in the
case of an arbitrary normal surface singularity (X, x) which was obtained by
H. Knérrer and the first author in [1] by dualizing Schlessinger’s description
of T,}. Working on the resolution of the singularity (X, x), they were able to
determine the dimension of Ty for a fairly wide class of rational singularities
including the quotient singularities with the exception of 63 individual cases
with low embedding dimension. On the other hand, the second author found
an algorithm for computing the dimension of T} for all series ol quotient
surface singularities, using only invariant theory ([5]). We include his tables
which were obtained with the aid of a personal computer at the end of
Section 7 of this paper.

Applying again the Clebsch-Gordan isomorphisms we get a natural
splitting of (T})* into two parts (Theorem 3). For rational double points, the
second part is trivial and the first part identifies (see Section 5) with

(2) SY/ideal generated by all Jacobians J (f, f3), f1,/-€S°,
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where
duf 5uf1J
auf 2 apf 2

Of course, formula (2) can easily be deduced from (1). Moreover, we should
mention that (2) is only a special case of a formula due to J. Wahl ([15))
which holds for all quasi-homogeneous Gorenstein surface singularities
(X, x): In this case, S has to be replaced by the dualizing module wy , of
the singularity and the ideal by the module generated by all exterior
products df; A df, for functions f}, ..., f, generating the maximal ideal my ,
of the local ring €y .. So, denoting by Qy, the ¢y .module of Kahler
differentials at xe X, (2) should be interpreted as the canonical isomorphism

(3) (T¥)* = wy /image of Q% ..

I (1, f2) =det[

Motivated by Wahl's formula we generalize our splitting result in
Section 8 to some finite quotients of quasi-homogeneous Gorenstein surface
singularities (including all quasi-homogeneous rational singularities of
embedding dimension e > 4) and show that the second part has always a
dimension equal to dim¢(wy /My ®x,), i.6, to the minimal number of
generators for the dualizing module (which equals e—2 in the rational case).

In Section 6 we sketch two methods how one can deal, at least in
principle, with the first part and apply the second one to the cyclic case.
Finally, in Section 7, we compute this part for a complete series of quotients
by the groups T-(Z/2mZ), m = 6(b—2)+1, b 2 3, and list the results of [5].

We want to thank the Max-Planck-Institut flUr Mathematik for supporting two of us
(B. and K.) during the preparation of this paper. We are indebted to Horst Kndrrer for many
helpful conversations, suggestions and remarks on a first draft of our manuscript. Thanks are
also due to J. Wahl whose useful comments on Section 8 are partly transformed into remarks.
Of course, the responsibility for the content of the final version, especially for the decision to

keep the whole paper in an extremely elementary spirit and not to use more sophisticated tools
like, e.g., Auslander’s and Reiter’s almost split sequences, is completely ours.

1. Some standard GL(2, C)-modules

For the convenmence of the reader and in order to fix our notations, we
describe some well-known representations of the general linear group GL,
= GL(2, (). We choose once and for all a basis e, e, of the vector space V

and let the group element
g = [a ﬁj'e GLZ
y 0

4) g(ue, +ve,) = (au+ prye; +(yu+ov)e, =:u'e;+v'e,,

act on a vector ue, +ve, by

3 — Banach Center t. 20



34 K. BEHNKE, C. KAHN AND O. RIEMENSCHNEIDER

-G

This gives the standard left representation G x V — V which in turn yields a
left representation on the dual vector space V* by the condition

@A), gw)) =<4, w), AeV* wel.

This representation is given by (g, ) —Aog~ ! and will be described via the
dual basis e}, ¢¥ by the contragredient matrix

or, equivalently, by

~Ag)| -8

Denoting as above coordinates of V' by u and v, we can interpret e} and e}
as the coordinate functions which we will also denote by uw and v,
respectively. So, we identify V* with the vector space of linear functions
au+bv, a, beC.

Having a representation on a vector space one can induce
representations on the symmetric and exterior powers. In this note we use §,
for the Ith symmetric power of V*:

S, = SI(V*)

1 5 —1
‘g7 = [ ;] 4(g) = detg = ad—By.

which we identify with the vector space of homogeneous polynomials of
degree / in u and v with the basis

e, =wvt, j+k=1
The action of GL, on §, is given by

. 1 .
5 wr) = ——(du— By (—yu+av)
and induces a C-algebra representation of GL, on the polynomial ring
S=@®S,=Clu,v].

4

0

More generally, if fe (o is a germ of a holomorphic function at the
origin, we can define g(f) =fog '€ Oy, for all geGL,. In this way one
gets a canonical left GL,-representation which maps the /th power m' of the
maximal ideal m of (), , into itself. Hence, this action induces a left
representation of GL, on the associated graded ring

ao

Gr G"V,O = @ m‘/n]1+1

i=0

which 1s — as GLz-algcbra — 1somorphic to S. One can look at this
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isomorphism also from another point of view: The multiplicative group C*
acts via

0
C*acrag, = [8 c]EGLz

on every GL,-module M, such that we have the eigenspaces
M,=meM: g.(m)=c 'mfor all ceC*}, IleZ,

of homogeneous elements of degree I Since the operations of C* and GL,
commute, GL, operates also on the associated graded module

M,= @ M,
I=-x
and on the module
M+ = @ M[
i=1

consisting of homogeneous elements of positive degree. Of course, in the case
above, S, =(6 o), and

(Op.o)y = D S = Clu, v] =Gr Gy .
=0

For certain purposes it is convenient to identify V* with the cotangent
space of V at 0 via

Tfo = m/m2 = S, (V¥) = V*

where the differential du is mapped to e} and dv goes to e%f. If we provide
T*o with the natural GL,-action

(6) g(dd) = (dA)og™"' =d(Aog™") = d(g(d)),
A =au+bv, a, be C, this isomorphism is GL,-equivariant. Dualizing again,
we get a GL,-isomorphism

V=T,

d
e, 0, = = We denote by

where e, —d, =

o’
S$* = @ S:‘, St = Sl(TV.O)
I=0

the algebra of linear differential operators with constant coefficients:

deSt < 0= ) a,dd

jtk=1
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with the GL,-action given by
(7 g(& &) = (a8, + 79, (Bo, +63,).
¥ is in a canonical way the dual of §,, the pairing being given by
, o YKL, j=1 k=2,
(B8, wv') = {0, otherwise.

Finally, since

1
g(du A dv) = g(du) A g(dv) = 20) (ddu—Bdv) A (—ydu+adv),
we get on A% T, the representation
(8) g(du A dv) = A(g)" 'du A dv,

and on A%T, , there is the dual representation
(9) g(2u ~ 2)=4(g) 2 A ;.
Now, for any GL,-module M, there is a natural action of GL, on
M®A? T,. Identifying this tensor product with M via m—m®(du A dv),
we get a new action on M which is given by
(g, m)—>x(g)-g(m).
Here x ﬁ;ands for the character
(10) 1 Gl ~ C*, x(g)=4(@ "

To distinguish the new GL,-module from the old one, we denote it by M,.
In the same manner we construct MI,‘ for all keZ.

We notice that there exists a natural isomorphism V* = V®AZ? V* given
in coordinates by e} —e,®(eT A e?), e > —e, ®(e¥ A e}). Hence, it induces
isomorphisms of GL,-modules S,—~»S;"l, by

(11) Wt (=1 &8, j+k=1

2. The GL,-modules H'(V\ {0}, ) and H'(V\{0}, ©,) and their duals

We realize cohomology classes on U : = V\{0} by l-<ocycles via the
canonical isomorphism

H' (U, )= H' (¥, £)=Z" (W, #)/B (¥, )

which holds for any coherent analytic sheal % on U and for arbitrary Stein

coverings # = {W,),.; of U. So, we write for a cohomology class
Ee H' (U, #):

ézl—_,a'rjv fo'reHo(u/omvvf’ ‘gr)
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For # = (,, GL, acts on the first cohomology group as follows:
If & =[fol foe€e H* (W, N W,, Gy), then

9(&) = [f.09 1= [9(/))]

where g(f)eZ (g(#), Ov), g(#) = {g(W,)},c x. It is easily seen that this
action is independent of the Stein covering #". Using in the [ollowing the
special covering % = {U,, U,} with

U, ={u,v): u#0}, U,;={u,v): o0},

it is immediately clear that an element

a O
= eGL
g1 [0 5} 2
acts on the special class

1 .
éjk=|:uj+1vk+1:|, j k=0
by

(12) gl(ijk)=aj+15k+léja-

So, by our conventions, £, is homogeneous of negative degree —(j+k+2),
and it is well known that the £, with fixed [ =j+k form a basis of the
homogeneous part of H' (U, @) of degree —(I/+2). In the following we write

HI(U, (gy)gr =@ Hl((—ou)—(uz)
=0

and determine the structure of the GL,-modules H'! (Cy)_ 4 2,- To do this we
have to compute the action of the special matrices

fo-11 . . [t
92—1 0 g3'—017

which together with the matrices g; generate the group GL,. In the case of
g, we have g,(%) = {U,, U,}, g;(u) =0, g,(v) = —u, and therefore

1 .
(13) g2 (&) = (— 1)1 [W] (with respect to g, (%))
=(- l)k fu-
By the following calculation (whjch explains itself):

(u—v)fl"iv"‘r1 =u1+1 PE 2‘( ! )(—'1)‘1—JI

X fi+4
uJ+l K+ 1 Z ( )




38 K. BEHNKE, C. KAHN AND O. RIEMENSCHNEIDER

we finally get

1
(14) 93 (&) =[

(u_v)j+lle+l

:' (with respect to g, (%))

i+ 4

= ‘2::0(1 1 )Cl'hl.k—).'

We are now able to prove
LEMMA 1. The C-linear isomorphism

®: S:l—l - H! (Ov)-a+ 2
defined by
1
(15) ‘P(ajx) = éjk’ ajk =j'7 i fﬁ‘,
is GL,-equivariant.

Proof. We have to show that g,0¢ = pog, for r =1, 2, 3, which is
trivial in the first two cases. For the last case this results from the following
elementary computation:

k ,
. i j+ A
@00 @) =51kt T ()0 an-s

i=o0 \ 4

_ k Jrk! (j+ A 42 %1
—;‘go(j+l)!(k—l)!(i)¢(a{' &™)

_ . k j+A h—A

B (p(ggo (ﬂ.)a{‘ a: )

= @ (d(8.+4)")

= pogs (2, 05). ]

This result can be explained (and could have been derived) more
naturally in the following way: Denote by Q} the sheafl of germs of
holomorphic 2-forms such that as GL,-modules

HO(V, Q3) = HO(V, 0,)®A4% T,
and

@®s

i

(

HO(V, Q2), = S®A>T¥o = @ Sy, ST ).
I=0 i !

0

So, Lemma 1 establishes a concrete GL,-equivariant pairing
H(V, Q) xH' (U, Gy),, — C,

sending (W ")®(du A dv)xE, to 1, if 1 =j+1, x =k+1, and to 0 otherwise.
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This ‘pairing is induced, of course, by the natural residue pairing
H°(V, Q) xH" (U, Gy) - C

associating to each pair @ = hdu A dv, ¢ = [f,,] the residue of f;, hdu A dv
at the origin (in the sense of [4], p. 649 ff.) This pairing can be understood
even in a more conceptual framework. By the long exact sequence for local
cohomology and Theorem B for Stein manifolds, we get an exact sequence

0=H'(V, ) =H'(U, &) = H,(0y) > H*(V, Gy) =0,

and by local duality we have a canonical isomorphism

H’%,(6,)* = Homg, (Gy, 2}) = HO(V, Q}).

We remark that, by the same reasoning, one gets natural isomorphisms
HY(X', #y* = H (X', #*®RQ%)

where X is a normal two-dimensional Stein space with exactly one isolated
singularity x, X’ = X\{x} and # is a coherent reflexive sheaf on X.
In order to calculate the GL,-module H!(U, ©y),,» we observe that

H'(U, 8y) = H' (U, 4)®T o
as GL,-modules. Hence, we have a GL,-equivariant isomorphism
'11’3 S:— 1 ®ST = Hl (U1 @V)gr

given by Y(P®0J) = ¢(P)®J. But, by the classical Clebsch-Gordan
isomorphisms (which can be found in [11] and explicitly in [12], e.g.), we
have

St 1150y, o X 1,1 OST

1+1,x

for 1 > 0 where the isomorphism is given in the form é®: with

6(6:;3(0)=al’;a|§+1®au_a£+la‘v®av’ J+k=l_15

(18 (A ) = jol ! E®O,+kA A @8, jik=1+1.

Since elements in S} have degree —/, H' (U, @,), has only negatively graded
homogeneous parts:

HI(U, QV)gr .= E‘%Hl(@u)-(unv

Combining our results we finally get
ProposiTiON 1. The C-linear isomorphism

D*®I*: 8F DS} 1 = HY(Op)_ ¢+ 1)

I-1,x I+1,x7
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given by

(A7) D*(3) =kt DEjua1 ®8,—(j+ D &je1a®8,  jtk =1-1,
and

(18) *(0p) =&k ®, 4801 ®0,,  jHk =141,

is GL,-equivariant for all 1 > 0.

Again, it is interesting to note that the dual version is much easier to
describe. We notice first that

HY(U, @) = (H' (U, 6,)®Ty.o)* = H*(V, Q)@ T,
=~ H°(V, Q} ®Q}),

where Q) denotes the sheaf of germs of holomorphic 1-forms on V. Hence, by
Proposition 1 there is a GL,-equivariant isomorphism of vector spaces

It is easy to check that this isomorphism is induced by an isomorphism
HO(V, @), = HY(V, Q7)) ®HO(V, ¢y),
which 1s given, if represented in the form
w = fdu+gdv—(D(w), I{w)),
by differentiation
D(w) =dw = df ndu + dg ndv = (6,9 — 0,f)du ndv
and integration
Hw)=uf+vg.

So, we have proved the following version of the Clebsch-Gordan
isomorphism:

PropositioN 2. The C-linear mappings
HO(V, ), — §,@8.,,
HO(V, Q, ®Q3), — S2®S8,,
defined by
(fdu+gdv) —(0,9—C.f, wf+vg),
(fdu+gdv)®(hdu ~ dv)—(0,(hg)— 0, (hf), h(uf+vg))

are GL,-equivariant isomorphisms.

(19)

Of course, one can prove Proposition 2 directly. It is easy to seec that the
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mappings are GL,-equivariant. Moreover, after counting dimensions in any
degree, it suffices to prove that the first mapping is injective. But, if f and g
are homogeneous, f of degree I, say, then

0,9— 0,/ =0=uf+vg
implies by Euler’s relation

0=2d,(uf+vg) = f+ud f+v8,g = f+ud f+vé,f) =(+1)/,

hence / =0, and also g = 0.

There 1is still another reason for this form of Clebsch-Gordan
isomorphism: Since u, v form a regular sequence in (), o, there exists a finite
free resolution of the ¢ -module my , by the Koszul complex which might
be written as

(20) 0- Q50,5 my o — 0,

where E and I are defined by contraction with the GL;-invariant Euler
derivation ué,+vd,, such that

(21) E(hdu A dv) = h(udv—vdu)

is multiplication by the form udv—vdu (which transforms under GL, by
multiplication of the determinant) and I is given as above by integration:

(22) I(fdu+gdv)=uf+vg.
Hence, (20) is a GL,-equivariant exact sequence of (%,-modules. Moreover,

the corresponding graded sequence splits as a sequence of Gr (), o-modules,
since for homogeneous h of degree | we have

DoE(hdu A dv) = D (hudv— hvdu)
= (¢, (hu)+ &, (hv))du A dv
=(l+2)hdu A dv

and
(Iod)(h) =1((6, k) du+ (3, h)dv)
=ud,h+vd,h
= lh.

3. Reformulation of Pinkham’s description of 73
For any fe H®(V, () there exists a canonical cup-product mapping

HY (U, ¢,)<LHHY (U, @),
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which can be defined by
(23) Ui2do f =Uf]
Il fis a homogeneous polynomial of degree d, then
U H (Cy)-qr 2= H (Cp)-g-a+ 2

and the composition

St-17 H' (Oy)_ g9y~ H' (Op)--g+2) > St a1
is again denoted by {Jf Obviously
(24) Ot v =0 4 jZr ks,
and zero otherwise. By the cup-product one can define a new mapping

Uf: H'(U, ©y) — H' (U, &),
setting

(25) (E®0,+n®3)uf =Lu(@)+nu(a.)).

Again, if feS,;, the cup-product respects the grading. We denote the
composition

S:—ZD—"HI(UD QV)gr Q[’HI(U) 0V)gr :'S;—l
by (Jf, and the corresponding composition with /* by
D

Uf: St-lll =,®18:1_1—’S:_1.
l =
It is simply checked that

ajng)“rvs =[k+1)r—(j+1)s] aj—r+1,k—s+1a

(26)
ajk U urUs = (r+3) aj—l',k—s’
i

Now let G = GL, be any finite subgroup. Via the embedding in GL,, G
acts on every GL,-module M. We denote by M® the absolute invariants:
M®¢ = {meM: g(m) =m for all geG}.

By the definition of M

MG = (Ml,‘)G = {meM: g(m) = A(g)*m for all geG}.
In particular, the invariant algebra S% is finitely generated by a (minimal)
system of homogeneous polynomials P,, ..., P,, and it is easily seen that

UP: H'(U, ©,)° -H' (U, 6)°.
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Pinkham proved in [7] that the vector space T, of first order
infinitesimal deformations of the singularity of X = V/G at the origin is equal
to the intersection of the kernels of these mappings. Therefore we get

THEOREM 1. Let G = GL, be a finite subgroup, and let P, ..., P, be a
minimal set of generators for the invariant algebra S¢. Then the vector space
Tx of infinitesimal deformations of the quotient singularity X = V/G s
isomorphic to the kernel of the C-linear mapping

ot (SE)°D(S% _)° — D (ST )°
E=1
which is defined by
a*(al’ 62)=(6h ---a(se)s 6£=(61UP5)+(62UP£)

Since it is very easy to compute bases for all invariant spaces szk (see

e.g. [9], [5]), the determination of the infinitesimal deformations of fixed
degree is reduced to the solution of a concrete system of linear equations. So,
if one knows an a priori bound for these degrees, Theorem 1 gives one an
effective way to compute Ty for a given group. We have done these
computations for the binary polyhedral groups T, O and I, where we found
the more or less expected results. However, such computations are much
simpler, if one dualizes Theorem 1, as was remarked by H. Knorrer.

4. Dualization of the main result
For fe H°(V, ), the dual mapping
H(V, Qf) = H'(U, C)* - H' (U, C)* = HO(V, )
is just multiplication by f, and
HY(V, @) = H' (U, Gy)* >H' (U, ,)* = H°(V, 2} ®2})
(the middle map in both lines being (|Jf)*) is given by
w—~df®w,

we H*(V, Q}), df =(2,/)du+(8,f)dv. So, dualizing Pinkham’s description,
we obtain

THeEOREM 2. Let G = GL, be a finite subgroup, and let P,, ..., P, be a
(minimal) set of homogeneous generators of the invariant algebra S¢. Then, the
dual (T{)* is canonically isomorphic to the cokernel of the S€-module
homomorphism

@ HO(V, Q)¢ — H°(V, Q, @23)°
=1
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given by

(27) (@, ...y @) — ), AP, Qw,.
e=1
By Hartog’s Theorem, H°(U, %) = H°(V, %) for all free ¢';,-modules %
of finite rank. Therefore, if we denote V/G by X and the regular part U/G of
X by X', we get

HO(V, Q§)° =~ H°(X', Q%) = H' (X', (p)*
and
HO(V, Q; ®Q3)° = HY (X', QL ®Q%) = H (X', Oy)*%,

such that Theorem 2 also could have been proven directly by dualizing
Schlessinger’s exact sequence for Ty (see [1]).

Combining Propositions 1 and 2, we get the following dual version of
Theorem 1:

ProrosiTion 3. Let G = GL, be a finite subgroup, and let P, ..., P, be
a minimal set of homogeneous generators of the invariant algebra S¢, of degree
I, ..., l,, say. Then the dual vector space (T)* is canonically isomorphic to
the cokernel of the C-linear mapping

€

x: le — Si’z®Sf{,x
where
2@y, ..., 0,) = (J{wy, ..., w,), K(wy, ..., ®,)),

28) Ji,..,0)=Y J(P,w), JP,w)=28,P 8w-0P o,
e=1

Ky, ...,0)= Y LP,w,.
e=1

In order to obtain concrete bases for (Ty)* or at least dimension
formulas, it is necessary to analyze the mappings J and K in Proposition 3 a
little further. Notice that K is a S-module homomorphism, but J is certainly
not. However, the following is true:

TueorReM 3. Under the assumptions of Theorem 2 the set
g = {heSSZ: h=J(w,, ..., w,), K(wg, ..., w) =0}
is a S%-submodule of S_gz which contains all elements
J(f, 9w, [ geS¢ weS].
(TY)* fits as S¥-module into an exact sequence

(29) 0— 8%/ — (Tx)* - (5% ,/imK) - 0.
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Proof. Since # =im(J|kerK), the exactness of the S¢-sequence (29)
follows from the first assertion. The mapping K may be, as $%-module
homomorphism, identified with the composition

@ HO(V, Q3)° 2> HO(V, Q) ®Qp)° 184 HO(V, Qf)
e=1

where y is the mapping in Theorem 2 and [ is defined in Section 2. So, for w
=(w,, ..., w,) with K (w) = 0, there exists a unique %1 H°(V, Q} ®Q}) with
(E®id)(n) = u(w). Since the mapping J is the composition of u with a left
inverse to E®id, it follows that

J(w) =1n.

The first claim is hence implied by the fact that E®id is S-linear.

For the remaining part it is enough to show that J(P,, P,)we ¢ for all
¢, v and all homogeneous weS$. Take w,= —,P,0, 0, =, P,w, ¢ <v,
w, =0, ¢6#p, v, ®=(w,, ..., w,). Then we have

pl@w =(—1,P,dP+1,P,dP)w
=[—(ué, P,+vd, P,)(4, P,du+ ¢, P,dv)
+(ud, P,+vd, P)(C, P,du+0, P,dv)]w
= [(0, P.)(0, P))— (0, P)(J, P)] (vdu—udv)w
=J(P,, P,)(vdu—udv)w = (E®id)(J (P,, P, w),
such that, up to a non-trivial constant, J(w) is equal to
J(P,, P,) - w. O

In Sections 6 and 7 we shall apply this result to the problem of the
determination of dim Ty for all groups G = GL,. The special case of rational
double points is treated in the following section.

5. (7y)* and T for rational double points

Suppose now that G = SL, such that S7 = §9, = §°. Moreover, since 157,

we have P,cimK for all e=1, ..., e, and by the same reason the ideal
F 8¢ =sz contains all elements J(P,, P,). On the other hand, each
element of ¢ is of the form

Y J(P, Q). Q.eS°.

and therefore it is contained in the ideal generated by the elements J (P,, P,).
So we get
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Tueorem 4. For finite G = SL,, the S¢-module (T{})* is canonically
isomorphic to S¢/ ¢, where ¢ is the ideal generated by the Jacobians J (P,, P)
of a minimal set of generators P, ..., P,.

Of course, Theorem 4 is only remarkable by the fact that we proved it
without any special knowledge of the invariant theory of the binary poly-
hedral groups. Indeed, using Felix Klein’s results ([6]), the proof of Theorem 4
is a simple exercise: For a finite group G =SL, the invariant ring S$¢ is
generated by three homogeneous polynomials w,, w,, w, satisfying only one
generating polynomial relation

R(wy, wy, w3) = 0.
Hence, 8¢ = C[w,, w,, w;]/ideal generated by R. For suitably chosen w,,
w,, wj, there exists a constant C # 0 such that

7R
6W8+2,

(30) J(ws’ w£+l)=c 8€Z3'

{We prove this fact in Lemma 2 below). Hence,

0R ¢éR OR
T iw, dwy Pwy )

SG/j = C[wl’ W,, W3]/(R

and this is the description of (T})* for X = {(w,, w,, w3)e C*: R(w,, w,, w3)
=0} = C?*/G which we mentioned in the introduction.

LemMma 2. For G = SL, there exist generators w,, w,, wy of S¢ with a
generating relation R such that (30) holds.

Proof. For a cyclic group of order n=r+1 > 2, generated by the

element
a O
06

{, a nth primitive root of unity, we have obviously generators «", v" and uv,
satisfying (u")(v") = (uv)". By putting

wy=uv, w;=31U'+0v"), w;=3iu"-0"),
we get new generators satisfying the relation R =0, where
R(wy, wy, wy) = Wi —wi+wi.
A simple calculation shows that

n n ¢R
Jwy, wp) =207 —u) =2

2 0wy’
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n . ndR

J(wy, w3) = —?(“U) —Em,
no..oo.n cR
J (ws, W1)=5(“ +U)_26w2'

For the binary dihedral groups D, of order 4n, n =r—2 > 2, and the binary
tetrahedral, octahedral and icosahedral group T, O and I respectively, there
exist generators w;. w,, wy with the following degrees:

degw, degw, deg w,

D, 4 2n 2n+2
6 8 12
o B 12 18
1 12 20 . _ 30

which satisfy a relation of the type
R(wls Wi, W3) = w§+g(w1’ wZ) = 0

Since G =SL,, J(w;, w,)€S% and since obviously in all cases
degJ(w,, w,) = degw,, there exists a constant C such that

(R
(31) J(Wl, Wz) = 2CW3 = CEW_S
(In fact, Klein found w,, w,, wy by constructing the invariant w, of lowest
degree and by putting

otw, 6,0,w,

w, = Hesse(w,) = det [5'\ a,w, 0w,

], wy = J(wy, wy)).

Now, for all ¢,
0 = J(R(Wh Wz’ W3), Wa)

R dw, OR ow,
= det z“:aw” ou Z":aw" o —Z—ai.](w w,)
I B R Bt i
ou o
which implies (30) using (31). O

Another advantage of our description of (73)* is the possibility to
calculate a basis for Ty itself. Recall that there exist GL,-isomorphisms

S, — S*
i 'vl’



48 K. BEHNKE, C. KAHN AND O. RIEMENSCHNEIDER

sending w/v* to (—1)*& &, j+k = I. Hence, for a binary polyhedral group
G c SL,, these mappings induce isomorphisms

i 87 S(SH°.

For a polynomial QeS¢ we denote the corresponding differential operator
7(Q) by Q(d). y, gives rise to a non-degenerate bilinear form (,) on S¢ by
(@1, @2) = @y, (@)= Qz(a) Q.

If now ¢, = # nSY, there exists an orthogonal complement of ¢, in S¢
with respect to this bilinear form which we call T:

FH10T, =57
Then we get at once
CoroLLARY V. Let Q,,...,Q, be a homogeneous basis of the finite
dimensional vector space IéO T, c léo S¢. Then, a basis of T¢ in H' (U, 6,) is

given by the images of the operators Q,(9), ..., Q,(0) under the mapping D* of
Proposition 1.

To get a more precise result, let us first analyze the case of a cyclic
group G ol order n =r+1 > 2 in SL,. The vector space S is generated by
the elements

wit, j—k=0modn, j+k=I,

and generators for the ideal # are u”", v", (uv)" '. Hence, for an element
wite S¢: ,

(@) j#k = wite ¢, since j=k+4in, ieZ\{0};

b j=k=zn—-1 = wite g;

© j=k<n—1 = Jo¢ g.

So, we have
# =8¢ for 1>2n-2 or odd ! <2n-2,

F Wy =8¢ for 1=21<2n—4.
But for & ite #,, | =24 <2n—4, we have j <A or k < A such that
At h) =0.

Therefore, (32) is the orthogonal decomposition, and the Corollary 1 applies
to the r =n—1 polynomials

=1, Qr=mw,...,Q, =(uv)’_1,

(32)

1e. to

0 1 -2
Wi, Wy, ..., W] “.

In the other cases, we use the same generators as in Lemma 2 such that
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a basis of S/ # can be represented by elements of type wi wheS® only.
These elements occur in different degrees such that again

(33) Fi=8 or #®F =57,

where ¢, is generated by one element of type wi w4, jdegw, +kdegw, = I.
By using the explicit form of the generators w,, w,;, wy and the relation R,
the reader may check himself that indeed ¢;= T, ie., that the elements
w} w4 which are not in ¢ form a basis Q,, ..., Q, as in the Corollary 1.

6. Some remarks on the modules §$ ,/imK, kerK and Sf;/ §3

From now on we assume G < GL, to be small, i.e, G contains no
pseudoreflections, and that N = G nSL, is properly contained in G. Then, as
is well known, the minimal number e of generators P,, ..., P, of S¢ is equal
to the embedding dimension emb X of the quotient X = V/G and e > 4.

-1
Henceforth, X cannot be realized as a hypersurface in C*. In fact, (82 )

equations are needed to describe X as a subspace of C¢ such that X is never
a complete intersection which makes the determination of Ty a difficult task.

From the complete knowledge of Betti numbers ([13]) one can deduce,
moreover, that the dualizing module wy is minimally generated at the
singularity x by e—2 elements, ie,

dimcwy /my 0y, =e—=2.
Returning to Theorem 3 again we see that in this case 1¢S$ such that
$$.2 =55 = H°(X', @) = H(X, wy),

since wy is the reflexive hull of the sheaf Q%. But, by definition, im K equals

the S¢-submodule of H%(X, w,) generated by P,, ..., P,. Alter localization
at x we conclude that
(34) dimeSS fimK = e—2.

It is clear, how one can get concrete infinitesimal deformations in H! (U, @)
from a generating set @, ..., @,-, of homogeneous elements in S§ by
duality.

So, we concentrate on the module Sfl/ F. Denote by # the relation

module of S¢, ie., the kernel of the epimorphism
e—2
® §¢ - 59
Ji=1
given by
e—2

(gli ] ge—Z)H Z gja.)p
=1

4 - Bapach Center 1. 20
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where {@;, ..., @,_,} denotes a minimal set of generators for SS. We grade
A by

deg(gy, ..., ge—2) =! < degg;+degd;=1,j=1,...,e-2.
We have a grading on kerK, too: If

(@y, ..., w)ekerK = @ SS,

e=1

then
deg(w,,....w,) =1 < degw,+lL =1 ¢e¢=1,..., ¢e.

(Recall that I, = deg P,). Finally, we denote by 7 the graded submodule of
trivial relations (wy, ..., ®,) withw, = [, P,w, @, = =1, P, o, pu # v fixed, o,

=0, 0 # u v. Then, for (g,, ..., g.-,) €A, all g; are in S, since &y, ..., @, _,
form a minimal set of generators. Hence,

4

gj= Z IEPERJ'E

e=1

for some R, eS°. Because of

e—2 ¢ e—2
0=12 g;0;= 3 LP(Y R.d),
j=1 =1 i=1
we see that
w=(w,, ..., o)ckerk,
e~2
if o, = ) R;.@;. Of course, w is not well defined, but it is easily seen that it
=1
is unique modulo #. On the other hand, it is clear that each relation

Y I, Pw, =90
e=1

can be transformed into a relation

e—12
g;@; =0
i=1
by writing
e—2
W, = Z Qe
j=1

By this procedure we have constructed a surjective S®-homomorphism:
X —kerK/T.

Since, in the proof of Theorem 3, we have shown that the image of J| 7 is the
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S°-module generated by the elements J(P,, P,)@; we finally get the
following result:

ProprosITION 4. The submodule # < sz can be written in the form ¢

= #'+ #", where ¢' is generated by the elements J(P,, P)®;, and #" is
generated by the elements

(35) Y RLJ(P, &), j=1,..,e=2,1=1,..,1,
e=1

coming from a generating system of relations

e-2 e
(36) Y () LP.R)®; =0, t=1,..,¢t.
=1 e=1
Of course, we should mention that ¢ is of order e’, as is the number of
generators for ¢’ such that Proposition 4 gives no effective way for
computing sz/ F. However, we will see in the next section that, in concrete

cases, we need much less relations.

It is interesting to note that one can drop the number of relations
drastically, if one studies ker K before taking invariants. To be more precise,
we define an S-module homomorphism

K: ®5-5
=1
by
K@, ...,0) =Y P,
£=1
whose image is the ideal in S generated by the invariants P,, ..., P,. So, K is

the beginning of a projective resolution

.o DSE S5 S5/imK -0
£=1

of the structure sheaf of the zero-dimensional fibre of the canonical cover V
— V/G = X at the origin of V. Since this fibre is of codimension 2, imK can
be written by a result of Hilbert as the maximal minors of a (e—1) by e
matrix. For instance, we have for rational double points the matrix

v O,w,; O,w,
—Uu auwl (‘)UW2_ )
From the Eagon—Northcott complex it follows that ker K is free of rank e— 1

(each row of the matrix giving a relation). Of course,

(37) kerK = (ker K) n(§S* and im(J|ker1<)=[im(f|ker1€)]msgz,
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where J is given by

.T(wl, ...,O)e)= Z J(Pz’ wa)9

e=1
since K and J are G-equivariant mappings.

We shall apply this method to the case of cyclic quotients in the rest of
this section. The method works similarly for the dihedral singularities. For
the exceptional cases, however, we did not make any attempt to find the
matrices which describe imK. (To our knowledge, they are not in the
literature). Indeed, the most effective way for computing (7y)* in these cases
secems to be a compromise between taking all invariants and taking no
invariants before computing ker K, namely to take invariants under N
=GN SL,. We come back to this idea in the next section.

To apply our second method to cyclic quotient singularities we have to
collect some facts and notations: Each cyclic quotient of order n 1s
determined by » and another natural number g such that 0 <g <n and
gcd(n, g) = 1; there exists a uniquely determined linear action of Z, = Z/nZ
on V such that the action of a generator of Z, on S = C[u, v] is given by

u—{u, v—{lv.

Hence, the invariant algebra S* under this action is generated by all
monomials & v* with j+gk =0 modn. A minimal set of generators can be
found in the following way (see e.g. [8] for the following or any text on
toroidal embeddings): Develop first the rational number nf(n—gq) into a
Hirzebruch-Jung continued fraction:

and define

Ji=n, j2 =n—gq, --'aje+1 =asjs_je—1’
kIZO, k2=1""7kc+1:aek.e—ks—]""

(j. and k, are called i, and j,, resp., in [8]). Then

P£=uj‘vh‘, e=1,...,e,

is a minimal set of generators of the invariant algebra. Since the sequence j,
is strictly decreasing and k, is strictly increasing, we can write the ideal in §
generated by P,,..., P, as the maximal minors of the matrix
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1 — ky—k
JS1712 etk 0 0
ja—J ky—k
0 SR TR 0
0 0 uje— 1= Je v"e ke~ 1

(Notice that j, =0 and k, = n). Hence, kerK is generated by the e—1
relations

r,: ujf_j‘“PEH—uk”'FkEPs=0, e=1,...,e—1,
and im(J|ker K) is generated by the elements
|

Jer1 k Jo~J Lo ke e1—k
J(u£+luc+l,u£ s+l)__J(u£U£,ve+l n:)
€

=[‘

1 o _
——‘k5+1(j,;*j¢+1)+—j¢(k¢+1—kt)ilujb lvk£+l l'

l£+ 1 le

Ie+]

Since the generator of Z, acts on S, by
T A (A S
the invariant $“"-module S:f is generated by all monomials
wot with  (j+2)+q(k+2)=0modn.
Hence, the dimension of Sf;'/im(f | ker K) nS:S is equal to the cardinality of
G, k): j, k=0, (j+2)+q(k+2)=0modn, Ve: j<j,—1 or k <k, —1],
1.e, to the cardinality of
. k):j=2,k=22, j+qk=0modn, Ve: j<j, or k<k,,,}.
But this set consists for e > 4 precisely of the pairs
a,=1,...,a

-1, wu=3,..,e-2,

u

(audy, au k) {

(Notice that k, =1, j,_; = 1). Hence,

a,=2,...,a,—1, pu=2e~1.

e—1

dim(T})* =(e—2)+ ), (a,—1)-2

=2

e—1
=(e—4)+ Z (a,—1).
e=12
But, if
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then the numbers —b, are the selfintersection numbers of the components of
the exceptional set in a minimal resolution X of X = V/Z,, and

e— 1 r

Y la,— =) (b,—-1)
e=2 e=1

(see [8]) can be interpreted as the dimension of the base space of a versal

deformation of X, or, alternatively, as the dimension of the smooth

component of the base space of a versal deformation of X consisting of

simultaneously resolvable deformations (the Artin component).

In fact, one has for all quotient surface singularities of embedding
dimension ¢ = 4 the equation '

(38) dimT{ =(e—4)+ ) (b,— 1),
e=1

r

where the numbers b, and the sum ) (b,—1) have the same meaning as

e=1
above (see [5], [1] and [2] and the tables at the end of the next section).

7. Some examples and complete results for the exceptional cases

We now illustrate how one can use the results of the previous sections to
determine a basis for (Ty)* in the exceptional cases. In all these cases (with
the exception of precisely one series which, however, can be handled in a
similar way, see [5]), the group G is the product N-Z,, =« GL, of N
= G nSL, with the cyclic subgroup of order 2m in the center of GL,
generated by (. E. (. a (2Zmth primitive root of umty. Then, if x, ), z
(instead of w,, w,, w;) denote a system of generators of the algebra S* as
in Section 5, S;", is generated by all elements

(39 x*y®*  with adegx+bdegy+2l =0 mod2m
and
(40) x*y*z  with adegx+bdegy+degz+2/ =0 mod2m.

With respect to these bases the map J has a fairly simple description, since

41)  J(x*yPz, Xy P

a b c
_ -~ g -~ a+d—-1 b+b—1 c+F—1
= det a h c X y z :

xJ(y,z) yJ(z, x) zJ(x,y) |

Of course, formula (41) has the following interpretation: One has to develop
the determinant, to multiply with the monomial on the utmost right side, to
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delete terms with at least one negative exponent, and, finally, to replace z? or
z*® by x and y via the relation R.

To have a concrete case let us concentrate on the series T,, = T-Z,,, m
=6(b—2)+1, b= 2 The corresponding singularity has a dual graph

-2 -2 -b -2 -2

and embedding dimension e = b+ 1. It is clear that the case b = 2 is a special
one, namely the rational double point of type E,. Unfortunately, the case b
= 3 can also not be treated in a coherent manner together with all other
cases (we shall see in a moment, why this is so). However, the case b =4
shows all [eatures of the rest of the series.

So, let us first determine for b = 4, i.e., for m = 13, the invariant algebra
s (see also [9]). By (39) and (40) a basis is given in the first degrees by

1 0Om

x3y xyz 2m

x8y? x2ySs x4y2z ySz 4m

@ x%y? X5 xy? XYz x5z & m

'ty X2yt x0y7 x4y ye : xhyz *0yhz X7z x2y10z 8m

......................................................................................

Here, degx =6, degy =8, degz=12, z2+y*+x*=0, and the e=>5

clements in boxes are algebra generators for s’
Similarly, we get for Si"':

xly x3yh xSyz xytz Lm
x10 2 x6y5 x2y® X0y 2z xtySz y8z &m
X7 X110 X9yb xSy9 Xy K5z AMy3z xTyz x3y9z 8 m

: T
where now the e—2 = 3 elements in boxes are generators for the S ™-module
S:"' contributing three dimensions to Ty .

Finally, for S:Z', we find
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xy? 2m
S o
X9 // I TV R S ,/ xty3z \ Lm
/ SRR , \

x'y / xTy xdy? : x3yz ,’ xSytz xy'z \ &6 m

—_———— | S \

. \
S Xy X5 L Xy Y2z JPIFaN Bm

\

/X Xy xy's Xz e x3yiz \\ 10m

Of course, elements in degree 2m cannot lie in im(J | ker K). We will show

that 4 relations between the generators of S™™ in ST suffice to generate the
module below. the broken line in the figure above. These relations are:
(*y)z—(xyz)x* = 0,
(2y° 2) x —(xyz) 2y* = 0,
(B3x!z)y—(x*y)3x®z =0,

(x"2)x2=(x'¥z =0.

(42)

Simple calculations show that
3 1 O 1 1 1
JPy, 2)=J(xyz, x3)=4{ 0 0 1|-[2 0 O x?
dx* 3y* 222 14x* 3x3 272
=(—9y* +4x* +2(222—-3y?)x?
= (4x* =15y —4(y* + x*) x?
= —19x? 3,
J(y z, x)—J (xyz, 2y*) = 29y7 + 58x* y*,
J(x*2z, y)—J(x}y, 3IxBz) = —86x!4—43x!19)3,
J(x'tz, x2)—J(x!3, 2) = 45x10 2.

Hence, x2y3, v7, x'* and x'°y? are in the ST-module im(J |ker K), where
now ker K denotes relations in ST. But then im(J|ker K) contains all

elements in S:2'3 with the possible exception of xyZ, x®% y¢ x®:z x!'y and

x” yz. Hence,

dimTy <3+6=9=8+1,

where 8 = ) (b,—1) and 1 = e—4. Since in (38) there always holds the >
1

¢=
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sign by a result of J. Wahl (see [1]), we have shown that
dmT} =9 for X =C*TZ,.

(It is also easily seen that the relations (42) are the only ones in low degrees,
such that the dimension formula may be derived directly without Wahl’s
lower bound).

By the same procedure we see for general b >4, m = 6(b—2)+1, that in
degree 4m there are always precisely 3 and in degrec 6m precisely 2

infinitesimal deformations coming from §7 In addition, we have all elements

in degree 2m in S:’Z" and all elements of degree 2m in S:”' (the generators).
This last number i1s equal to

dim SZ:,1+dims::_12 =dimST,_,+dimST _,.
It 1s easy to prove by invariant theory that
dimST+dimsT,,=1,0,1, 21,2 3 2 3,...

for =0, 2, 4, 6,.... Hence, we get for | =2m—4 =12(b—2)—2 that this
number is equal to 2b—4. Altogether we have

dimTy = (2b—4)+5=2b+1
=(b+4)+(b+1—4)

r

=) (b,—1)+(e—4).
e=1
The formula and also the distribution of the degrees remain valid for b
= 3; only the proof has to be modified, since in this case there is only one

generator for S™™ in degree 2m and therefore no relation for elements in this
degree.

Without proof we now list for all exceptional cases the graphs of the
corresponding singularities and the number and the degrees of all the basis
elements of Ty. Here vertices without weights stand for (—2)-curves, b is
always = 2. It should be mentioned that due to the algorithm described by
the second author in [5] it is only necessary to compute Ty for the cases b
=2, 3 and 4 in each individual series.

T dim(Ty)_,
) b>2
. L e 2m 2b—4
-b 4m 3
6m 2
m=6(b—-2)+1
e=b+1 z 26+1
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T
! |b=2 b>2
[ 2m 2b-3
| 4m 2 4
-3 -b 6m 1 1
8m 1
m=6(b-2)+3 10m | 1
e=>b+2
p) 2b+2
T, I |b=2 b>2
2m 262
4m 3 5
-3 -6 -3 6m 2
m=6(b—2)+5 5 3b43
e=b+3
0, i b>2
2m |2b—4
’ L 4m 3
b 6m | 2
&m 1
m=12(b-2)+1
0, | b=2 b>2
2m 2b6-3
[ am| 2 4
! . 6m 1 1
A - 8m | 1 1
10m 1
m=12(b-2)+5 12m | 1
e="b+2
z 2b+3
0, I |b=2 b>2
2m 2b-3
o 4m 3 5
-4 _b 6m 2 2
8m 1
m=12(b—2)+7 10m 1
e=b+3
z 2b+4
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0,,
3 b -

m=12(b—2)+11
¢e=bh+4

m=3b-2)=1
e=b+1

I,

m=30h-2)+1
e=b+1

m=30(b—2)+11
e=b+2

{ |[hb=2 b>2
2m 2h-2
4m 4 6
6m 3 1
X 2b+5
i b>2
2m {2b—4
4m 3
6m 2
8m 1
10m |
z |2b+3
I |b=2 b>2
2m 2h-13
4m | 3
6m 1 3
8Bm 1
10m 1
12m 1
14m 0
16m 1
z 2b+3
I |b=2 b>2
2Zm -3
4m 2 4
6m 1 1
&m 1 |
10m 1 |
2m 1
14m 1
z 2b+4

59
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b -3

m=30(b-2)+13
e=hb+2

-3 -b -3

m=30(b—2)+17
e=b+3

m=30(b—-2)+19
e=b+4

'23

|

-3 -h -3

m=30(b—-2)+23
e=b+3

l19
-3 b -5

m=30(b-2)+29
e=b+5

I |b=2 b>2
2m 2b—13

am 2 4
6m 1 1
8m 2 1
10m 1

) 2b+3

I b=2 b>2
2m 2b-2

4m 2 4
6m 2 2
8m 2

P 2b+4

! |b=2 b>2
2m 2b-3

4m 3 5
6m 3 K]
8m 2 1
10m 1

z 2b+6

I |[b=2 b>2
2m 22

4m k] 5
6m 2 0
8m 1 1
z 2b+4

I (b=2 b>2
m -2

4m 4 6
6m 4 2
8m 1 1
Xz 2b+7
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8. A generalization to quasi-homogeneous surface singularities

In this last section we want to show that our “splitting” method can be
generalized to an effective method for computing the vector space (Ty)* for a
much wider class of examples than the class of quotient surface singulanties.
Let for the rest of this manuscript (X, x) denote a quasi-homogeneous normal
surface singularity and let d; be the Euler derivation which associates to any
homogeneous fe 'y . the element (degf)-fe Oy ,. Denote by [ the .-
homomorphism Q% , — @, ., making the diagram

commutative. Defining E: Q3 , 2 Q% . by E(x A f) : = I(x)-§—1(B) « for a,
B Q5 . and extending everything to the (affine) neighbourhood X we get an
exact sequence of (y.-sheaves over X' = X —{x}:

(43) 0— Q3. E.Q) 1, @ - 0.

Alternatively, view dy outside x as a vector field and define I and E by
interior multiplication with dg. The exterior differentiation d gives a splitting
of the associated (graded) sequence of sections, except in degree 0, where we
have a cokernel of length 1 on the right. If we tensor this complex with the
dualizing sheal wy., we still have an exact sequence

(44) 0— Qi Rwy M"Q;{'@wr _I®id , Oy ®wy — 0;

but in order to get a split-exact sequence of sections we have to assume a
little more. Suppose that

(a) there exists a holomorphic connection V: wy — Q% ®wy. which
gives a sphtting of I®1: (I®])(Vw) =(degw) -w for any homogeneous
section we HO (X', wy) = H°(X, wy);

(b) the module H°(X, wy) has no elements in degree O.

Then, it is well known (and easy to check) that the C-linear map

A: Q‘lxr@wxr - Q§'®w,¥‘

with A(n®w) : = dn®w—n A Fw is well defined, and that the pair (F, 4)
gives a splitting of the sections of (44). For example, we show that — on the
p-th graded piece of H°(X', Q% ®wy) — the Lie derivative with recpect to
v, which is defined by

L, = Vo(I ®id)+(E®id)o4,
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acts by multiplication with p(') Let # be a 1-form of degree k and w a 2-
form of degree | and let Vw =} & ®w;. Then
L, (n®w) = dI ())®@w + E(dn) Q@w+1(n): Vo —(E®id)(n A Vw)
= k"I®w+1(’1)'Zéi@wi“(E@id)(Z'l A éi@wi)

=k-n®w+n®(I ®id) (Fw)
=k+)n@Rw.

Now we have an exact vertical sequence in the following diagram:

a

|

HO(X', 9;1@ wxl)
/|
J 4! lEoid
v
A

H°(X',w?") —F>H°(X:9L'@ wxr) > (7:.(‘). >0

7
K Vi |ITeid
\

\ \

Ho(X', ""x’)

0

The mappings », K and J are given by

e

ploy, ..., w,) = Z df, ®w,,

45) K@, ..o0)=Y Lhw, I =degf,
e=1

J(y,...,0)= - d, » Va,,
e=1

and the relations K = (I®id)oy, J = Aopu hold. Again, {f,, ..., f,} denotes a
set of homogeneous generators of the maximal ideal my,. So, we get an
exact sequence

(46) 0 — im(J ker K) = (Tx)* — (wx /My ; wx ) = 0

(') As J. Wahl informed us the idea to prove exactness by means of Lie derivatives was
already used by 1. Naruki, A note on isolated singularity 11, Proc. Japan Acad. 51 (1975), 380-
383.



INFINITESIMAL DEFORMATIONS 63

as in Theorem 3, such that the dualizing module wy, contributes d
independent infinitesimal deformations, if d is the cardinality of a minimal set
of generators of wy ,.

Remark. J. Wahl has shown ([15]) that the dual of the natural map
on the right of (46) has a kernel of length one if X is Gorenstein and that it
is injective otherwise. Thus, to get exactness of the sequence (46), we might
replace (b) by the assumption that X is not Gorenstein. It is not known to us
whether the connection in (a) always exists.

ExampLE. Let (Y, y) denote a quasi-homogeneous Gorenstein surface
singularity, and let H be a finite group acting on (Y, y) such that

(i) H acts freely on V' =Y-{y};

(i1) the action is compatible with the C*-action on Y.

Then the quotient X = Y/H is a normal quasi-homogeneous surface
singularity. The restriction of the Euler derivation dg of Cy , to the invariant
subring @, = Oy, is the Euler derivation of the graded algebra &y ,. Also,
Q) =(n, Q}.)¥, where n: Y — X is the canonical quotient map. This implies
immediately that the maps I and E on Y induce the corresponding maps /
and E on X. Let, moreover, y be the character attached to the action of H
on wy,. Then (44) is canonically isomorphic to the sequence

0—(n, Q) £ (n, Qi W Lo (m, Op)F — 0.

If we assume, moreover, that

(i) the character y is not trivial,
then the remarks above apply. The connection V: wy — Q% ®wy. is given by
restricting the exterior diflerentiation on Y to the eigenspace

(@Y,y)g = wX,x'

As an application we can take any quasi-homogeneous rational surface
singularity (X, x) of embedding dimension e¢>4 and Y the canonical
Gorenstein cover of X (see [13]). Then (a), (b) and (c) hold; in particular
dim Ty = e—2.

Remark. In [14] J. Wahl proved that a good C*-action in the center of
the maximal reductive group of automorphisms exists. For this action, the
assumption (ii) is automatically satisfied.

We apply the preceding considerations to the quasi-homogeneous
rational singularity (X, x) of embedding dimension ¢ = 6 with dual graph
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whose canonical Gorenstein cover Y is the simple elliptic singularity Eg
given by

22 =x3+)°

in C®. The projection n: Y — X is induced by the Z,-action (-(x, y, 2)
=({x,{%y, {z), £ a third root of unity (see [13]). In fact, the invariant
algebra

(Qx_x = (9;1‘},, H = Z3,
i1s generated by the 6 elements

SHi=xy, fa=yz,
f3='x3y f4=_‘/3, f5=x22, f6=x22.
The dualizing sheaf of Y is free with basis element

dx ndy  dyndz dx ndz

22 x2 y2

such that { acts by multiplication, and the corresponding character yx is
multiplication by (2. Hence, a minimal set of generators for

wy, = (Gy,)}]
consists of the e—2 =4 elements
W, =y,
Dy = X2, @3 =xz2, @4 =2z>.
In the following table we list the elements of ( (‘ﬁ,,_y);'z of low degrees, the
elements in boxes being the generators over Oy, = (Cy )™:

=] !

Ay xyz yz2 3
xh x3z x2z? xy? yz 4
xy? ¥5 x2ylz xy2z? 5

Obviously there are no elements of ker K in degree 1, 2 and 3. In degree 4
there are 6 linearly independent relations:

1. (3f3) 20, —(2fy) 30, =0,

2. (320, —(2f) 303 =0,
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(3fs)- 200, —(2f3) 3w, = 0,

(36) 200, —(2f) 3w, = 0,

(3f6) - 200, ~(2f2) 303 = 0,

(3f3) - 2004 +(3a) * 20, — (2f2) - 3d4 = 0.

We compute the values of J for these relations:

1. dfy A2V@®,—df; A3V®, =3x*dx A (2dy)—(ydx+ xdy) A (3-2xdx)

S

dx ndy

= 12x%z2
V4
2. dfs A2V@d, —dfy A3VDy = (2xzdx+ x*dz) A 2dy
—(ydx+xdy) A3(zdx+ xdz)

dx nd
= (Txz3 + 5x* - 3xy?) xz/\ Y
dx nd
= (12x* + 4xy?) zA Y
Similarly
dx A dy
3. dfs A 2@, —df; A 3VB; = (12x*+ 1657 —3—,
d
4 dfs A 2PE, —df, A3VE, = (126 2 —4y? z)‘bc el
dx /\dy

5. dfg A2V, —df; A3Vd; =(12x*z+8y2) ,

dx A d
6. dfy A20@, +dfy A2P@,—dfy A3VE, = 12x2z2x—’;—y.

These elements span the degree —4 part of ((0,_,):’ , SO that there is no

nontrivial infinitesimal deformation of degree —4. Together with the e—2 =4
deformations coming from wy, we have

142 =13 deformations in degree —1,
3+1 =4  deformations in degree —2,
0+3 =3 deformations in degree —3,

and no deformation of degree —4.
So we get 10 independent deformations, one more than the number

(e—4)+ ) (b,—1)
e=1
would suggest. Of course, this was known long time ago by J. Wahl (see e.g.
[2}).
We claim that in fact dim T} = 10. To prove the claim, observe that

5 -~ Banach Center t. 20
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homogeneous generators of the local ring are in degrees 2 and 3, and
equations, having quadratic initial forms, are in degrees 5 and 6. Since a
minimal set of generating relations consists of linear relations, all entries of a
homogeneous first order lifting of the matrix of relations must be
homogeneous of degree 2 or 3. But from the minimality one concludes
immediately that all deformations of negative degree at least 5 actually have
to show up in any first order lifting of the relations.
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