VOL. XXXII 1974 FASC. 1

HOMOGENEOUS LATTICES AND LATTICE-ORDERED GROUPS

 $\mathbf{B}\mathbf{Y}$

JOEL BERMAN (CHICAGO, ILLINOIS)

A lattice L is homogeneous if, for any $a, b \in L$, $a \le b$, there exists an automorphism f of L such that f(a) = b and $x \le f(x)$ for all $x \in L$. Every lattice that admits a lattice-ordered group structure is homogeneous. In this paper structural properties of homogeneous lattices are developed. In particular, homogeneous lattices that are linearly ordered or that have a finite number of meet disjoint elements are investigated. In general, this paper shows that many properties of lattice-ordered groups also hold for homogeneous lattices. As a consequence, this gives purely lattice-theoretic proofs for several lattice-ordered group results.

Let L be an arbitrary lattice. If $a \le b$ in L, then the *interval* from a to b is the convex sublattice $\{x \mid x \in L \text{ and } a \le x \le b\}$, and is denoted by [a, b]. If $[a, b] = \{a, b\}$, then b covers a and this is written a < b. If $a, b \in L$, and a and b are not comparable, then write $a \parallel b$. A lattice L is non-trivial if |L| > 1. The automorphism group of L is denoted by A(L). Let $A^*(L)$ be the set of all automorphisms of L such that $f \in A^*(L)$ if and only if, for all $x \in L$, $x \le f(x)$ or, for all $x \in L$, $f(x) \le x$.

In [6], Dwinger* defines homogeneous lattices in a slightly different way: for every a and b in L, there exists a homomorphism f of L such that f(a) = b and such that if a < b or $a \parallel b$, then f can be chosen so that, for all $x \in L$, x < f(x) or $x \parallel f(x)$, respectively. Example 1.6 in Section 1 shows that the class of homogeneous lattices discussed in [6] is properly contained in the class of homogeneous lattices as defined in this paper. However, the results obtained in [6] for homogeneous lattices also apply to the class of homogeneous lattices defined in this paper.

1. General results on homogeneous lattices and homogeneous chains.

THEOREM 1.1. If L is a homogeneous lattice, then L has a transitive group of automorphisms.

Proof. Let $x, y \in L$. Then there exist automorphisms f and g of L such that $f(x) = x \vee y$ and $g(y) = x \vee y$. Hence $g^{-1}f(x) = y$.

^{*} The author wishes to thank Ph. Dwinger for many helpful discussions concerning homogeneous lattices.

THEOREM 1.2. If L is a non-trivial homogeneous lattice, then L has neither first nor last element.

Proof. Suppose $1 \in L$ is the last element, $a \in L$, $a \neq 1$. Let $f \in A(L)$ be such that f(z) = 1. Then 1 < f(1) which is impossible.

THEOREM 1.3. If L is homogeneous, then L is distributive.

Proof. Suppose L has a sublattice

Let $f \in A^*(L)$ be such that f(v) = x. Then $f(y \wedge z) = f(y) \wedge f(z) = f(v) = x$, so $f(y) \geqslant x$ and $f(z) \geqslant x$. Since $f \in A^*(L)$, $f(y) \geqslant y$ and $f(z) \geqslant z$. Thus

$$u = x \lor y \leqslant f(y)$$
 and $u = x \lor z \leqslant f(z)$.

So $u \le f(y) \land f(z) = f(y \land z) = f(v) = x$ which is impossible. Suppose L has a sublattice

and thus let $f \in A^*(L)$ be such that f(v) = x. Then

$$f(y \wedge z) = f(y) \wedge f(z) = f(v) = x,$$

so $f(z) \geqslant x$. But again $f \in A^*(L)$, so $f(y) \geqslant y$ and $f(z) \geqslant z$. Hence $y \leqslant u = x \lor z \leqslant f(z)$. But

$$y \leqslant f(y) \wedge f(z) = f(y \wedge z) = x$$

which is impossible.

Definition 1.4. A lattice C is a chain if it is a linearly ordered set. A chain C is dense if it is non-trivial and if, for any a, $b \in C$, a < b, there exists a $c \in C$ such that a < c < b. A chain C is scattered if it has no subchain which is dense. If M is an arbitrary lattice and C is a chain, the lattice $C \cap M$ will denote the lexicographic product of C and M (see [1], p. 199). If a is an ordinal, C denotes the set of all sequences of integers of type a, with finitely many non-zeros, ordered antilexicographically [10]. (See also [14].)

LEMMA 1.5. Let L be a chain with a transitive group of automorphisms. Then L is homogeneous.

Proof. Let $a, b \in L$ and $h \in A(L), h(a)^{\bullet} = b$. Without loss of generality, let a < b. Let $L = X \cup Y$, where

$$X = \{x \in L \mid x \leqslant h(x)\}$$
 and $Y = \{x \in L \mid x > h(x)\}$.

Then $X \cap Y = \emptyset$. Define $g: L \to L$ by g(x) = h(x) for $x \in X$, and by $g(x) = h^{-1}(x)$ for $x \in Y$. Since $X \cap Y = \emptyset$, g is well defined. Moreover, $x \leq g(x)$ for all $x \in L$ and g(a) = b. A straightforward argument shows g is an automorphism of L.

Example 1.6. Let C denote the chain of all ordinals less than the first uncountable ordinal. Let I denote the half-open unit interval of real numbers [0,1). Then $C \circ I$ is a linearly ordered set called the long line. Deleting the initial element from $C \circ I$ gives a chain L. It is easily seen that the chain L has a transitive group of automorphisms and thus, by Lemma 1.5, is homogeneous. However, any automorphism of L has a fixed point, so L does not admit a lattice-ordered group structure. This shows that the class of homogeneous lattices properly contains the class of lattices that admit a lattice-ordered group structure.

The following two theorems are due to Morel ([10], p. 213, and [11], p. 200). (See also Sankaran [13], p. 18.)

THEOREM 1.7. If C is a scattered chain with a transitive group of automorphisms, then $C \cong \mathbb{Z}^a$ for some ordinal a.

THEOREM 1.8. If C is a chain that admits a linearly-ordered group structure, then C satisfies exactly one of the following conditions:

- (i) $C \cong Z^a$ for some ordinal a;
- (ii) C is dense;
- (iii) $C \cong D \circ Z^a$, where a is a non-zero ordinal and D is a dense chain which admits a linearly-ordered group structure.

Now, using Lemma 1.5 and Theorem 1.7, a result for homogeneous chains, similar to Theorem 1.8, is obtained. (Also see [12].)

THEOREM 1.9. Let C be a homogeneous chain. Then exactly one of the following conditions holds:

- (i) $C \cong Z^a$ for some ordinal a;
- (ii) C is dense;
- (iii) $C \cong D \circ Z^a$, where a is a non-zero ordinal and D is a homogeneous chain.

Proof. If C is a one-element chain, then $C \cong Z^0$. If (ii) does not hold and C is non-trivial, then there exist a, $b \in C$ such that $a \prec b$. Hence the family of convex scattered subchains of C that contain a is non-void. Take the union of all such convex scattered subchains to obtain a maximal convex scattered subchain of C containing a. Call this subchain M(a). By homogeneity, for any $x \in C$, such a maximal subchain M(x)

can be constructed. Also, by homogeneity, convexity and maximality, $M(x) \cong M(y)$ for all $x, y \in C$. Maximality and convexity imply that if $y \in M(x)$, then M(y) = M(x). The collection of all such M(x) for $x \in C$ forms a partition of C into convex isomorphic subchains. This partition, therefore, induces a congruence relation δ on C. If f is an automorphism of C, then f(M(x)) = M(f(x)). Since C has a transitive group of automorphisms, so does $D = L/\delta$. By Lemma 1.5, D is homogeneous. Also, since the M(x) are maximal with respect to being scattered, if D is nontrivial, then it is dense. It is easily seen that M(x) has a transitive group of automorphisms. Thus, by Theorem 1.7, $M(x) \cong Z^a$ for some non-zero ordinal a.

Note that the congruence relation δ in the proof of Theorem 1.9 is a convex congruence on C. See, for example, [8] for a discussion of such congruence relations and their use in lattice-ordered groups.

Theorem 1.9 gives, as a corollary, the following parallel of Mal'cev's result for countable linearly-ordered groups [9]. Q will denote the rational numbers under the usual ordering.

COROLLARY 1.10. Let C be a countable homogeneous chain. Then exactly one of the following conditions holds:

- (i) $C \cong Z^a$ for some countable ordinal a;
- (ii) $C \cong Q$;
- (iii) $C \cong Q \circ Z^a$ for some non-zero countable ordinal a.

Proof. This follows from Theorems 1.9 and 1.2 and the fact that, up to isomorphism, Q is the only countable chain that is dense with neither first nor last element.

2. Disjoint elements in homogeneous lattices. In this section results similar to those of Conrad and Clifford [5] and Conrad [3] and [4] are obtained. See also Fuchs [7], p. 82.

Let L be a homogeneous lattice. A subset $S = \{s_i\}_{i \in I}$ of incomparable elements is called \land -disjoint if $s_i \land s_j = s_i \land s_k$ for any $i, j, k \in I$, $i \neq j$, $i \neq k$. If S is \land -disjoint and $x = s_i \land s_j$ for $i \neq j$, then S is said to be \land -disjoint relative to x. The notion of \lor -disjoint is defined dually. If L is homogeneous and S is \land -disjoint relative to x, then for $y \in L$ such that $y \neq x$ there exists a set T which is \land -disjoint relative to y, and |S| = |T|.

In the remainder of this paper, every homogeneous lattice will have \wedge -disjoint sets of cardinality at most n, where n is a finite integer.

LEMMA 2.1. Let L be a homogeneous lattice. If n is the maximum cardinality of a \land -disjoint set, then n is the maximum cardinality of a \lor -disjoint set.

Proof. Let $\{a_1, \ldots, a_n\}$ be a \wedge -disjoint set relative to $e \in L$. By Theorem 1.3, L is distributive. Hence the sublattice of L generated by $\{a_1, \ldots, a_n\}$

is 2^n . Let $d = a_1 \vee \ldots \vee a_n$. Then the co-atoms of the sublattice generated by $\{a_1, \ldots, a_n\}$ form a \vee -disjoint set relative to d. A dual argument now proves the lemma.

Choose and fix an $e \in L$. Let $\{a_1, \ldots, a_n\}$, where n is maximal, be \land -disjoint relative to e. Select $\{b_1, \ldots, b_n\} \lor$ -disjoint relative to e, where, by virtue of Lemma 2.1, n is also maximal.

LEMMA 2.2. The intervals $[e, a_i]$ and $[b_i, e]$, $1 \leqslant i \leqslant n$, are both chains.

Proof. Suppose $[e, a_1]$ is not a chain. Then there exist $x, y \in [e, a_1]$, $x \| y$. If $x \wedge y = e$, then the set $\{x, y, a_2, \ldots, a_n\}$ is \wedge -disjoint which contradicts the maximality of n. For $x \wedge y > e$, let $f \in A^*(L)$ be such that $f(x \wedge y) = e$. Then $a_1 \geq x \geq f(x) \geq e$ and $a_1 \geq y \geq f(y) \geq e$ and $f(x) \wedge f(y) = e$. Since $x \| y, f(x) \| f(y)$, and hence $f(x) \neq e$ and $f(y) \neq e$. But then $\{f(x), f(y), a_2, \ldots, a_n\}$ is a \wedge -disjoint set.

Definition 2.3. Let L be homogeneous and fix an $e \in L$. For a > e, let

$$a = \{b \geqslant e \mid b \land x = e \text{ if and only if } a \land x = e\}.$$

Similarly, for a < e, let

$$a' = \{b \leqslant e \mid b \lor x = e \text{ if and only if } b \lor x = e\}.$$

In the language of lattice-ordered groups, a is called the *carrier* of a (see [7], p. 72). Using distributivity, it is easily shown that a is a convex sublattice of L for any a > e.

Suppose the maximal cardinality of a \land -disjoint subset of L is n. If $S = \{a_1, \ldots, a_n\}$ is \land -disjoint relative to e, then a_i is a chain for each i. For if not, let $x, y \in a_i$, $x \parallel y$. Then the set

$$\{x, y, a_1 \lor (x \land y), \ldots, a_n \lor (x \land y)\}$$

is of cardinality n+1 and \wedge -disjoint relative to $x \wedge y$.

LEMMA 2.4. The interval $[b_1, a_i]$, $1 \le i \le n$, is a chain for exactly one i. Proof. First, suppose both $[b_1, a_1]$ and $[b_1, a_2]$ are chains. Let $f \in A^*(L)$, $f(e) = b_1$. Then

$$f(a_1 \wedge a_2) = f(a_1) \wedge f(a_2) = f(e) = b_1.$$

But $f(a_1) \neq b_1$ and $f(a_2) \neq b_1$ since $a_1 \neq e$ and $a_2 \neq e$. Also $f(a_1) \in [b_1, a_1]$ and $f(a_2) \in [b_1, a_2]$ which, by the hypothesis, are chains. Thus $f(a_1) \wedge f(a_2)$ is either e or the minimum of $f(a_1)$ and $f(a_2)$. Thus $f(a_1) \wedge f(a_2) = b_1$ is impossible.

Now it will be shown that $[b_1, a_i]$ is a chain for some i. Let $f \in A^*(L)$, $f(b_1) = e$. By Lemma 2.2, $[b_1, e]$ is a chain, and so is $[f(b_1), f(e)] = [e, f(e)]$. Moreover, f(e) > e. Hence $a_j \wedge f(e) = t > e$ for some j, and $a_k \wedge f(e) = e$ for $k \neq j$. Thus $f(e) \in a_j$. Now consider the set b_1 . Since it is a chain, $f(b_1)$ is also a chain. Note $[e, f(e)] \subseteq f(b_1)$.

Next, claim $b_1 \epsilon f(b_1)$. It is enough to show that $f^{-1}(b_1) \epsilon b_1$ or, equivalently, $f^{-1}(b_1) \vee b_j = e$ for j = 2, ..., n. But this is the same as showing $b_1 \vee f(b_j) = f(e)$. Since $b_1 \vee b_j = e$, it follows $f(b_1) \vee f(b_j) = f(e)$. Since $f(b_1) = e$, this gives $e \vee f(b_j) = f(e)$. But

$$e = b_1 \lor b_j \leqslant b_1 \lor f(b_j),$$

so $e \vee f(b_i) \leq b_1 \vee f(b_i)$. But also

$$f(e) = e \vee f(b_i) \geqslant b_1 \vee f(b_i)$$
.

Thus $f(e) = b_1 \vee f(b_j)$ as desired, so $b_1 \in f(b_1)$. At this stage we now have the intervals $[e, a_i]$ and $[b_1, f(e)]$ with the common intersection [e, f(e)]. Suppose there exists an $x \in [b_1, a_i]$ such that $x \notin [e, a_i]$ and $x \notin [b_1, f(e)]$. Then $x \parallel e$. Form $x \vee e$ and $x \wedge e$. Since $[b_1, f(e)]$ is an interval, $x \vee e > f(e)$. Thus $x \vee e = x \vee f(e)$. Similarly, $x \wedge e = x \wedge f(e)$. Since $e \neq f(e)$, it follows that

is a sublattice, which is impossible. Thus $[b_1, a_i]$ is indeed a chain.

Note 2.5. It follows from Lemma 2.4 that the set $b_1 \cup a_i \cup \{e\}$ is a convex subchain for exactly one i. This argument can be given for each b_i , $1 \le i \le n$, renumbering the a_i , if necessary, to give

$$C_i = \hat{a_i} \cup \hat{b_i} \cup \{e\}.$$

The C_i , $1 \leqslant i \leqslant n$, are convex subchains.

LEMMA 2.6. Let L be homogeneous with C_1, C_2, \ldots, C_n as in Note 2.5. Let D be any convex subchain, $e \in D$. Then $D \subseteq C_i$ for some i.

Proof. Let $d \in D$, d > e. Form $\{d \wedge a_1, \ldots, d \wedge a_n\}$ with $a_i > e$, $a_i \in C_i$. At least one of these meets is not e, for otherwise $\{d, a_1, \ldots, a_n\}$ would be \wedge -disjoint relative to e. So assume $d \wedge a_1 > e$. It follows that $d \wedge a_i = e$ for $2 \leq i \leq n$. For if not, say $d \wedge a_2 > e$, then the chain [e, d] would contain the two non-comparable elements $d \wedge a_1$ and $d \wedge a_2$ which is impossible. We claim $d \in a_1$. For let $a_1 \wedge x = e$. If $d \wedge x > e$, then the set $\{x \wedge d, a_1, a_2, \ldots, a_n\}$ is \wedge -disjoint which is impossible. If, on the other hand, $d \wedge y = e$ and $a_1 \wedge y > e$, the set $\{d, a_1 \wedge y, a_2, \ldots, a_n\}$ is \wedge -disjoint relative to e which is also impossible. Thus $\{d \mid d \in D, d \geq e\}$ is in a_1 . Similarly, $\{d \mid d \in D, d \leq e\}$ is in b_j for some j. But since D is a chain, Lemma 2.4 guarantees that j = 1 as desired.

Note 2.7. We infer directly from Lemmas 2.6 and 2.2 that if the sets $\{a_1, \ldots, a_n\}$ and $\{b_1, \ldots, b_n\}$ are both \land -disjoint relative to e, and n is maximal, then there is some permutation v of $\{1, \ldots, n\}$ such that $\hat{a_1} = \hat{b_{r(1)}}, \ldots, \hat{a_n} = \hat{b_{r(n)}}$.

LEMMA 2.8. Let L be a homogeneous lattice, C_i as in Note 2.5 and $c \in C_i$. Let $f \in A^*(L)$ be such that either f(c) = e or f(e) = c. Then $f(C_i) = C_i$, and thus $f|_{C_i}$ is an automorphism of C_i .

Proof. Let $c \in C_1$, c < e, and $f \in A^*(L)$, f(c) = e. In the proof of Lemma 2.4 it was shown that $f(c) \subseteq C_1$. For any $a \in C_1$ with e < f(e) < a, since [c, a] is a chain, so is [e, f(a)]. So, by Lemma 2.6, $f(a) \in C_1$. Thus $f(C_1) \subseteq C_1$. Note $e \in f(C_1)$ and e < f(e). Now consider f^{-1} . Observe that $f^{-1} \in A^*(L)$ and $f^{-1}(f(e)) = e$. Applying f gives

$$ff^{-1}(C_1) = C_1 \subseteq f(C_1) \subseteq C_1,$$

so $f(C_1) = C_1$. A dual argument applies for c > e. Finally, if f(e) = c, just go through the above argument with f^{-1} .

THEOREM 2.9. Let L be a homogeneous lattice such that n is the maximum cardinality of a \land -disjoint set. Let C_i , $1 \leqslant i \leqslant n$, be as in Note 2.5. Then the C_i are homogeneous chains.

Proof. Let $x, y \in C_i$. Consider $f \in A^*(L)$ such that f(x) = e. Let $g \in A^*(L)$ be such that g(e) = y. Then gf is an automorphism of L, gf(x) = y. By Lemma 2.8, $gf(C_i) = C_i$, so $gf|_{C_i}$ is an automorphism of C_i . Hence C_i has a transitive group of automorphisms, and so, by Lemma 1.5, C_i is homogeneous.

Thus when viewed in terms of lattice-ordered groups, the C_i correspond to shifting subgroups. See, for example, Byrd, Conrad and Lloyd [2].

LEMMA 2.10. Let P be the sublattice of L generated by the a_i , $1 \leqslant i \leqslant n$. Then

$$P \cong \prod_{i=1}^n (\hat{a_i} \cup \{e\}).$$

Dually, if Q is the sublattice of L generated by the b_i , then

$$Q \cong \prod_{i=1}^n (b_i^{\check{}} \cup \{e\}).$$

Proof. Let $p \in P$, p > e. Then, by distributivity,

$$p = \bigvee_{i} (\bigwedge_{j} x_{i_{j}}), \quad \text{where } x_{i_{j}} \in a_{i_{j}}.$$

By disjointness, this simplifies to $x_{i_1} \vee \ldots \vee x_{i_k}$ with $x_{i_j} \in a_{i_j}$; $i_j \neq i_l$ implies $a_{i_j}^{\hat{}} \neq a_{i_l}^{\hat{}}$, and $x_{i_j} > e$. This representation is also unique, for if $p = y_{i_1} \vee \ldots \vee y_{i_m}$, then $y_{i_1} = p \wedge y_i = y_{i_1} \wedge x_{i_j}$, and hence $y_{i_1} \leqslant x_{i_j}$. But a

similar argument shows that $x_{i_i} \leqslant y_{i_1}$. Define

 $[y]_{\sigma} = S(y)$ for all $y \in L$.

$$h\colon\thinspace P\to \prod_{i=1}^n\;(a_i\;\cup\{e\})$$

by $(h(p))_i = x_i$ if x_i occurs in the above representation, and by $(h(p))_i = e$ otherwise. Then h is easily seen to be an isomorphism.

Definition 2.11. Let S(e) denote the convex hull of P and Q. That is,

$$S(e) = \{ y \in L \mid q \leqslant y \leqslant p \text{ with } p \in P \text{ and } q \in Q \}.$$

Then S(e) is a convex sublattice of L, $e \in S(e)$. This construction of the sublattice S(e) can be done for any element $x \in L$, with x in place of e, to give a convex sublattice S(x). All such sublattices will be isomorphic since L is homogeneous.

Define a relation σ on L by $\langle x, y \rangle \epsilon \sigma$ if and only if S(x) = S(y). LEMMA 2.12. The relation σ is a congruence relation for L. Moreover,

Proof. Clearly, σ is an equivalence relation. To show that $[y]_{\sigma} = S(y)$, it is sufficient to show that if $x \in S(y)$, then S(x) = S(y). Since all the S(y) are isomorphic and L is homogeneous, it is enough to show that if $x \in S(e)$, then $e \in S(x) \subseteq S(e)$. First, suppose x > e and $x = a_1$, i.e. $x \in S(e)$

$$\{x \lor a_1, x \lor a_3, \ldots, x \lor a_n, a_1'\}$$

is in a set of $n \wedge -disjoint$ elements, which is $\wedge -disjoint$ relative to e. Thus

are \wedge -disjoint relative to x, where $a_1' \in a_1$, $a_1' > x$. But these elements are also in S(e). Since $[e, a_1] = [e, x]$ is a chain, by Lemma 2.6, $e \in S(x)$. Let c_1, \ldots, c_n be \vee -disjoint relative to x. Then, since $[c_i, a_1]$ is a chain, so is $[e \wedge c_i, e \wedge a_1]$, which is $[e \wedge c_i, e]$. By Lemma 2.6, $e \wedge c_i \in S(e)$. Hence the c_i are in S(e) since S(e) is convex, i.e. $e \wedge c_i < c_i < x$ and $e \wedge c_i$ and x are in S(e). Hence all the \wedge -disjoint and \vee -disjoint elements of $x = a_1$ are in S(e), so $e \in S(x) \subseteq S(e)$, so S(x) = S(e). If $x = a_1 \vee \ldots \vee a_k$ say, then x is one of n elements pairwise disjoint to $a_1 \vee \ldots \vee a_{k-1}$, the others being

 $a_1 \lor \ldots \lor a_{k-1} \lor a_{k+1}, \quad a_1 \lor \ldots \lor a_{k-1} \lor a_{k+2}, \quad \ldots, \quad a_1 \lor \ldots \lor a_{k-1} \lor a_n,$ together with

$$a_1' \lor a_2 \lor \ldots \lor a_{k-1}, \qquad \ldots, \qquad a_1 \lor \ldots \lor a_{k-1}', \qquad \text{where } a_i' \in \hat{a_i}, \; \hat{a_i'} > a_i.$$

Now apply the previous argument to show $S(x) = S(a_1 \vee \ldots \vee a_{k-1})$ and induct on k. A dual argument shows that if x < e holds, then $x \in S(e)$ implies S(x) = S(e). Finally, if $x \in S(e)$, $x \parallel e$, then $x \wedge e$ and $x \vee e$ are in S(e), since S(e) is a sublattice. But $x \vee e \ge e \ge x \wedge e$, and hence $S(x \vee e) = S(e) = S(x \wedge e)$. But also $x \vee e \ge x \ge x \wedge e$, so $x \in S(x \wedge e)$. Thus $S(x) = S(x \wedge e) = S(e)$ as desired.

Now it will be shown that σ is a lattice congruence relation. Let $\langle x, y \rangle \epsilon \sigma$. Without loss of generality, let x = e so that, say, $y = a_1 \vee \ldots \vee a_k$ with $a_i \wedge a_j = e$. To see that σ is a congruence relation it is sufficient to show that, for an arbitrary $z \epsilon L$, $\langle x \vee z, y \vee z \rangle \epsilon \sigma$ and $\langle x \wedge z, y \wedge z \rangle \epsilon \sigma$. But

$$y \vee z = (a_1 \vee z) \vee (a_2 \vee z) \vee \ldots \vee (a_k \vee z).$$

The interval $[e \lor z, a_1 \lor z]$ is a homomorphic image of the interval $[e, a_1]$, and thus it is either a non-trivial chain or a single element. If it is a non-trivial chain, then, by Lemma 2.6, it is in d_i , where $\{d_1, \ldots, d_n\}$ is the set of $n \land -\text{disjoint}$ elements relative to $e \lor z$. Thus $y \lor z \in S(e \lor z)$ and, therefore, $(y \lor z, e \lor z) \in \sigma$. Similarly,

$$y \wedge z = (a_1 \vee \ldots \vee a_k) \wedge z = (a_1 \wedge z) \vee \ldots \vee (a_k \wedge z),$$

and $[e \wedge z, a_1 \wedge z]$ is a non-trivial chain or a single element, so $y \wedge z \in S(e \wedge z)$. THEOREM 2.13. We have

$$S(e) \cong \prod_{i=1}^n C_i,$$

where the C_i are as in Note 2.5.

Proof. Let $y \in S(e)$, $y \neq e$. Let $y \vee e = x_1 \vee \ldots \vee x_k$, $x_i \in a_i$, $x_i > e$ and $y \wedge e = z_{i_1} \wedge \ldots \wedge z_{i_m}$, $z_{i_j} < e$, $z_{i_j} \in b_{i_j}$. First, we claim

$$\{1,\ldots,k\}\cap\{i_1,\ldots,i_m\}=\emptyset.$$

For suppose $y \lor e \geqslant x_1 > z_1 \geqslant y \land e$. Let $t = (x_1 \land y) \lor z_1$. The interval $[z_1, x_1]$ is linearly ordered and both t and e are in $[z_1, x_1]$. Hence either $t \lor e = e$ or $t \land e = e$. But

$$t \wedge e = [(x_1 \wedge y) \vee z_1] \wedge e = (e \wedge x_1 \wedge y) \vee (z_1 \wedge e) = y_1 \neq e$$

while

$$t \vee e = [(x_1 \wedge y) \vee z_1] \vee e = (x_1 \wedge y) \vee e = (x_1 \vee e) \wedge (y \vee e) = x_1 \neq e.$$

Let $y \in S(e)$. Let $P(y) = \{i \mid e < x_i \in a_i \text{ and } x_i \text{ occurs in the representation of } y \vee e\}$. Analogously define Q(y) for $y \wedge e$. Then we have shown that $Q(y) \cap P(y) = \emptyset$.

Define

$$a: S(e) \rightarrow \prod_{i=1}^{n} C_{i}$$

by $(a(y))_i = x_i$ if $i \in P(y)$, where x_i occurs in the representation in P of $y \vee e$; by $(a(y))_i = z_i$ if $i \in Q(y)$, where z_i occurs in the representation in Q of $y \wedge e$; and by $(a(y))_i = e$ otherwise. Then a is well defined since the representations are unique and $P(y) \cap Q(y) = \emptyset$. Also a is 1-1, for if $y \vee e = y' \vee e$ and $y \wedge e = y' \wedge e$, then, by distributivity, y = y'. To show that a is a homomorphism, observe that

$$(y \lor y') \lor e = (y \lor e) \lor (y' \lor e)$$
 and $(y \lor y') \land e = (y \land e) \lor (y' \land e)$.

Thus $(a(y \lor y'))_i = (a(y))_i \lor (a(y'))_i$. Similarly for $y \land y'$.

It remains to show that α is onto $\prod_{i=1}^n C_i$. From the definition of α it will be sufficient to show that if

$$q = z_1 \wedge \ldots \wedge z_k \epsilon Q, \quad z_i \epsilon C_i, z_i < e$$

and if

$$p = x_{k+1} \lor \ldots \lor x_{k+m} \epsilon P, \quad x_i \epsilon C_i, x_k > e, \quad \text{with } k+m \leqslant n,$$

then there exists a $y \in S(e)$ such that $y \vee e = p$ and $y \wedge e = q$. Let $\{\bar{a}_1, \ldots, \bar{a}_n\}$ be $n \wedge$ -disjoint elements relative to q. Let $f \in A^*(L)$ be such that f(e) = q. (Without loss of generality, assume $f(a_i) = \bar{a}_i$.) Since $q \in S(e)$, e and p are in the sublattice generated by $\bar{a}_1 \circ \ldots \circ \bar{a}_n$, i.e. S(q) = S(e). Let

$$e = e_1 \lor \ldots \lor e_r$$
 and $p = p_1 \lor \ldots \lor p_r \lor p_{r+1} \lor \ldots \lor p_{r+t}$

with e_i and $p_i \in \bar{a}_i$, and $p_i > q$, $e_i > q$, and r+t < n. Since $q < e < p_i$ such a unique representation is possible. We claim $e_i = p_i$ for $1 \le i \le r$. For if not, suppose $e_1 < p_1$. Then the interval $e_2 \lor \ldots \lor e_r$, $p_1 \lor e_2 \lor \ldots \lor e_r$ would be a chain containing e. Hence it would be in some C_i . But

$$q \leqslant z_i < e_2 \lor \ldots \lor e_r < e < p_1 \lor e_2 \lor \ldots \lor e_r < x_i \leqslant p$$

which violates the original choice of p and q, i.e. $P(p) \cap Q(q) = \emptyset$. Now let y > q be given by $y = p_{r+1} \vee \ldots \vee p_{r+t}$. Then

$$e \wedge y = q$$

and

$$e \lor y = e_1 \lor \ldots \lor e_r \lor p_{r+1} \lor \ldots \lor p_{r+t} = p_1 \lor \ldots \lor p_r \lor p_{r+1} \lor \ldots \lor p_{r+t} = p,$$
 as desired.

COROLLARY 2.14. Let L be a homogeneous lattice, and e an arbitrary fixed element of L. Suppose L satisfies the following property:

(1) every x > e is the join of at most n elements \wedge -disjoint relative to e. Then L is the product of homogeneous chains.

Proof. For $e \in L$ and any set $A \wedge \text{-disjoint}$ relative to e, $|A| \leq n$. Thus one can form S(e) as in Theorem 2.13. If x > e, then $x \in S(e)$. If x < e, then $x \in S(e)$ also; for if not, $S(x) \cap S(e) = \emptyset$, and then e cannot be expressed as join of at most $n \wedge \text{-disjoint}$ elements relative to x. This violates the assumptions that L is homogeneous and that (1) holds for L. Thus S(e) = L and the result follows from Theorems 2.13 and 2.9.

COROLLARY 2.15. Let L be a homogeneous lattice with n the maximal cardinality of a \land -disjoint set. If every interval in L is of finite length, then

$$L \cong \prod_{i=1}^n Z_i,$$

where Z_i is the chain of all integers.

Proof. By Theorem 2.9, the C_i are homogeneous chains. Since all intervals are finite, Theorem 1.9 implies $C_i \cong Z$ for all i. Moreover, if x > e, then $x \in S(e)$ since the interval [e, x] has a finite length. Thus L = S(e) and the corollary follows from Theorem 2.13.

Let L be homogeneous with n the maximal cardinality of a \wedge -disjoint set. Let σ be as in Lemma 2.12. The following is analogous to the result number 8 in [3]:

THEOREM 2.16. The lattice L/σ is homogeneous and any set of \wedge -disjoint elements has cardinality less than n.

Proof. Let S(a) and $S(b) \in L/\sigma$. Let $f \in A^*(L)$ be such that f(a) = b. Define $F: L/\sigma \to L/\sigma$ by F(S(x)) = S(f(x)). Note f(S(x)) = S(f(x)). Thus S(x) = S(y) implies S(f(x)) = S(f(y)). It follows that F is well defined, 1-1 and onto. Since σ is a congruence relation, $S(x) \vee S(y) = S(x \vee y)$. Thus

$$egin{aligned} Fig(S(x)ee S\left(y
ight)ig) &= Sig(f(xee y)ig) = Sig(f(x)ee f(y)ig) = Sig(f(x)ig)ee Sig(f(y)ig) \ &= Fig(S(x)ig)ee Fig(S(y)ig). \end{aligned}$$

Similarly for meets. Thus F is an automorphism of L/σ . It remains to show some such automorphism satisfies the monotonicity condition. If $S(a) \leq S(b)$ in L/σ , then $a \wedge b \leq b$ and $a \wedge b \in S(a)$ since $S(a \wedge b) = S(a) \wedge S(b) = S(a)$. Let $f \in A^*(L)$ be such that $f(a \wedge b) = b$. Then $x \leq f(x)$ for all $x \in L$. Thus $S(x) \leq S(f(x))$. Therefore, let F(S(x)) = S(f(x)) be the desired automorphism of L/σ .

The second claim of the theorem will now be demonstrated. Let $d \in L \setminus S$, d > e. Let $r(d) = \{i \mid d > a_i^{\hat{}}\}$, i.e. $i \in r(d)$ and $x \in a_i^{\hat{}}$ imply d > x. Claim $|r(d)| \ge 2$. For suppose |r(d)| = 1. So $d > a_1^{\hat{}}$ say. For each i, $2 \le i \le n$, there exists an $x_i \in a_i^{\hat{}}$ such that $x_i \parallel d$. Let $t_i = x_i \wedge d$. Since $a_i^{\hat{}}$ is a chain, for all $x \in a_i^{\hat{}}$, $d \wedge x = t_i$ or $d \wedge x = x$. Form $t = t_2 \vee \ldots \vee t_n$. Let $\{s_1, s_2, \ldots, s_n\}$ be $n \wedge -$ disjoint elements relative to t. Note

$$\{t, s_1, s_2, \ldots, s_n\} \subseteq S(e)$$
.

If $s_i \wedge a_1 > e$ and $s_j \wedge a_1 > e$, then $a_1 \wedge (s_i \wedge s_j) > e$. But then $a_1 \wedge t > e$ which is impossible. So for, say, s_2, \ldots, s_n , we have $s_i \wedge s_j = t$ and $a_1 \wedge s_i = e$, $2 \leq i, j \leq n$. But then d > t and $s_i > t$ imply $d \wedge s_i \geq t$. Let

$$s_i = s_2^i \vee \ldots \vee s_n^i$$
, where $s_j^i \in a_j^i$.

Then

$$d \wedge s_i = (d \wedge s_2^i) \vee \ldots \vee (d \wedge s_n^i) \leqslant t_2 \vee \ldots \vee t_n = t.$$

Thus $d \wedge s_i = t$. So $\{d, s_2, \ldots, s_n\}$ are \wedge -disjoint to t which implies, by Note 2.7, that $d \in S$ which is impossible.

The case |r(d)| = 0 is handled analogously.

Thus $|r(d)| \ge 2$ for all $d \in L \setminus S$, d > e. Moreover, if $\{d_1, \ldots, d_m\}$ are such that $d_i \in L \setminus S$, $d_i > e$ and $d_i \wedge d_j \in S$, then $r(d_i) \cap r(d_j) = \emptyset$ for all $1 \le i < j \le m$. Therefore, $|r(d_i)| \ge 2$ implies m < n, as desired.

In the special case where n=2 we get the following result which is similar to that of Conrad and Clifford for lattice-ordered groups [5]:

THEOREM 2.17. Let L be a homogeneous lattice such that the maximal cardinality of any \land -disjoint set is 2. Then $L \cong C_3 \circ (C_2 \times C_1)$, where the C_i , i = 1, 2, 3, are homogeneous chains.

Proof. By Theorem 2.16, L/σ is homogeneous. Moreover, if $x \not\equiv y(\sigma)$, then x > y or y < x in L. Letting $C_3 = L/\sigma$, the conclusion follows.

REFERENCES

- [1] G. Birkhoff, Lattice theory, Third edition, American Mathematical Society Colloquium Publications 25 (1967).
- [2] R. D. Byrd, P. Conrad and J. T. Lloyd, Characteristic subgroups of lattice ordered groups, Transactions of the American Mathematical Society 158 (1971), p. 339-371.
- [3] P. Conrad, The structure of a lattice-ordered group with a finite number of disjoint elements, Michigan Mathematical Journal 7 (1960), p. 171-180.
- [4] Some structure theorems for lattice-ordered groups, Transactions of the American Mathematical Society 99 (1961), p. 212-248.
- [5] and A. H. Clifford, Lattice ordered groups having at most two disjoint elements, Proceedings of Glasgow Mathematical Association 4 (1960), p. 111-113.
- [6] Ph. Dwinger, Subdirect products of chains, Colloquium Mathematicum 29 (1974), p. 201-207.
- [7] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, 1963.
- [8] C. Holland, Transitive lattice-ordered permutation groups, Mathematische Zeitschrift 87 (1965), p. 420-433.
- [9] А. И. Мальцев, О упорядоченных группах, Известия Академии наук СССР, серия математическая, 13 (1949), р. 473-482.
- [10] A. C. Morel, A class of relation types isomorphic to the ordinals, Michigan Mathematical Journal 12 (1965), p. 203-215.
- [11] Structure and order structure in Abelian groups, Colloquium Mathematicum 19 (1968), p. 199-209.
- [12] T. Ohkuma, On discrete homogeneous chains, Kodai Mathematical Seminar Reports 4 (1952), p. 23-30.
- [13] N. Sankaran, Classification of totally ordered abelian groups, Journal of Indian Mathematical Society 29 (1965), p. 9-29.
- [14] and R. Venkataraman, A generalization of the ordered group of integers, Mathematische Zeitschrift 79 (1962), p. 21-31.

Reçu par la Rédaction le 12. 1. 1973