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HOMOGENEOUS LATTICES AND LATTICE-ORDERED GROUPS
BY
JOEL BERMAN (CHICAGO, ILLINOIS)

A lattice L is homogeneous if, for any a, beL, a < b, there exists
an automorphism f of L such that f(a) = b and x < f(x) for all zeL.
Every lattice that admits a lattice-ordered group structure is homo-
geneous. In this paper structural properties of homogeneous lattices are
developed. In particular, homogeneous lattices that are linearly ordered
or that have a finite number of meet disjoint elements are investigated.
In general, this paper shows that many properties of lattice-ordered
groups also hold for homogeneous lattices. As a consequence, this gives
purely lattice-theoretic proofs for several lattice-ordered group results.

Let L be an arbitrary lattice. If a << b in L, then the interval from
a to b is the convex sublattice {z | z¢L and a < x < b}, and is denoted
by [a, b]. If [a, b] = {a, b}, then b covers a and this is written a < b.
If a,beL, and a and b are not comparable, then write a|b. A lattice L
is mon-trivial if |L| > 1. The automorphism group of L is denoted by
A(L). Let A*(L) be the set of all automorphisms of L such that fe A*(L)
if and only if, for all veL, z < f(2) or, for all zeL, f(x) < 2.

In [6], Dwinger * defines homogeneous lattices in a slightly different
way: for every a and b in L, there exists a homomorphism f of L such
that f(a) = b and such that if & < b or a|/b, then f can be chosen so that,
for all xeL, < f(x) or z|f(x), respectively. Example 1.6 in Section 1
shows that the class of homogeneous lattices discussed in [6] is properly
contained in the class of homogeneous lattices as defined in this paper.
However, the results obtained in [6] for homogeneous lattices also apply
to the class of homogeneous lattices defined in this paper.

1. General results on homogeneous lattices and homogeneous chains.

THEOREM 1.1. If L is a homogeneous lattice, then L has a transitive
group of automorphisms.

Proof. Let o, yeL. Then there exist automorphisms f and ¢ of L
such that f(x) =xvy and ¢g(y) = xvy. Hence ¢ 'f(z) = y.

* The author wishes to thank Ph. Dwinger for many helpful discussions con-
cerning homogeneous lattices.
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THEOREM 1.2. If L i8 a mon-trivial homogeneous lattice, then L has '
neither first mor last element.

Proof. Suppose 1e¢L is the last element, aeL, a # 1. Let fe A (L)
be such that f(z) = 1. Then 1 < f(1) which is impossible.

THEOREM 1.3. If L ts homogeneous, then L is distributive.
Proof. Suppose L has a sublattice

x®z.

v

Let feA*(L) be such that f(v) = @. Then f(yAz) = f(y)Af(2) = f(v)
= x, 80 f(y) > « and f(z) > x. Since feA*(L), f(y) > v and f(2) > 2. Thus

u=avy<fly) and u =avz<f(?).

So u < f(y)Af(2) = f(yaz) = f(v) = x which is impossible. Suppose
L has a sublattice

and thus let feA*(L) be such that f(v) = 2. Then

fynrz) =f(y)af(2) = f(v) =,

50 f(2) > @. But again feA*(L), so f(y) >y and f(z)> 2. Hence y < u
= xvz < f(z). But

Yy<fynrf(z) =flynz) ==

which is impossible.

Definition 1.4. A lattice C is a chain if it is a linearly ordered set.
A chain C is dense if it is non-trivial and if, for any a, beC, a < b, there
exists a ceC such that a < ¢ < b. A chain C is scattered if it has no subchain
which is dense. If M is an arbitrary lattice and C is a chain, the lattice
CoM will denote the lexicographic product of C and M (see [1], p. 199).
If a is an ordinal, Z° denotes the set of all sequences of integers of type a,
with finitely many non-zeros, ordered antilexicographically [10]. (See
also [14].)

LeMMA 1.5. Let L be a chain with a transitive group of automorphisms.
Then L is homogeneous.
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Proof. Let @, beL and he A(L), h(a)*= b. Without loss of generality,
let a <b. Let L = XUY, where

X ={xelL| xa<h(x)} and Y = {xwel| s> h(w)}‘.

Then XNY =@@. Define g: L - L by g(x) = h(x) for ze¢X, and
by g(z) = h™'(z) for ze Y. Since XNY = @, g is well defined. Moreover,
z< g(x) for all zeL and g(a) = b. A straightforward argument shows g
18 an automorphism of L.

Example 1.6. Let C denote the chain of all ordinals less than the
first uncountable ordinal. Let I denote the half-open unit interval of
real numbers [0, 1). Then ColI is a linearly ordered set called the long
line. Deleting the initial element from ColI gives a chain L. It is easily
seen that the chain L has a transitive group of automorphisms and thus,
by Lemma 1.5, is homogeneous. However, any automorphism of L has
a fixed point, so L does not admit a lattice-ordered group structure. This
shows that the class of homogeneous lattices properly contains the class
of lattices that admit a lattice-ordered group structure.

The following two theorems are due to Morel ([10], p. 213, and [11],
P- 200). (See also Sankaran [13], p. 18.)

THEOREM 1.7. If C is a scattered chain with a transitive group of auto-
morphisms, then C =~ Z* for some ordinal a.

THEOREM 1.8. If C is a chain that admits a Vinearly-ordered group
structure, then C satisfies exactly one of the following conditions:

(i) C == Z° for some ordinal a;

(ii) C %8s dense;

(iii) C =~ DoZ", where a i8 a non-zero ordinal and D is a dense chain
which admits a linearly-ordered group structure.

Now, using Lemma 1.5 and Theorem 1.7, a result for homogeneous
chains, similar to Theorem 1.8, is obtained. (Also see [12].)

THEOREM 1.9. Let C be a homogeneous chain. Then exactly one of the
following conditions holds:

(1) C =~ Z° for some ordinal a;

(ii) C s dense;

(iii) C =~ DoZ®, where a is a non-zero ordinal and D is a homogeneous
chain.

Proof. If C is a one-element chain, then C =~ Z°. If (ii) does not
hold and C is non-trivial, then there exist a, beC such that ¢ < b. Hence
the family of convex scattered .subchains of C that contain a is non-void.
Take the union of all such convex scattered subchains to obtain a maxi-
mal convex scattered subchain of ¢ containing a. Call this subchain M (a).
By homogeneity, for any zeC, such a maximal subchain M(x)
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can be constructed. Also, by Nomogeneity, convexity and maximality,
M(x) >~ M(y) for all x, yeC. Maximality and convexity imply that if
yeM(x), then M(y) = M(x). The collection of all such M (x) for zeC
forms a partition of C into convex isomorphic subchains. This partition,
therefore, induces a congruence relation é on C. If f is an automorphism
of C, then f(M(x)) = M(f(x)). Since C has a transitive group of auto-
morphisms, 8o does D = L/§. By Lemma 1.5, D is homogeneous. Also,
since the M (x) are maximal with respect to being scattered, if D is non-
trivial, then it is dense. It is easily seen that M (z) has a transitive group
of automorphisms. Thus, by Theorem 1.7, M(x) =~ Z° for some non-zero
ordinal a.

Note that the congruence relation 6 in the proof of Theorem 1.9
is a convex congruence on C. See, for example, [8] for a discussion of such
congruence relations and their use in lattice-ordered groups.

Theorem 1.9 gives, as a corollary, the following parallel of Mal’cev’s
result for countable linearly-ordered groups [9]. @ will denote the rational
numbers under the usual ordering.

COROLLARY 1.10. Let C be a countable homogeneous chain. Then exactly
one of the following conditions holds:

(i) C =~ Z“ for some countable ordinal a;
(ii) ¢ =~ @;
(iii) C =~ QoZ* for some mon-zero countable ordinal a.
Proof. This follows from Theorems 1.9 and 1.2 and the fact that,

up to isomorphism, ¢ is the only countable chain that is dense with neither
first nor last element.

2. Disjoint elements in homogeneous lattices. In this section results
gimilar to those of Conrad and Clifford [5] and Conrad [3] and [4] are
obtained. See also Fuchs [7], p. 82.

Let L be a homogeneous lattice. A subset § = {s;};.; of incomparable
elements is called A-disjoint if s;As; = s;As, for any 4,7, kel, © #j,
i # k. If 8 is A-disjoint and = s;As; for ¢ # j, then 8§ is said to be
A -digjoint relative to x. The notion of v-disjoint is defined dually. If L
is homogeneous and 8 is A-disjoint relative to x, then for yeL such that
y # x there exists a set 7 which is A -disjoint relative to y, and [S| = |T|.-

In the remainder of this paper, every homogeneous lattice will have
A -disjoint sets of cardinality at most n, where n is a finite integer.

LeMMA 2.1. Let L be a homogeneous lattice. If n 48 the maxzimum car-
dinality of a A-disjoint set, then n is the maximum cardinality of a v -
disjoint set.

Proof. Let {a,, ..., a,} be a A-disjoint set relative to e L. By Theo-
rem 1.3, L is distributive. Hence the sublattice of L generated by {a,, ..., a,}
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is 2", Let d = a,v ... va,. Then the co-atoms of the sublattice generated
by {a,, ..., a,} form a v -disjoint set relative to d. A dual argument now
proves the lemma.

Choose and fix an e¢eL. Let {a,,...,a,}, where n is maximal, be
A -disjoint relative to e. Select {b,, ..., b,} v-disjoint relative to 6, where,
by virtue of Lemma 2.1, » is also maximal.

LEMMA 2.2, The intervals [e, &;] and [b;, €], 1 < ¢ < n, are both chains.

Proof. Suppose [¢, a,] is not a chain. Then there exist x, y<[e, a,],
z||ly. If Ay = e, then the set {z, vy, a,, ..., a,} i8 A-disjoint which con-
tradicts the maximality of n. For xAy > ¢, let feA*(L) be sueh that
fleany) =e. Then a, > x> f(x) > ¢ and a, >y > f(y) = ¢ and f(z)Af(y)
= ¢. Since 2|y, f(x)|lf(v), and hence f(x) # ¢ and f(y) # e. But then
{f(z), f(y), agy ..., a,} 18 & A-disjoint set.

Definition 2.3. Let L be homogeneous and fix an eeL. For
a > e, let

a- ={b>=e|barx =e¢ if and only if arnz = ¢}.

Similarly, for a <e, let
a ={b<e|bva =eif and only if bva = ¢}.

In the language of lattice-ordered groups, a” is called the carrier
of a (see [7], p. 72). Using distributivity, it is easily shown that a” is a
convex sublattice of L for any a > e.

Suppose the maximal cardinality of a A -disjoint subset of L is n.
It 8 = {a,, ..., a,} i8 A-disjoint relative to ¢, then a; is a chain for each 4.
For if not, let z,yea;, z|ly. Then the set

{2, 9, a1v (®AY), ...y a,v (TAY)}
is of cardinality n +1 and A -disjoint relative to x A y.
LEMMA 2.4. The interval [by, a;], 1 < ¢ < n, 18 a chain for exactly one 1.

*Proof. First, suppose both [b,,a,] and [b,, a,] are chains. Let
feA™ (L), f(e) = b,. Then

flainay) = f(a,)Af(as) = f(e) = b,.

But f(a,) #b, and f(a;) #b, since a, #e¢ and a, #e. Also
f(a)e[by, a,] and f(a,)e[b,, a;] which, by the hypothesis, are chains.
Thus f(a,)Af(a,) is either ¢ or the minimum of f(a,) and f(a,). Thus
f(ay)Af(ap) = b, is impossible.

Now it will be shown that [b,, a;] is a chain for some i. Let feA*(L),
f(b,) =e. By Lemma 2.2, [b,,e] is a chain, and so is [f(b,), f(e)]
= [e, f(e)]. Moreover, f(e) > ¢. Hence a;Af(¢) =1t > ¢ for some j, and
a;nf(e) = e for k #j. Thus f(e¢)ea; . Now consider the set b, . Since it
is a chain, f(b, ) is also a chain. Note [e, f(e)] < f(b, ).

2 — Colloquium Mathematicum XXXII.1
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Next, claim b, ef(d, ). It is enough to show that f~*(b,)eb, or, equiva-
lently, f~'(b;)vb; = e for j =2, ..., n. But this is the same as showing
b,vf(b;) = f(e). Since b,vb; =e¢, it follows f(b,)vf(b;) = f(e). Since
f(b;) = e, this gives evf(b;) = f(e). But

e =b,vb; < b, vf(b),
8o evf(b;) < byvf(b;). But also
f(e) = evf(by) = bivf(by).

Thus f(e) = b,vf(b;) as desired, so byef(h, ). At this stage we now
have the intervals [e, a;] and [b,, f(e)] with the common intersection
[e, f(e)]. Suppose there exists an xe[b;, a;] such that x¢[e,a;] and
x2¢[by, f(e)]. Then z|e. Form xve and xAe. Since [b,, f(e)] is an interval,
zve > f(e). Thus zve = v f(e). Similarly, xane = zAf(e). Since ¢ # f(e),
it follows that

evx

x fle)
e

eAx

i8 a sublattice, which is impossible. Thus [b,, a;] is indeed a chain.

Note 2.5. It follows from Lemma 2.4 that the set b, ua, U {e} is
a convex subchain for exactly one ¢. This argument can be given for
each b;, 1 <1< n, renumbering the a,, if necessary, to give

Ci = a:i‘ Ubiv U{e} .

The C;, 1 <4< n, are convex subcBains.

LEMMA 2.6. Let L be homogeneous with C,, C,, ..., C, as in Note 2.5.
Let D be any convex subchain, eeD. Then D < C; for some i.

Proof. Let deD,d > e¢. Form {daa,,...,dAa,} with a; > ¢, a;¢C;.
At least one of these meets is not ¢, for otherwise {d, a,, ..., a,} would
be A-disjoint relative to e. So assume dAa, > e. It follows that daa; = ¢
for 2 < @ < n. For if not, say dA a, > ¢, then the chain [e, d] would contain
the two non-comparable elements dA a, and dA a, which is impossible. We
claim dea, . Forlet a,Az = e. If dax > ¢, thenthe set {zxAd, a,, ay, ..., a,}
18 A-disjoint which is impossible. If, on the other hand, dAy = ¢ and
a,Ay > e, the set {d, a,ry, a,, ..., a,} is A-disjoint relative to e which is
also impossible. Thus {d | deD, d > ¢} is in a, . Similarly, {d |deD, d < €}
is in b; for some j. But since D is a chain, Lemma 2.4 guarantees that
j =1 as desired.
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Note 2.7. We infer directly from Lemmas 2.6 and 2.2 that if the
sets {a,,...,a,} and {b,, ..., b,} are both A-disjoint relative to ¢, and n
is maximal, then there is some permutation » of {1,...,n} such that
a; =Dbyayy ey @y = by

LEMMA 2.8. Let L be a homogeneous lattice, C; as in Note 2.5 and ceC;.
Let feA*(L) be such that either f(c) =e or f(e) =c. Then f(C;) = Cy,
and thus flc, is an automorphism of C;.

Proof. Let ceC,, ¢ < ¢, and feA*(L), f(¢) = e. In the proof of Lem-
ma 2.4 it was shown that f(¢ ) < C,. For any a<C, with ¢ < f(e) < a, since
[e, a]is a chain, 8o is [e, f(a)]. So, by Lemma 2.6, f(a)eC,. Thus f(C,) < C,.
Note ee<f(C,) and e < f(6). Now consider f~'. Observe that f~'eA*(L)
and f~'(f(e)) = e. Applying f gives

ff1(¢,) =0, < f(Cy) s 0y,
so f(C,) = C,. A dual argument applies for ¢ > e. Finally, if f(¢) = ¢,
just go through the above argument with f'.

THEOREM 2.9. Let L be a homogeneous lattice such that n is the maxi-
mum cardinality of a A-disjoint set. Let C;, 1 < i< n, be as in Note 2.5.
Then the C; are homogeneous chains.

Proof. Let x, y<C;. Consider fe A* (L) such that f(x) = e. Let ge A* (L)
be such that g(¢) = y. Then gf is an automorphism of L, gf(xr) = y. By
Lemma 2.8, gf(C;) = C;, 80 ¢flg, is an automorphism of C;. Hence C; has
a transitive group of automorphisms, and so, by Lemma 1.5, C; is homo-
geneous.

Thus when viewed in terms of lattice-ordered groups, the C; cor-
respond to shifting subgroups. See, for example, Byrd, Conrad and
Lloyd [2].

LeMMA 2.10. Let P be the sublattice of L generated by the a; , 1 < i < n.
Then

P~ H(a{ u {e}).

Dually, if Q is the sublattice of L generated by the b, , then

Q gn(b; v {e}).

Proof. Let peP, p > e¢. Then, by distributivity,
p = V(A%), Where zyeca,.
2

By disjointness, this simplifies to #; v ~. va; Wwith a; ea, ; i; # 4
. A - . 1 .k, (A B
implies @i, 7 By and ;, > €. This representation is also unique, for if
P =YV ...VY; , theny, =pnry, = Yi, AT and hence y; < ;.- But a



20 J. BERMAN

similar argument shows that’ i, < Yy, - Define

h: P—>n(a,- v {e})

by (h(p)); = =; if x; occurs in the above representation, and by (k(p)); = e
otherwise. Then h is easily seen to be an isomorphism.
Definition 2.11. Let S(e) denote the convex hull of P and Q. That is,

S(6) ={yeL| ¢q<y<p with peP and ¢e@Q}.

Then S(e) is a convex sublattice of L, e¢<S(e¢). This construction of
the sublattice S(e) can be done for any element zeL, with z in place of
e, to give a- convex sublattice S(z). All such sublattices will be isomorphic
since L is homogeneous.

Define a relation ¢ on L by <{(x,y)>ec if and only if S(z) = S(y).

LEMMA 2.12. The relation o ts a congruence relation for L. Moreover,

[yl = S(y) for all yeL.

Proof. Clearly, o is an equivalence relation. To show that [y], = S(y),
it is sufficient to show that if xeS(y), then S(x) = S(y). Since all the
S(y) are isomorphic and L is homogeneous, it is enough to show that
if zeS(e), then eeS(x) = S(¢). First, suppose > ¢ and » = a,, ie. =
is in a set of n A -disjoint elements, which is A -disjoint relative to e. Thus

{xva,, zvas,...,zva,, a}

are A-disjoint relative to z, where a,ca, ,a, > x. But these elements
are also in S(e). Since [¢, a,] = [¢, #] is a chain, by Lemma 2.6, eeS(x).
Let ¢,, ..., ¢, be v-disjoint relative to x. Then, since [¢;, a,] is a chain,
80 i8 [eA¢;, ena,], which is [enc;, ¢]. By Lemma 2.6, eac;eS(¢). Hence
the ¢; are in S(e) since S(e) is convex, i.e. eanc; < ¢; < x and eAc; and x
are in S(e). Hence all the A-disjoint and v -disjoint elements of z = a,
are in S(e), so eeS(x) < S(e), so S(z) = 8(e). If z =a,v ... va, say,
then z is one of » elements pairwise disjoint to a,v ... va,_-, the others
being
A1V oo VO Vg, BV e VB (Vs eeey 01V L V@ VG,
together with
GV AV .o Vg, eeey G4V ... VO, Where ajea; ,a,> a,.

Now apply the previous argument to show S(z) = S(a,v ... va,_,)
and induct on k. A dual argument shows that if x < e holds, then
xeS(e) implies S(x) = S(e). Finally, if xe8(e), x|le, then zAre and zve
are in S(e), since S(¢) is a sublattice. But xve > e > xre, and hence
S(zve) = 8(e) = S(xae). But also xve> x> xAe, so zeS(xae). Thus
S(x) = S(zae) = S(e) as desired.
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Now it will be shown that ¢ is a lattice congruence relation. Let
{x, y) eo. Without loss of generality, let # = ¢ s0 that, say,y = a,v ... va,
with a;Aa; = e." To sce that ¢ is a congruence relation it is sufficient to
show that, for an arbitrary zeL, (ovz,yvz)ec and (A2, yA2)ec. But

Yyvz = (a,vea)Vv(a,va)v ... v (a;v?).

The interval [evz, a,vz] is a homomorphic image of the interval
[e, a,], and thus it is either a non-trivial chain or a single element. If
it is a non-trivial chain, then, by Lemma 2.6, it is in d; , where {d,, ..., d,}
is the set of n A-disjoint elements relative to evz. Thus yvzeS(evz)
and, therefore, (yv=z, evz)eo. Similarly,

YAZ = (@1V ... VG)IAZ = (@1A2)V ... V (apAR),
and [eAz, a;A2z] is a non-trivial chain or a single element, s0 yAzeS(eAz).
THEOREM 2.13. We have

n
8(e) =[] ¢,
i=1
where the C; are as in Note 2.5.
Proof. Let yeS(e), y #e. Let yve = a&,v ... va,, X;ea;, ;> €
and yAe =2 A ... A2y, 2 <6, z,.jeb,.;. First, we claim

Ay, BYO{iq, ooy i) = 9.

For suppose yve>=x, > 2, > ynae. Leti t = (x,Ay)vz,. The interval
[2y, #,] is linearly ordered and both ¢ and e are in [2,, z,]. Hence either
tve = e or tre = e. But

the = [(myAY)vz)ae = (eAx AY)V (2.0€) =y, F e
while

tve = [(x,AY)v2]ve = (T AY)ve = (zyve)A (yve) = &, # 6.

Let yeS(e). Let P(y) = {i | e < x;ea; and x; occurs in the repre-
sentation of yv e}. Analogously define @ (y) for y Ae. Then we have shown
that Q(y)NnP(y) = 0.

Define

a: S(e) —>ﬁ C;
i=1

by (a(y)); = ®; it ieP(y), where x; occurs in the representation in P of
yve; by (a(y)); =2 if i<Q(y), where z; occurs in the representation in
Q@ of yae; and by (a(y)),- = ¢ otherwise. Then a is well defined since the
representations are unique and P(y)n@Q(y) = @. Also a is 1-1, for if
yve =y've and yae = y' Ae, then, by distributivity, y = y’. To show
that a is a homomorphism, observe that

(yvy')ve = (yve)v(y've) and (yvy')ane = (yae)v(y ae).
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Thus (a(yvy')); = (a(y));v(a(y’));. Similarly for yay’.

It remains to show that a is onto [] C;. From the definition of a
it will be sufficient to show that if =1

q = 2N ... A2 eQ,  2,e0;,2, <e
and if '
P =TV oo VE meP, ;0. >€, with k+m < n,
then there exists a y«S(e) such that yve = pand yae = q. Let {a,, ..., a@,}
be n A -disjoint elements relative to q. Let fe A*(L) be such that f(e) = q.
(Without loss of genmerality, assume f(a;,) = @;.) Since qeS(e), ¢ and p
are in the sublattice generated by a, u ... Ua,, i.e. S(¢) = S(e). Let

e =¢6¢V...ve, and P =P,V ...VD. VD1V ce. VDpyy

with ¢; and p;ea;, and p;> ¢q, ¢;> ¢, and r+t <n. Since ¢ <e < s
such a unique representation is possible. We claim ¢; = p; for 1 <i < r-
For if not, suppose ¢, < p,. Then the interval e,v ... ve,, p,veé,v ... ver
would be a chain containing e. Hence it would be in some C,;. But

<2, <6V ...Vve, <e<PVeV ... Ve, <X; <P

which violates the original choice of p and ¢, i.e. P(p)n@Q(q) = 9. Now
let y > q be given by ¥y = p,,.,v ... vp,,,. Then

eny =¢q
and
EVY = €1V ... V6 VD1V oo VDpyy = D1V oo e VDVD 1V oo VDo = P,
as desired.

COROLLARY 2.14. Let L be a homogeneous latiice, and e an arbitrary
fized element of L. Suppose L satisfies the following property:

(1) every x > e 18 the join of at most n elements A -disjoint relative to e.

Then L 18 the product of homogeneous chains.

Proof. For e¢cL and any set A A-disjoint relative to e, |[A| < n.
Thus one can form S(e¢) as in Theorem 2.13. If x > ¢, then xeS(e). If
x < e, then zeS(e) also; for if not, S(r)NnS(e) = G, and then ¢ cannot
be expressed as join of at most n A-disjoint elements relative to x. This
violates the assumptions that L is homogeneous and that (1) holds for L.
Thus S(¢) = L and the result follows from Theorems 2.13 and 2.9.

COROLLARY 2.15. Let L be a homogeneous lattice with n the maximal
cardinality of a A-disjoint set. If every interval in L is of finite length, then

L gﬁZi,
i=1

where Z; i8 the chain of all integers.
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Proof. By Theorem 2.9, the (; are homogeneous chains. Since all
intervals are finite, Theorem 1.9 implies C; =~ Z for all i. Moreover, if
x > ¢, then zeS(e) since the interval [e, z] has a finite length. Thus
L = 8(e) and the corollary follows from Theorem 2.13.

Let L be homogeneous with » the maximal cardinality of a A -disjoint
set. Let o be as in Lemma 2.12. The following is analogous to the result
number 8 in [3]:

THEOREM 2.16. The lattice L[o is homogeneous and any set of A-disjoint
elements has cardinality less than n.

Proof. Let S(a) and S(b)eL/o. Let feA*(L) be such that f(a) = b.
Define F: Ljoc — Ljo by F(8(z)) = 8(f(«)). Note f(S(x)) = 8(f(=)). Thus
S(z) = 8(y) implies S(f(x)) = 8(f(y)). It follows that F is well defined,
1-1 and onto. Since ¢ is a congruence relation, S(z)vS(y) = S(zxvy).
Thus

F(S(z)v8(y) = 8(fzvy) = S(f@)vf) = 8(f()vS{f(¥)
= F(8(=))vF(S(y)).

Similarly for meets. Thus ¥ is an automorphism of L/¢. It remains
to show some such automorphism satisfies the monotonicity condition.
If S(a) < S(b) in L/o, then anb < b and anbeS(a) since S(and) = S(a)A
AS8(b) = S(a). Let feA*(L) be such that f(aab) =b. Then z< f(x)
for all weL. Thus 8(x) < 8(f(x)). Therefore, let F(S(x)) = S(f(x)) be
the desired automorphism of L/e.

The second claim of the theorem will now be demonstrated. Let
deI\S, d > e. Let r(d) = {i|d > a; }, i.e. ier(d) and zea; imply d > z.
Claim |r(d)| > 2. For suppose [r(d)] = 1. So d > a, say. For each i,
2 < i< n, there exists an x;ea; such that x;|d. Let t, = x;ad. Since
a; is a chain, for all zea;, dax =t;, or dax = x. Form ¢t = {,v ... vi,.
Let {8,,85,...,8,} be n A-disjoint elements relative to ¢. Note

{t) 815 82y ..., 82} = S(e).

If s;na, > ¢ and s;Ana; > ¢, then a,A(s;A8;) > ¢. But then a,At > ¢
which is impossible. So for, say, s, ..., s,, wehave s;As; =t and a,As8; = ¢,
2<%, ) <n. But then d >t and s, > ¢ imply das;, >t Let

8; =8V ... vsi, where sjea, .
Then
dns; = (AAS)V ... V(AAS) <tV ... Vi, = 1.
Thus das; =t. So {d,s,,...,8,} are A-disjoint to ¢ which implies,

by Note 2.7, that deS which is impossible.
The case |r(d)|] = 0 is handled analogously.
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Thus |r(d)] > 2 for all deL\8, d > e. Moreover, if {d,,...,d,} are
such that d;eL\S, d,> ¢ and d;and;e8S, then r(d;)Nnr(d;) =0 for all
1 <t <j< m. Therefore, |r(d;)| > 2 implies m < n, as desired.

In the special case where n = 2 we get the following result which
is similar to that of Conrad and Clifford for lattice-ordered groups [5]:

THEOREM 2.17. Let L be a homogeneous lattice such that the maximal
cardinality of any A-disjoint set is 2. Then L ~ Cz0(0y xC,), where the
C;,, it =1,2,3, are homogeneous chains.

Proof. By Theorem 2.16, L/s is homogeneous. Moreover, if z =% y (o),
then > y or ¥y <« in L. Letting C; = L/o, the conclusion follows.
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