CONTENTS 1. Introduction............................................................................................................................................. 5 2. F-estimators........................................................................................................................................... 6 3. The role of the tests J* and T* in polynomial trend estimation problems.................................. 12 4. Testing the equivalence of two linear processes........................................................................... 34 5. Comments.............................................................................................................................................. 58 References.................................................................................................................................................. 64
[1] T. W. Anderson, The statistical analysis of time series, Y. Wiley 1971.
[2] S. J. Anscombe, Examinations of residuals, Proc. 4th Berkeley Symp. 1, (1961) p. 1-36.
[3] G. E. P. Box and G. M. Jenkins Time series analysis, forecasting and control, Holden Day 1970.
[4] D. E. Cox, E. J. Snell, A general definition of residuals, J. Roy. Statist. Soc. Ser. B. 30 (1968), p. 248-275.
[5] H. Cramer, Mathematical methods of statistics, Prinecton 1946.
[6] J. Durbin, G. S. Watson, Testing for serial correlation in least squares regression, I. Biometrika 37 (1950), p. 409-428.
[7] J. H. Farley, and M. J. Hinich, A test for a shifting slope coefficient in a linear model, J. Amer. Statist. Assoc. 65 (1970), p. 1320-1329.
[8] E. A. Fisher, Tests of significance in harmonic analysis, Proc. Roy. Soc. A 125 (1929), 54-59.
[9] P. A. Graybill, An introduction to linear statistical models, Vol. I, New York 1961.
[10] U. Grenander and M. Rosenblatt, Statistical analysis of stationary time-series, J. Wiley, New York 1957.
[11] E. J. Hannan, Time-series analysis, Methuen, London 1960.
[12] E. J. Hannan, Testing for a jump in the spectral function, J. Roy. St. Soc. B 23 (1961), p. 394-404.
[13] E. J. Hannan, Multiple time series, Wiley, New York 1970.
[14] H. O. Hartley, Tests of significance in harmonic analysis, Biometrics (1949), 3G, p. 194-201.
[15] P. Gr. Hoel, On testing for the degree of a polynomial, Technometrics 10 (1968), p. 757-767.
[16] A. S. Hol’evo, On sequential estimates of parameters (in Russian), Teor. Verojatnost. i Primenen. 12 (1967), p. 172-179.
[17] A. S. Hol’evo, On estimates of regression coefficients (in Russian), ibidem 14 (1969), p. 78- 101.
[18] M. G. Kendall, Table of autoregressive series, Biometrika 36 (1949), p. 267-289.
[19] E. L. Lehmann, Some model I problems of selection, Ann. Math. Statist. 32 (1961), p. 990-1012.
[20] G. J. Leppink, On the estimation of the spectral density function by the periodogram truncated at an estimated point, Report S 314 of the Statistics Department of the Central Organization for Applied Scientific Research in the Netherlands T. N. 0., Leiden 1961.
[21] Z. A. Lomnicki, and S. K. Zaremba, On some moments and distributions occurring in the theory of linear stochastic processes, I, Montsh. Math. 61 (1957), p. 318-358.
[22] Z. A. Lomnicki, On some moments and distributions occurring in the theory of linear stochastic processes, II, ibidem 63 (1959), p. 128-168.
[23] Z. A. Lomnicki, On the estimation of autocorrelation in time-series, Ann. Math. Statist. 28 (1957), p. 140-157.
[24] E. Pleszczyńska, Further applications of the T*-test to time-series analysis, Zast. Mat. 12 (1971), p. 33-61.
[25] Gr. Pólya, and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Vol. II. Berlin 1925.
[26] M. B. Priestley, The analysis of stationary processes with mixed spectra, I, J. Roy. Statist. Soc. Ser. B, 24 (1962), p. 215-233.
[27] M. B. Priestley, The analysis of stationary processes with mixed spectra, II, ibidem 24 (1962), p. 511-529.
[28] M. B. Priestley, and T. Subba Rao, A test for non-stationarity of time-series, ibidem 31 (1969), p. 140-149.
[29] J. Riordan, Combinatorial identities, J. Wiley, New York 1968.
[30] S. N. Roy, and R. C. Bose, Simultaneous interval estimation, Biometrika 24 (1953), p. 516-536.
[31] J. Sacks, and D. Ylvisaker, Designs for regression problems with correlated errors: many parameters, Ann. Math. Statist. 39 (1968), p. 49-69.
[32] P. F. Sampson, R. T. Jennrich, An application of stepwise regression to nonlinear estimation, Technometrics 10 (1968), p. 63-72.
[33] T. Subba Rao, The fitting of non-stationary time-series models with time-dependent parameters, J. Roy. Statist. Soc. 32 (1970), p. 312-322.
[34] P. Whittle, Hypothesis testing in time series analysis, Almquist and Wicksell, Uppsala 1951.
[35] H. Wold, A study in the analysis of stationary time series, Almquist and Wicks ell, Stockholm 1954.
[36] S. K. Zaremba, Kurtosis and determinate components in linear processes, Rev. Inst. Internat. Statist. 33 (1965), p. 378-413.
[37] S. K. Zaremba, Quartic statistics in spectral analysis, In B. Harris (ed.), Spectral analysis of time-series, Wiley and Sons, New York 1967.
[38] S. K. Zaremba, Tests for the presence of trends in linear processes, Diss. Math. 95 (1972).