SEMIGROUP OF A QUASIORDINARY SINGULARITY

K. KIYEK and M. MICUS

Universität Gesamthochschule, Paderborn, F.R.G.

Introduction

In a series of papers (cf. [2] and its bibliography), Abhyankar and Moh have studied plane algebroid curve singularities, mainly over an algebraically closed field k of characteristic zero. Starting with the characteristic pairs of such a curve singularity $A = k[[X, Z]]/(F) = k[[X]][\zeta]$ where $F \in k[[X]][Z]$ is monic and irreducible, they construct a special basis of the free k[[X]]-module A, which in turn gives a minimal set of generators of the value-semigroup of A. M. Micus in his thesis [7] has generalized this result to e-dimensional quasiordinary singularities ($e \ge 2$). He used this result to associate a semigroup $c - \frac{1}{n} N_0^e$ for some n with such singularities, and gave the connection with the distinguished exponents introduced by Lipman [4]. In this paper we give a short valuation theoretic proof of the fact that this semigroup is defined intrinsically by A at least in the case of a surface singularity, a fact contained also in Lipman's thesis (proven there for the distinguished exponents) and characterize for $e \ge 1$ those semigroups of $\frac{1}{n} N_0^e$ which occur as the semigroup of a quasiordinary singularity.

2. Strict linear combinations

(2.1) Notation. Let $e \in \mathbb{N}$; for $r_i = (\varrho_{i1}, \ldots, \varrho_{ie}) \in \mathbb{Q}^e$, i = 1, 2, define $r_1 \leq r_2$ iff $\varrho_{1j} \leq \varrho_{2j}$ for $j = 1, \ldots, e$. For $r := (\varrho_1, \ldots, \varrho_e) \in \mathbb{Q}^e$, set $\lfloor r \rfloor := (\lfloor \varrho_1 \rfloor, \ldots, \lfloor \varrho_e \rfloor)$.

This paper is in final form and no version of it will be submitted for publication elsewhere.

Let $n \in \mathbb{N}$, and put $\Delta_n := \frac{1}{n} \mathbb{Z}$. Then Δ_n^e is an (if $e \ge 2$ not linearly) ordered \mathbb{Z} -submodule of \mathbb{Q}^e .

Let $h \in \mathbb{N}$ and $r = (r_1, \ldots, r_h)$ be an h-tuple of elements of Δ_n^e . Let $r_i = (\varrho_{i1}, \ldots, \varrho_{ie})$ for $i = 1, \ldots, h$ and for $i = 0, \ldots, h$ let $\delta_i(r) = \delta_i$ be the positive gcd of minors of order e of the (e, e+1)-matrix $(nE_e, {}^t((n\varrho_{lj})_{1 \le l \le i, 1 \le j \le e}))$; here E_e denotes the (e, e)-unit matrix. Define $\theta_{i+1}(r) = \theta_{i+1} := \delta_i(r)/\delta_h(r)$ for $i = 0, \ldots, h$; then $\theta_{i+1}|\theta_i$ for $1 \le i \le h$ and $\theta_{h+1} = 1$. Define $v_i(r) = v_i := \theta_i/\theta_{i+1}$ for $i = 1, \ldots, h$; thus $v_i = \delta_{i-1}/\delta_i$ for $i = 1, \ldots, h$. We call the sequences $\theta(r) = (\theta_1, \ldots, \theta_h)$ and $v(r) = (v_1, \ldots, v_n)$ the divisor sequence and the v-sequence associated with the sequence r, respectively. Given $i \in \{1, \ldots, h\}$ the elements v_1, \ldots, v_i may be calculated knowing only r_1, \ldots, r_i .

(2.2) LEMMA. For $i \in \{0, ..., h\}$ let N_i be the **Z**-submodule of Δ_n^e generated by \mathbf{Z}^e and the elements $r_1, ..., r_i$. Let $\gamma \in \mathbf{Z}$ and $i \in \{1, ..., h\}$. The element γr_i is contained in N_{i-1} iff $v_i | \gamma$.

Proof. The theory of elementary divisors shows that $\operatorname{Card}(\Delta_n^e/N_i) = \delta_i$ for $i = 0, \ldots, h$. Choose $i \in \{1, \ldots, h\}$ and let N_i' be the Z-submodule of Δ_n^e generated by N_{i-1} and γr_i . Then $\operatorname{Card}(\Delta_n^e/N_i') = |\gcd(\delta_{i-1}, \gamma \delta_i)|$; thus $N_i' = N_{i-1}$ iff $|\gcd(v_i, \gamma)| = v_i$.

(2.3) PROPOSITION. Let $a = a_0 + \sum_{i=1}^h \alpha_i r_i$, $b = b_0 + \sum_{i=1}^h \beta_i r_i$ with a_0 , b_0 in \mathbb{Z}^e and integers α_i , β_i such that $0 \le \alpha_i$, $\beta_i < v_i$ for i = 1, ..., h. Then a = b iff $a_0 = b_0$ and $\alpha_i = \beta_i$ for i = 1, ..., h.

Proof. Suppose a = b. If $\alpha_i = \beta_i$ for i = 1, ..., h then $a_0 = b_0$. Suppose there exists $j \in \{1, ..., h\}$ such that $\alpha_j \neq \beta_j$; choose j maximal with this property. We may assume that $\alpha_j > \beta_j$. Then $0 = a - b = c + \sum_{i=1}^{j} \gamma_i r_i$, $c \in \mathbb{Z}^e$, $\gamma_1, ..., \gamma_{i-1} \in \mathbb{Z}$, $0 < \gamma_j < \nu_j$; so $\gamma_j r_j$ is contained in the Z-module N_{j-1} which contradicts (2.2).

(2.4) Proposition. Every element a of the Z-module N_h has a unique representation of the form

$$a = a_0 + \sum_{i=1}^h \alpha_i r_i, \quad a_0 \in \mathbb{Z}^e,$$

 $\alpha_i \in \mathbb{N}_0$ and $0 < \alpha_i < \nu_i$ for i = 1, ..., h.

Proof. Uniqueness follows from (2.3). Lemma (2.2) shows that $v_i r_i$ is contained in the **Z**-module N_{i-1} for $i=1,\ldots,h$. Let $a=a_0+\sum_{i=1}^h\alpha_i r_i$, $a_0\in \mathbf{Z}^e$, $\alpha_i\in \mathbf{Z}$ for $i=1,\ldots,h$. Starting with j=h we write $\alpha_j=\beta_j\cdot v_j+\gamma_j$ with β_i , $\gamma_i\in \mathbf{Z}$ and $0\leqslant \gamma_i< v_i$ and get the claimed representation by recursion.

(2.5) We define $r_0 = q_0 = m_0 = (0, ..., 0) \in \mathbb{Z}^e$ and by recursion for i = 1, ..., h

$$q_i := -\sum_{j=1}^{i-1} \frac{\theta_j}{\theta_i} q_j + r_i, \quad m_i := m_{i-1} + q_i,$$

and we set $v_0 := 1$. Then $q := (q_1, \ldots, q_h)$, $m := (m_1, \ldots, m_h)$ are sequences in Δ_n^e and so have an associated divisor sequence and ν -sequence.

- (2.6) Proposition. The following holds true:
- (i) Each of the three sequences (m_1, \ldots, m_h) , (q_1, \ldots, q_h) , (r_1, \ldots, r_h) in Λ_n^e determines the other two and the associated sequences of divisors and v-sequences are the same.
- (ii) For every i = 1, ..., h the **Z**-submodules of Δ_n^e generated by \mathbf{Z}^e and $m_1, ..., m_i$, respectively $q_1, ..., q_i$, respectively $r_1, ..., r_i$, are the same.
 - (iii) The following are equivalent:
- (1) The sequence $(m_1, ..., m_h)$ is linearly ordered: $m_0 < m_1 < m_2 < ... < m_h$.
- (2) $q_i > 0$ for i = 1, ..., h.
- (3) For i = 1, ..., h we have $r_i > v_{i-1} r_{i-1}$.

If these conditions are satisfied then for i = 1, ..., h

(*)
$$r_i > \sum_{j=1}^{i-1} (v_j - 1) r_j.$$

Proof. It is easy to see that each of the sequences $(m_1, \ldots, m_h), (q_1, \ldots, q_h)$ and (r_1, \ldots, r_h) defines the same sequence of divisors and that (i) and (ii) hold true.

With regard to (iii), it is clear that conditions in (1) and (2) are equivalent. Now for $i \ge 2$

$$r_{i} = \sum_{i=1}^{i-1} \frac{\theta_{j}}{\theta_{i}} q_{j} + q_{i} = \sum_{i=1}^{i-1} \frac{\theta_{j}}{\theta_{i-1}} \frac{\theta_{i-1}}{\theta_{i}} q_{j} + q_{i} = v_{i-1} r_{i-1} + q_{i}$$

which shows that (2) and (3) are equivalent.

If these conditions are satisfied then $r_1 > (v_0 - 1)r_0$ and it is easy to prove (*) by induction using the condition in (3).

- (2.7) DEFINITION. An element $a \in \Delta_n^e$ is called a strict linear combination of r_1, \ldots, r_h if a has a representation $a = a_0 + \sum_{i=1}^h \alpha_i r_i$ where $a_0 \in \mathbb{N}_0^e$ and for $i = 1, \ldots, h$ the coefficients α_i are integers such that $0 \le \alpha_i < v_i$.
 - (2.8) Corollary. Let the conditions of (2.6)(iii) be satisfied.
 - (a) The set

$$\sum_{i=1}^h \alpha_i r_i, \quad \alpha_i \in N_0, \quad 0 \leqslant \alpha_i < v_i \text{ for } i = 1, \ldots, h,$$

is linearly ordered.

(b) The set of strict linear combinations of r_1, \ldots, r_h is a subsemigroup of Δ_n^e consisting of nonnegative elements.

Proof. (a) Let

$$a = \sum_{i=1}^{h} \alpha_i r_i \neq \sum_{i=1}^{h} \beta_i r_i = b$$

be strict linear combinations of r_1, \ldots, r_h and choose $j \in \{1, \ldots, h\}$ maximal such that $\alpha_j \neq \beta_j$; we may assume that $\alpha_j > \beta_j$. According to (2.6) (*) we have

$$r_j > \sum_{i=1}^{j-1} (v_i - 1) r_i \geqslant \sum_{i=1}^{j-1} \beta_i r_i$$

and this implies that a > b.

(b) Let a and b be strict linear combinations of r_1, \ldots, r_h ,

$$a = a_0 + \sum_{i=1}^h \alpha_i r_i, \quad b = b_0 + \sum_{i=1}^h \beta_i r_i,$$

 $a_0, b_0 \in \mathbb{N}_0^e, \alpha_i, \beta_i \in \mathbb{N}_0, 0 \le \alpha_i, \beta_i < v_i \text{ for } i = 1, ..., h. \text{ Then } a + b = a_0 + b_0 + c_0 + \sum_{i=1}^h \gamma_i r_i \text{ with } c \in \mathbb{Z}^e, \gamma_i \in \mathbb{N}_0, 0 \le \gamma_i < v_i \text{ for } i = 1, ..., h$ According to (2.4) for every $i \in \{1, ..., h\}$ we may write

$$v_i r_i = \bar{a}_0 + \sum_{j=1}^{i-1} \bar{\alpha}_j r_j \quad \text{with } \bar{a}_0 \in \mathbf{Z}^e, \ \bar{\alpha}_j \in \mathbf{N}_0, \ 0 \leqslant \bar{\alpha}_j < v_j \text{ for } j = 1, \dots, i.$$

From (2.6) (*) we get

$$\bar{a}_0 \geqslant v_i r_i - \sum_{j=1}^{i-1} (v_j - 1) r_j > (v_i - 1) r_i \geqslant 0.$$

3. Quasiordinary singularities

(3.1) NOTATIONS. Let k be an algebraically closed field of characteristic 0, put $R_1 = R = k[[X_1, ..., X_e]]$, the formal power series ring over k in e variables. Let n be a natural number and define $R_n := k[[X_1^{1/n}, ..., X_e^{1/n}]]$. Let K_n be the quotient field of R_n and denote K_1 by K. Then K_n/K is a Galois extension and the Galois group is isomorphic to $(\mathbf{Z}_n)^e$ where $\mathbf{Z}_n = \mathbf{Z}/n\mathbf{Z}$. Let Γ_n be those nonnegative rationals with denominator n; for $m \in \Gamma_n^e$, $m = (\mu_1, ..., \mu_e)$ let $\underline{X}^m = X_1^{\mu_1} \cdot ... \cdot X_e^{\mu_e}$.

Consider the natural pairing

$$\Gamma_n^e \times \mathbf{Z}_n^e \to \mathbf{Z}_n, \quad (m, g) \mapsto \sum_{i=1}^e n\mu_i \cdot \gamma_i$$

where $m = (\mu_1, \ldots, \mu_e)$, $g = (\gamma_1, \ldots, \gamma_e)$. Let $m := (m_1, \ldots, m_h)$ be a sequence of elements in Γ_n^e ; define the divisor sequence $\theta(m)$ and the sequences r_1, \ldots, r_h ,

 q_1, \ldots, q_h as in (2.5) and put $M_i := \underline{X}^{m_i}, \ Q_i := \underline{X}^{q_i}, \ P_i := \underline{X}^{r_i}$ for $i = 1, \ldots, h$. For every $i \in \{0, \ldots, h\}$ the fields $K(P_1, \ldots, P_i), K(Q_1, \ldots, Q_i), K(M_1, \ldots, M_i)$ coincide and the just mentioned pairing and Galois theory show that each of these fields has degree θ_1/θ_{i+1} over K.

- (3.2) Let $F \in R[Z]$ be an irreducible unitary polynomial whose discriminant has the form $X^m E$ where $m \in \mathbb{N}_0^e$ and E is a unit in R. In the case e = 1 this is always true. Such polynomials will be called *quasiordinary*. Abhyankar [1] and more recently Luengo [6] have shown that there exist $n \in \mathbb{N}$ and ζ in R_n such that $F(\zeta) = 0$ so that $R[Z]/(F) = R[\zeta]$. A ring A having a representation of this form will also be called *quasiordinary*. If e = 1 then A is the ring of a plane irreducible algebroid curve. In his thesis Lipman [4] has studied these singularities for the case e = 2 they play an important role in the resolution of surface singularities, cf. Zariski [8] and has shown the following (which holds true for arbitrary e). Let $\zeta = \sum_{r \in \Gamma_n^e} c_r X^r$. Then there are $h \in \mathbb{N}_0$ and $m_1 < \ldots < m_h$ in Γ_n^e such that [using the notation in (2.2)]
 - (i) $m_i \in \text{Supp}(\zeta)$ for i = 1, ..., h.
 - (ii) Supp $(\zeta) \subset N_h$.
- (iii) For $r \in \text{Supp}(\zeta)$ let $\tau(r)$ be the least $i \in \{0, ..., h\}$ such that $r \in N_i$. Then $r \ge m_{\tau(r)}$ and $\tau(m_i) = i$ for i = 1, ..., h.

The elements m_1, \ldots, m_h will be called the distinguished exponents of ζ . Let v and r be the v-sequence and r-sequence associated to (m_1, \ldots, m_h) . It is easy to see by Lemma (2.2): The condition $\tau(m_i) = i$ for $i = 1, \ldots, h$ is equivalent to the condition $v_i > 1$ for $i = 1, \ldots, h$.

Furthermore, Lipman [4] has shown: one may normalize ζ in such a way that Supp $(\zeta) \cap \mathbb{N}_0^e = \emptyset$ and if $m_i = (\mu_{i1}, \dots, \mu_{ie})$ for $i = 1, \dots, h$ are the distinguished exponents belonging to ζ then $\mu_{11} > 1$ if $\mu_{1j} = 0$ for $j = 2, \dots, e$ and the h-tuples $(\mu_{11}, \dots, \mu_{h1}), \dots, (\mu_{1e}, \dots, \mu_{he})$ are decreasing with respect to the lexicographic order.

(3.3) It is clear that $A = R[\zeta]$ is a free R-module. In his thesis, M. Micus [6] has constructed — following the methods developed by Abhyankar [2] in the case e = 1, especially using approximate roots — a special basis of A as R-module, thus generalizing the Abhyankar-Moh-epimorphism theorem from the case of a plane irredubible curve singularity to the case of quasiordinary singularities.

Let us say that an element $g \in A$ has order $r \in \Gamma_n^e$ if $g = \underline{X}^r E$ where E is a unit in R_n , and write ord (g) = r. Define

$$G_j := \begin{cases} Z & \text{for } j = 1, \\ \operatorname{App}_{Z}^{\theta_j}(F) & \text{for } j = 2, \dots, h. \end{cases}$$

(App $_Z^{\theta_j}(F)$ is the θ_j th approximate root of F.) Let $g_j = G_j(\zeta)$ for j = 1, ..., h. For $b := (\beta_1, ..., \beta_h) \in \mathbb{N}_0^h$ put $\underline{g}^b := g_1^{\beta_1} ... g_h^{\beta_h}$. Let $B := \{(\beta_1, ..., \beta_h) | 0 \leq \beta_j < v_j \}$ for $1 \leq j \leq h$. With these notations M. Micus has shown:

- (3.4) THEOREM. For $i=1,\ldots,h$ the element g_i has order r_i . The set $\{\underline{g}^b|b\in B\}$ is an R-basis of A. Let $g=\sum_{b\in B}F_b\,\underline{g}^b$ with $F_b\in R$ be an element of A of order r. There is a unique $b=(\beta_1,\ldots,\beta_h)\in B$ such that $r=\operatorname{ord}(F_b)+\sum_{i=1}^h\beta_ir_i$.
- (3.5) COROLLARY. Let $\Gamma(\zeta) := \{ r \in \Gamma_n^e | \text{ there exist } g \in A \text{ with } \operatorname{ord}(g) = r \}$. Then $\Gamma(\zeta)$ is the set of strict linear combinations of r_1, \ldots, r_h .
- (3.6) COROLLARY. Let \overline{A} be the integral closure of A and $\overline{\Gamma} := N_h \cap \Gamma_n^e$. Then an element $g \in R_n$ is in \overline{A} iff $r \in \overline{\Gamma}$ for each $r \in \text{Supp}(g)$.
- (3.7) COROLLARY. Let $T' := \{ \sum_{i=1}^h \beta_i r_i | (\beta_1, \ldots, \beta_h) \in B \}$ and set $T := \{ t' \lfloor t' \rfloor | t' \in T' \}$. Then \overline{A} is a free R-module having R-basis $\{ \underline{X}^t | t \in T \}$. In particular, \overline{A} is a Cohen-Macaulay ring.
- (3.8) Consider the semigroup $\Gamma(\zeta)$; it will be called the semigroup belonging to ζ . Then we find h and the elements r_1, \ldots, r_h , in the following way. The set $\{r-a \ge 0 | r \in \Gamma(\zeta), a \in \mathbb{N}_0^e\}$ has a smallest element, namely r_1 ; so we may calculate v_1 . By recursion, we find r_i as the smallest element in the set

$$\left\{r - a - \sum_{j=1}^{i-1} \alpha_j r_j \middle| r \in \Gamma(\zeta), \ a \in \mathbb{N}_0^e, \ 0 \le \alpha_j < v_j \text{ for } 0 \le j < i\right\}$$

and we may calculate v_i .

4. The invariance of the semigroup

- (4.1) If e = 1 the integral closure $\overline{A} = k[[t]]$ of A is a discrete valuation ring; let v be the normalized valuation defined by \overline{A} . Then $\Gamma(A) := \{v(g) | g \in A \setminus \{0\}\}$ is an invariant of A. Let n be the smallest nonzero value of v on A. As ζ is normalized there are elements $r_1, \ldots, r_h \in \Gamma_n$ such that $\{n, nr_1, \ldots, nr_h\}$ is a minimal set of generators of $\Gamma(A)$ and the sequence (r_1, \ldots, r_h) is uniquely determined by A; thus $\Gamma(\zeta) = \frac{1}{n}\Gamma(A)$.
- (4.2) PROPOSITION. Let r_1, \ldots, r_h be elements in Γ_n^e , let $v = (v_1, \ldots, v_h)$ be the corresponding v-sequence. Define $v_0 = 0$. Then the conditions

$$v_i > 1$$
, $r_i > v_{i-1} r_{i-1}$ for $i = 1, ..., h$

are necessary and sufficient for the existence of a normalized quasiordinary ζ such that $\Gamma(\zeta)$ is the set of strict linear combinations of r_1, \ldots, r_h .

Proof. We calculate the *m*-sequence belonging to r and use the construction given by Lipman for the existence of a quasiordinary ζ having this *m*-sequence as sequence of distinguished exponents.

(4.3) In the case e = 1 the conditions of the proposition are the well-known conditions that must hold for the minimal set of generators of

a subsemigroup Γ of Γ_n in order that Γ is the semigroup of a plane irreducible algebroid curve singularity, cf. e.g. Angermüller [4] or W. Micus [8].

(4.4) Lipman [4] has shown that in the case e = 2 the sequence (m_1, \ldots, m_h) is an invariant of A by studying very carefully the resolution of A by special formal monoidal and quadratic transforms of A. We give a new proof of this result by showing that the sequence (r_1, \ldots, r_h) is an invariant of A.

Consider the representation $R \subset A = R[\zeta] \subset \overline{A} \subset R_n$. Let $X := X_1$, $Y := X_2$ and $m_i = (\lambda_i, \mu_i)$ for i = 1, ..., h. Let $L = \operatorname{Quot}(A)$ and d := [L : K]. The following results are contained in Lipman [4]: If $\lambda_1 > 0$ then $\mathfrak{p} := (X, \zeta)$ is a prime ideal of height 1 and its multiplicity in A is $\min(d, d\lambda)$. If $\mu_1 > 0$ then there is a corresponding result for the ideal $\mathfrak{q} := (Y, \zeta)$. Furthermore, d is an invariant of A and if $\lambda_1 \leq 1$ then $0 < \mu_1 \leq 1$ and \mathfrak{p} and \mathfrak{q} are the only prime ideals of height 1 which may be singular.

If the singular locus Sing (A) of A has two components then these are defined by prime ideals of the form $\mathfrak{p} = (X, \zeta)$ and $\mathfrak{q} = (Y, g(\zeta))$ with an element $g(\zeta) \in A$.

If A is regular then $\zeta = 0$ and $\Gamma(\zeta) = \mathbb{N}_0^2$. Now let A be not regular. Consider the case where the tangent cone of A is reducible. Let π : $\mathrm{Bl}_m(A) \to \mathrm{Spec}(A)$ be the canonical map of $\mathrm{Bl}_m(A) = \mathrm{Proj}(\bigoplus_h \mathfrak{m}^h)$; the exceptional divisor $\pi^{-1}(\mathfrak{m})$ has two components V and W, defined by X = 0 and Y = 0 in the projective plane which is the exceptional divisor of the blow-up of k[X, Y, Z] with respect to the maximal ideal. Let p and q be those prime ideals of height 1 of A which contain respectively $\pi(V)$ and $\pi(W)$.

Now we have the following situation. If the tangent cone of A is reducible or if Sing(A) has two components there are two intrinsically defined prime ideals of height 1; in the representation of A considered above these are the prime ideals containing X respectively Y.

Let v, w be the normalized valuations of L corresponding to the restriction of L of the valuations of K_n defined by the ideals $(X^{1/n})$, $(Y^{1/n})$. An element $g \in \overline{A}$ has an order iff $\omega(g) = 0$ for each essential valuation ω of the Krull ring \overline{A} which is not equivalent to v and w.

If all first components in the elements of $t \in T$ are zero put $\varepsilon = n$; otherwise let ε/n ($\varepsilon \in \mathbb{N}$) be the smallest nonzero first component of the elements of T. Then n/ε is the ramification index of v over K and is defined intrinsically by $\min \{v(g)|g \in A \text{ has positive order}\}$ if the multiplicity of \mathfrak{p} is d; in the other case λ_1 is defined intrinsically and the ramification index is given by $\min \{v(g)/\lambda_1|g \in A \text{ has positive order}\}$. In the same way we define σ/n for the valuation w using the second component of the elements of T. Now

$$\left(\frac{\varepsilon}{n}v(g_i), \frac{\sigma}{n}w(g_i)\right) = r_i, \quad 1 \leq i \leq h,$$

and this implies that $\Gamma(\zeta)$ is defined intrinsically.

In the remaining case where Sing(A) has only one component one has to consider a strict resolution of A in the sense of Lipman and use induction with respect to the length of this resolution. But in this case the calculations given by Lipman are quite simple and short.

References

- [1] S. S. Abhyankar, On the ramification of algebraic functions, Amer. J. Math. 77 (1955), 575-592.
- [2] -, Expansion techniques in algebraic geometry, Notes by B. Singh. Tata Institute of Fundamental Research, Bombay 1977.
- [3] G. Angermüller, Die Wertehalbgruppe eine ebenen irreduziblen algebroiden Kurve, Math. Z. 153 (1977), 267-282.
- [4] J. Lipman, Quasiordinary singularities of embedded surfaces, Thesis, Harvard University 1965.
- [5] -, Quasi-ordinary singularities of surfaces in C³, In: Proc Symp. Pure Math. 40 (1983), Part 2, 161-172.
- [6] I. Luengo, A new proof of the Jung-Abhvankar theorem, J. Algebra 85 (1983), 399-409.
- [7] M. Micus, Zur formalen Äquivalenz von quasigewöhnlichen Singularitäten, Thesis, Paderborn 1987.
- [8] W. Micus, Zur formalen Äquivalenz von ehenen irreduziblen algebroiden Kurven in beliebiger Charakteristik, Thesis, Paderborn 1987.
- [9] O. Zariski, A new proof of the total embedded resolution theorem for algebraic surfaces (based on the theory of quasi-ordinary singularites), Amer. J. Math. 100 (1978), 411-442.