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Introduction

In a series of papers (cf. [2] and its bibliography), Abhyankar and Moh have
studied plane algebroid curve singularities, mainly over an algebraically closed
field k of characteristic zero. Starting with the characteristic pairs of such
a curve singularity A = k[[X, Z]1/(F) = k[[X]] [{] where Fek[[X]][Z] 1s
monic and irreducible, they construct a special basis of the free k [[ X]]}-module
A, which in turn gives a minimal set of generators of the value-semigroup of A4.
M. Micus in his thesis [7] has generalized this result to e-dimensional
quasiordinary singularities (e > 2). He used this result to associate a semigroup

1 . . . : .
< —N§ for some n with such singularities, and gave the connection with the
h

distinguished exponents introduced by Lipman [4]. In this paper we give
a short valuationtheoretic proof of the fact that this semigroup is defined
intrinsically by A at least in the case of a surface singularity, a fact contained
also in Lipman’s thesis (proven there for the distinguished exponents) and

. : 1 . .
characterize for e > 1 those semigroups of — N§ which occur as the semigroup
n

of a quasiordinary singularity.

2. Strict linear combinations

(2.1) NoraTioN. Let eeN; for r,=(g;y, ..., 0,)€Q° i=1,2, define
ry<r, iff 9,;<0,; for j=1,...,e For ri=(g;,...,0)€Q" set |r] :=

(Lest.-os Lee])
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1
Let neN, and put 4,: = ;Z. Then 4; is an (if e = 2 not linearly) ordered

Z-submodule of Q¢

Let heN and r=(r,,...,r,) be an h-tuple of elements of 4;. Let
ti=(0i1».--,0;) for i=1,...,h and for i=0,...,h let §,(r)=6; be the
positive gcd of minors of order e of the (e, e+ 1)-matrix
(nE,, ((mey)1 <isin < j<c); here E, denotes the (e, e)-unit matrix. Define
0,,,(NN=20,,,:=0,(r)/6,(r) for i=0,..., h; then 6, ,|0, for 1 <i<h and
0,., = 1. Define v,(r)=v,:=0,0,,, for i=1,..., h; thus v, —5, /é; for
i=1,..., h. We call the sequences 0(r) = (04, .... 9,,) and v(r) = (v ..., v,) the
divisor sequence and the v-sequence associated with the sequence r, respec-
tively. Given i€ {1, ..., h} the elements v,, ..., v; may be calculated knowing
only r,,...,r;.

(2.2) LEMMA. For i€ {0, ..., h} let N, be the Z-submodule of A generated by
Z° and the elements r,...,r;. Let yeZ and i€{l, ..., h}. The element yr; is
contained in N;_, iff v,|y.

Proof The theory of elementary divisors shows that Card (4¢/N;) = é, for
i=0,....,h. Choose ie{l,...,h} and let N; be the Z- submodule of
A8 generdted by N, and vr;,. Then Card(4i/N7) = |ged(d;_,, y9,)|; thus
Ni=N;_, iff |gcd(v;, Y} = v;.

(2.3) PROPOSITION. Let a = ag+) /-y o1, b =by+> 0=, B;r, with a,, by in
Z¢ and integers a;, fB; such that 0 < a,, f; <v; for i=1,..., h. Then a=b iff
a,=by and o; =f, for i=1,..., h

Proof. Suppose a=>. If a;=f, for i = 1,..., h then a, = b,. Suppose

there exists je{l,..., h} such that «; # f; choose j maximal with this
property. We may assume that o; > ;. Then 0 =a—b =c+Y{_,y;r, ceZ",
Vis-o» Vi1 €4, 0 <y, < v s0 yjr is contained in the Z-module N;_, which

contradlcts (2.2).
(2.4) ProrosiTioN. Every element a of the Z-module N, has a unique
representation of the form

a=ag+ ) or;, ageZf,

a,€Ng and O <a; <v, for i=1,..., h

Proof. Uniqueness follows from (2.3). Lemma (2.2) shows that v;r; is
contained in the Z-module N,_, for i=1,...,h Let a=ay+)t  or
apeZf, a,e fori=1,..., h Starting with j = h we write o; = B, v;+7; w1th
B;v,€Z and 0 <y; <v; and get the claimed representatlon by recursion.
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(2.5) We define ro=q,=my=1(0,...,0)€¢Z* and by recursion for
i=1,...,h

i—1 8
qi3=—zajqj+ri’ M= m_y +4q;
j=17i

and we set v,:= 1. Then q:=(q,, ..., q,), m:=(m,, ..., m) are sequences in
A; and so have an associated divisor sequence and v-sequence.

(2.6) ProprosiTiON. The following holds true:

(i) Each of the three sequences (m,...,m,), (@, ..., qy), (rys ..., 1) in
A determines the other two and the associated sequences of divisors and
v-sequences are the same.

(i) For every i =1, ..., h the Z-submodules of A; generated by Z° and
my, ..., m;, respectively q,, ..., q;, respectively r,, ..., r;, are the same.

(1) The following are equivalent:
(1) The sequence (m,, ..., m,) is linearly ordered: mo <m; <m, < ... <m,.
(2) g;>0fori=1,...,h
(3) For i=1,...,h we have r,>v,_,r,_,.

If these conditions are satisfied then for i=1,..., h
i-1
j=1

Proof. It is easy to see that each of the sequences (m,, ..., m,), (4, --., q,)
and (r,, ..., r,) defines the same sequence of divisors and that (i) and (ii) hold
true.

With regard to (iii), it is clear that conditions in (1) and (2) are equivalent.
Now for i =2

i—1 . i—1 6 0__
Fi = Z _qu+qi= Z _Jl_lqj+qi=vi—lri—1+qi
j=1 0; j=1 0,-, 0,

which shows that (2) and (3) are equivalent.
Il these conditions are satisfied then r, > (vo—1)7, and it is easy to prove
(*) by induction using the condition in (3).

(2.7) DerFINITION. An element ae 4 is called a strict linear combination of
Fis ..., 1y if @ has a representation a = a,+ ) r- a;r; where a,eN§ and for
i=1,..., h the coefficients a; are integers such that 0 < a; <v,.

(2.8) CorOLLARY. Let the conditions of (2.6)(iil) be satisfied.
(a) The set

h
Zairi’ ,€Ny, O<oy<v fori=1,... h,
i=1

is linearly ordered.
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(b) The set of strict linear combinations of r, ..., r, is a subsemigroup of
AL consisting of nonnegative elements.

Proof. (a) Let
h h
a = Z ar; # Zﬁiri:b
i=1 i=1

be strict linear combinations of r,, ..., r, and choose je{l, ..., h} maximal
such that a; # f;; we may assume that o, > ;. According to (2.6) (*) we have

Jji—1 -1
r; > Y (vi=Dr;= ) Bir;
=1 i=1
and this implies that a>b. ~
(b) Let a and b be strict linear combinations of r, ..., r,,

h h

a=a,+ Y or, b=by+) Bir,

i=1 i=1
Ay, boeNG, a;, B;eN,, 0< o, f; <v,fori=1,...,h Thena+b=ay,+by+c

+Y 1y with ceZ¢, y,eN,, 0<y, <v;fori=1,...,h
According to (2.4) for every ie{l,..., h} we may write
i—1
viti=do+ Y &r; Wwith doeZf, 4;eNy, 0< &, <v, for j=1,..., 10
i=1
From (2.6) () we get
i—-1
agzvri— ) (vy=hr;>@v,=1)r, 20
j=1

3. Quasiordinary singularities

(3.1) NotaTions. Let k be an algebraically closed field of characteristic 0,
put R, =R=k[[X,,..., X_.]], the formal power series ring over k in
e variables. Let n be a natural number and define R,:= k[[X{™, ..., X1™]].
Let K, be the quotient field of R, and denote K, by K. Then K,/K is a Galois
extension and the Galois group is isomorphic to (Z,)* where Z, = Z/nZ. Let I,
be those nonnegative rationals with denominator n; forme 'y, m = (u,, ..., u,)
let X™=X§'...- X&

Consider the natural pairing

x4y — 1, (m,g)""znl-‘f'yi
i=1
where m = (4, ..., 4.), g =y, ..., y,)- Let m:=(m,, ..., m,) be a sequence of
elements in I';; define the divisor sequence 0(m) and the sequences r,, ..., Iy,
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qys -Gy as 10 (2.5) and put M;:= X" Q,:= X% P;:=X"fori=1,.... h
Forevery i€ {0, ..., h} the fields K(P,, ..., P), K(Q,, ..., Q), KM, ..., M)
coincide and the just mentioned pairing and Galois theory show that each of
these fields has degree 0,/0,,, over K.

(3.2) Let FeR[Z] be an irreducible unitary polynomial whose disc-
riminant has the form X™ E where me N§ and E is a unit in R. In the case e = 1
this 1s always true. Such polynomials will be called quasiordinary. Abhyankar
[1] and more recently Luengo {6] have shown that there exist ne N and { in R,
such that F({) = 0 so that R[Z]/(F) = R[{]. A ring A having a representation
of this form will also be called quasiordinary. If e =1 then A is the ring of
a plane irreducible algebroid curve. In his thesis Lipman [4] has studied these
singularities for the case ¢ = 2 — they play an important role in the resolution
of surface singularities, cf. Zariski [8] — and has shown the following (which
holds true for arbitrary e). Let { =) <c, X" Then there are heN, and
m, <...<m, in I'; such that [using the notation in (2.2)]

(1) m;eSupp({) for i=1,..., h

(ii) Supp() = N,

(ii) For re Supp({) let 1(r) be the least i€ {0, ..., h} such that re N,. Then
rzmg,, and t(m)=ifor i=1,..., h

The elements m,, ..., m, will be called the distinguished exponents of (.

Let v and r be the v-sequence and r-sequence associated to (m,, ..., my). It
is easy to see by Lemma (2.2): The condition t(m) =i for i=1,...,h is
equivalent to the condition v;> 1 for i=1,..., h.

Furthermore, Lipman {4] has shown: one may normalize { in such a way
that Supp({)nNg =0 and if m, = (u;y,..., 4;,) for i=1,..., h are the
distinguished exponents belonging to { then yy, > 1 if p;;=0forj=2,...,¢
and the h-tuples (4,5 ..., Hp1)s ---» (Hyes ---» Hy) ar€ decreasing with respect to
the lexicographic order.

(3.3) It 1s clear that 4 = R[({] 1s a free R-module. In his thesis, M. Micus
[6] has constructed — following the methods developped by Abhyankar [2] in
the case e = 1, especially using approximate roots — a special basis of 4 as
R-module, thus generalizing the Abhyankar—-Moh-epimorphism theorem from
the case of a plane irredubible curve singularity to the case of quasiordinary
singularities.

Let us say that an element ge A has order rel; if g = X"E where E is
a unit in R,, and write ord (g} = r. Define

L Z for j=1,
7 |App%(F) for j=2,..., h.

(AppZ (F) is the 0;th approximate root of F.) Let g; = G;({) for j=1,..., h

Forb:=(f,, ..., f)eNg put g*:=gf*...gf" Let B:= {(B,, ..., B )0 < f; < v,
for 1 <j< h}. With these notations M. Micus has shown:
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(3.4) THeoreM. For i=1,..., h the element g; has order r,. The set
{g’|be B} is an R-basis of A. Let g= Z,,Eﬂ , 9" with F,e R be an element of A of
order r. There is u unique b = (B, ..., B,) eB such that r=ord(F,)+) (-1 b:r;

(3.5) CoroLLARY. Let T'({):= {rel?%| there exist ge A with ord(g) = r}.
Then I'({) is the set of strict linear combinations of r,, ..., r,.

(3.6) CorOLLARY. Let A be the integral closure of A and I':= N, " T'¢. Then
an element geR, is in A iff rel for each reSupp(g).

(3.7) CorovrLary. Let T':={>" BrlB» ..., B,)eB} and set
T:={¢'— | t'| |t'eT'}. Then A is a free R-module having R-basis {X'|te T}. In
particular, A is a Cohen-Macaulay ring.

(3.8) Consider the semigroup I' ({); it will be called the semigroup belonging
to {. Then we find h and the elements r,, ..., r,, in the following way. The set
{r—a>0|rel({), aeNg} has a smallest element, namely r,; so we may
calculate v,. By recursion, we find r; as the smallest element in the set

r—a-—Zcx rilrelr'((), aeNg, 0 <a; <v; for 0<j<i}

and we may calculate V;.

4, The invariance of the semigroup

(4.1) If ¢ = 1 the integral closure 4 = k[[t]] of A4 is a discrete valuation
ring; let v be the normalized valuation defined by A. Then
r(d):= {v(g)lge A\{0}} is an invariant of 4. Let n be the smallest nonzero
value of v on A. As { is normalized there are elements r,, ..., r,e I, such that
{n,nry,...,nr,} is a minimal set of generators of I'(4) and the sequence

: . i o1
(ry, ..., ry) 1s uniquely determined by A4; thus I'({) = —TI (A).
n
(4.2) ProposiTiON. Let ry, ..., r, be elementsin I';, let v=(v,, ..., v,} be the
corresponding v-sequence. Define vy, = 0. Then the conditions
vi>1, r>v,_,r., fori=1,...,h

are necessary and sufficient for the existence of a normalized quasiordinary { such
that I'({) is the set of strict linear combinations of r,, ..., r,.

Proof. We calculate the m-sequence belonging to r and use the construc-
tion given by Lipman for the existence of a quasiordinary { having this
m-sequence as sequence of distinguished exponents.

(43) In the case e¢ =1 the conditions of the proposition are the
well-known conditions that must hold for the minimal set of generators of
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a subsemigroup I of I',, in order that I' is the semigroup of a plane irreducible
algebroid curve singularity, ¢f. e.g. Angermiller [4] or W. Micus [&].

(44) Lipman [4] has shown that in the case ¢ =2 the sequence
(m,, ..., m,) is an invariant of 4 by studying very carefully the resolution of
A by special formal monoidal and quadratic transforms of 4. We give a
new proof of this result by showing that the sequence (r,. ..., r,) Is an invariant
of A.

Consider the representation R<= A =R[{J= A< R, Let X:=X,,
Yi=X, and m;=(4, p} for i=1,...,h Let L =Quot(4) and d:=[L:K].
The following results are contained in Lipman [4]: If 4, > Othen p:= (X, {)is
a prime ideal of height 1 and its multiplicity in A is min(d, d4). If u, > 0 then
there is a corresponding result for the ideal q:= (Y, {). Furthermore, d is an
invariant of 4 and if 4, < 1 then 0 < u, < 1 and p and q are the only prime
ideals of height 1 which may be singular.

If the singular locus Sing(A4) of A has two components then these are
defined by prime ideals of the form p = (X, {) and q = (Y, ¢({)) with an element
g(f)e A

If A is regular then { =0 and I'({) = N3. Now let 4 be not regular.
Consider the case where the tangent cone of A is reducible. Let n:
Bl..(A4) = Spec(A) be the canonical map of Bl.(4) = Proj (@, m"); the excep-
tional divisor n~ ! (m) has two components V and W, defined by X = 0 and
Y = 0 in the projective plane which is the exceptional divisor of the blow-up of
k[[X, Y, Z]] with respect to the maximal ideal. Let p and q be those prime
ideals of height 1 of A which contain respectively n (V) and n(W).

Now we have the following situation. If the tangent cone of A4 is reducible
or if Sing(A4) has two components there are two intrinsically defined prime
ideals of height 1; in the representation of A considered above these are the
prime ideals containing X respectively Y.

Let v, w be the normalized valuations of L corresponding to the restriction
of L of the valuations of K, defined by the ideals (X'/), (Y!/"). An element g A
has an order iff w(y) =0 for each essential valuation w of the Krull ring
A which is not equivalent to v and w.

If all first components in the elements of t € T are zero put ¢ = n; otherwise
let e/n (¢eN) be the smallest nonzero first component of the elements of 7.
Then n/e is the ramification index of v over K and is defined intrinsically by
min {v(g)|g € A has positive order} if the multiplicity of p is d; in the other case
A, 1s defined intrinsically and the ramification index 1s given by
min {v(g)/A,|g€ A has positive order}. In the same way we define o/n for the
valuation w using the second component of the elements of T. Now

(Ev(gi)’gw(gi))=ri’ I<i<h,
n n

and this implies that I'({) is defined intrinsically.
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In the remaining case where Sing(A) has only one component one has to
consider a strict resolution of 4 in the sense of Lipman and use induction with
respect to the length of this resolution. But in this case the calculations given by
Lipman are quite simple and short.
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