Department of Mathematics George Mason University Fairfax, Virginia U.S.A.
Bibliografia
[1] N. Bourbaki, Topologie générale, chapitres 1 à 4, Hermann, Paris 1971.
[2] R. Brown, Function spaces and product topologies, Quart. J. Math. Oxford. (2) 16 (1964), pp. 238-250.
[3] E. J. Dubuc, Kan extensions in enriched category theory, Lecture Notes in Mathematics 145, Springer-Verlag, Heidelberg 1970.
[4] E. J. Dubuc, and H. Portia, Convenient categories of topological algebras and their duality theory, J. Pure Appl. Alg. 1 (1971), pp. 281-316.
[5] J. Dugundji, Topology, Allyn and Bacon, Boston 1966.
[6] M. Hall, The theory of groups, Macmillan, New York 1959.
[7] E. Hewitt and K. Ross, Abstract harmonic analysis I, Springer-Verlag, New York 1963.
[8] J. Kelley, General topology, Van Nostrand, Princeton 1955.
[9] J. Mack, S. Morris and T. Ordman, Free topological groups and the projective dimension of a locally compact abelian group, Proc. Amer. Math. Soc. 40 (1973), pp. 303-308.
[10] M. McCord, Classifying spaces and infinite symmetric products, Trans. Amer. Math. Soc. 143 (1969), pp. 273-298.
[11] N. Noble, The continuity of functions on cartesian products, ibidem 149 (1970), pp. 187-198.
[12] N. Noble, k-Groups and duality, ibidem 151 (1970), pp. 551-561.
[13] E. T. Ordman, Free products of topological groups which are $k_w$-spaces, ibidem 191 (1974), pp. 61-73.
[14] L. A. Steen and J. A. Seebach, Counter examples in topology, Holt, Rienhart, and Winston, New York 1970.
[15] N. E. Steenrod, A convenient category of topological spaces, Midi. Math. J. 14 (1967), pp. 133-152.
[16] B. V. Smith Thomas, Free topological groups, General Topology and its Applications 4 (1974), pp. 51-72.
[17] W. F. LaMartin, Spies in the category of $T_2$ k-groups need not have dense range, Colloq. Math. 36 (1976), pp. 32-41.