A REPRESENTATION
OF RELATIVELY COMPLEMENTED DISTRIBUTIVE LATTICES

BY

DAVID C. FEINSTEIN (CHICAGO, ILLINOIS)

It is known [1] that every distributive lattice can be imbedded in a Boolean lattice. It is shown in this paper that, for every relatively complemented distributive lattice L, there exists a Boolean lattice B such that L is equal to the intersection of a prime ideal and an ultrafilter of B (Theorem 1.4 (b)). We also show that the free relatively complemented extension of any distributive lattice exists. Using this result, we give a characterization of free relatively complemented distributive lattices (Theorem 2.5).

0. Background. The following categories will be considered in this paper:

the category \mathcal{D} whose objects are distributive lattices and whose morphisms are lattice homomorphisms;

the category \mathcal{R} whose objects are relatively complemented distributive lattices and whose morphisms are lattice homomorphisms;

the category \mathcal{B} whose objects are Boolean lattices and whose morphisms are lattice homomorphisms.

Let $L \in \mathcal{D}$ and let $a, b \in L$. Then $a + b$ will denote the join of a and b, ab the meet of a and b, a^* the set of all proper prime ideals of L which do not contain a, and $L^* = \{a^*: a \in L\}$. The lattice L itself will be considered as a prime ideal and an ultrafilter of L.

It is well known (see [1]) that the ring of sets L^* is lattice-isomorphic to L and that if $\hat{B}(L)$ is the field of sets generated by L^*, then $\langle \hat{B}(L), i(L) \rangle$ is the free Boolean lattice extension of L, where $i(L): L \to \hat{B}(L)$ is the natural imbedding of L in $\hat{B}(L)$. That is, if $B_1 \in \mathcal{B}$ and $f \in \text{Hom}_\mathcal{D}[L, B_1]$, then there exists a unique $f^* : \hat{B}(L) \to B_1$ such that $f^* \circ i(L) = f$. Then $\hat{B} : \mathcal{D} \to \mathcal{B}$ can be extended to a reflector functor. L^* will be identified with
L, and $x \in \hat{B}(L)$ if and only if

$$x = a + \sum_{i=1}^{n} a_i \bar{b}_i + \bar{b},$$

where $a, a_i, b_i, b \in L$ and \bar{b}_i is the complement of b_i in $\hat{B}(L)$.

1. Characterization of a relatively complemented distributive lattice.

Theorem 1.1. If $L \in \mathcal{R}$, then L is convex in $\hat{B}(L)$.

Proof. Suppose $a \leq b \leq c$, where $a, c \in L$ and $b \in \hat{B}(L)$. Since $b \in \hat{B}(L)$, b can be written in the form

$$b = u + \sum_{i=1}^{n} u_i \bar{v}_i + \bar{v},$$

where $u, u_i, v_i, v \in L$ and u, \bar{v} or $u_i \bar{v}_i$ cannot occur. Now $a \leq b$ implies

$$b = a + b = a + u + \sum_{i=1}^{n} u_i \bar{v}_i + \bar{v},$$

and $b \leq c$ implies

$$b = a + cu + \sum_{i=1}^{n} cu_i \bar{v}_i + c\bar{v}.$$

Thus we can assume

$$b = u + \sum_{i=1}^{n} u_i \bar{v}_i,$$

where u always occurs and $u_i \bar{v}_i$ can or cannot occur. If no $u_i \bar{v}_i$ occurs, then $b = u \in L$. Assume that

$$b = u + \sum_{i=1}^{n} u_i \bar{v}_i$$

and that $u_i \bar{v}_i$ occurs. Then $uv_i \leq v_i \leq u_i + v_i$ for every i and there exists $v_i' \in L$ such that v_i' is the complement of v_i in $[uv_i, u_i + v_i]$. Hence

$$v_i' = (u_i + v_i) \bar{v}_i + uv_i = u \bar{v}_i + uv_i$$

and

$$b = u + \sum_{i=1}^{n} u_i \bar{v}_i = u + \sum_{i=1}^{n} (u_i \bar{v}_i + uv_i) = u + \sum_{i=1}^{n} v_i' \in L.$$

Lemma 1.2. Let $B \in \mathcal{B}$ and let $L \in \mathcal{R}$ be a sublattice of B such that $0 \in L$ and $\hat{B}(L) = B$. Then L is a prime ideal of B.

Proof. If $1 \in L$, then $L \in \mathcal{B}$ implies $\hat{B}(L) = L$, so $L = B$. Assume $1 \notin L$. By Theorem 1.1, L is convex in $\hat{B}(L)$, and $0 \in L, 1 \notin L$ imply L is a proper ideal of B.

We claim that \(L \) is a prime ideal of \(B \). Indeed, given \(a \in B - L \), we show that \(\bar{a} \in L \). The assumption \(B = \hat{B}(L) \) yields

\[
a = u + \sum_{i=1}^{n} u_i \bar{v}_i + \bar{v},
\]

where \(u, u_i, v_i, v \in L \) and \(u, v \) or \(u_i \bar{v}_i \) need not occur. If \(u_i \bar{v}_i \) occurs, we get \(0 \leq u_i \bar{v}_i \leq u_i \); \(0, u_i \in L \) implies \(u_i \bar{v}_i \in L \) by convexity of \(L \). Thus \(a = u + \bar{v} \), where \(u, v \in L \) and \(\bar{a} = \bar{u}v \). Since \(v \in L \), \(\bar{a} = \bar{u}v \in L \) by convexity of \(L \).

A similar argument yields

Lemma 1.3. Let \(B \in \mathcal{B} \) and let \(L \in \mathcal{R} \) be a sublattice of \(B \) such that \(1 \in L \) and \(\hat{B}(L) = B \). Then \(L \) is an ultrafilter of \(B \).

Theorem 1.4. Let \(B \in \mathcal{B} \).

(a) If \(P \) and \(F \) are a non-principal prime ideal and ultrafilter, respectively, such that \(F \neq B - P \), then \(P, F \) and \(P \cap F \) are relatively complemented convex sublattices of \(B \) and \(\hat{B}(P) = \hat{B}(F) = \hat{B}(P \cap F) = B \).

(b) If \(L \in \mathcal{R} \) is a sublattice of \(B \) such that \(\hat{B}(L) = B \), then \(L = P \cap F \), where \(P \) is either a non-principal prime ideal of \(B \) or \(P = B \) and \(F \) is either a non-principal ultrafilter of \(B \) or \(F = B \).

Proof. (a) \(P \) is obviously a relatively complemented lattice and, clearly, \(P \) is a sublattice of \(B \) such that \(0 \in P \). Suppose \(a \in B - P \). Then \(\bar{a} \in P \) implies \(\hat{B}(P) = B \). Thus \(P \) is convex in \(B \) by Theorem 1.1.

Similarly, \(F \) is convex in \(B \).

Now consider \(P \cap F \). Clearly, \(P \cap F \) is a relatively complemented sublattice of \(B \). We show that \(\hat{B}(P \cap F) = B \). Let \(a \in B - P \cap F \). Then there are the following three possibilities:

(i) \(a \notin P \) and \(a \notin F \). Then \(\bar{a} \in P \cap F \) and \(a = \bar{a} \hat{B}(P \cap F) \).

(ii) \(a \notin P \) and \(a \in F \). Then, for any \(b \in P \cap F \), we have \(ab \in P \cap F \) and \(\bar{a} + b \in P \cap F \). Thus \(\bar{a} = \bar{a} + b \hat{B}(P \cap F) \) and \(ab \in P \cap F \) implies

\[
a = ab + ab \hat{B}(P \cap F).
\]

(iii) \(a \in P \) and \(a \notin F \) — dual to (ii).

Thus \(\hat{B}(P \cap F) = B \) and, by Theorem 1.1, \(P \cap F \) is convex in \(B \).

(b) If \(0 \in L \), then \(L \) is a prime ideal by Lemma 1.2. If \(1 \in L \), then \(L \) is an ultrafilter of \(B \) by Lemma 1.3.

Suppose \(0 \notin L \) and \(1 \notin L \). Then \(\hat{B}(L) = B \), so that \(L \) is convex in \(B \) by Theorem 1.1. Let

\[
P = \{ x \in B : x \leq a \text{ for some } a \in L \}.
\]
Then P is a proper ideal of B, and $P \supseteq L$ implies $\hat{B}(P) = B$. Hence P is a prime ideal of B by Lemma 1.2. Dually,

$$F = \{x \in B : x \supseteq a \text{ for some } a \in L\}$$

is an ultrafilter of B. Now $L \subseteq F$ and $L \subseteq P$ imply $L \subseteq P \cap F$. Let $x \in P \cap F$. Then there exist $a \in L$ such that $a \leq x$ and $b \in L$ such that $x \leq b$. Since L is convex in B, $x \in L$.

Corollary 1.5. Every lattice $L \in \mathfrak{L}$ can be imbedded in a Boolean lattice B so that $L = P \cap F$, where P is a prime ideal of B and F is an ultrafilter of B.

Proof. The proof follows if we take $B = \hat{B}(L)$ and apply Theorem 4 (b).

2. The free relatively complemented extension of a distributive lattice.

Lemma 2.1. If $L \in \mathfrak{D}$ is a convex sublattice of $B \in \mathfrak{B}$, then $L \in \mathfrak{R}$.

Proof. Suppose $a, b, c \in L$ and $a \leq b \leq c$. Then there exists $b' \in B$ such that $b + b' = c$ and $bb' = a$. Since $a \leq b' \leq c$, $b' \in L$ by convexity of L. Thus $L \in \mathfrak{R}$.

Theorem 2.2. Let $L \in \mathfrak{D}$ and consider L as a sublattice of $\hat{B}(L)$. Then

$$R(L) = \{x \in \hat{B}(L) : x \in L \text{ or } x = \sum_{i=1}^{n} a_i \bar{b}_i, \text{ where } a, a_i, b_i \in L\}$$

is the smallest relatively complemented sublattice of $\hat{B}(L)$ that contains L as a sublattice.

Proof. First we show that $R(L)$ is a relatively complemented lattice. Clearly, $R(L)$ is a lattice. Suppose $x \leq y \leq z$, where $x, z \in R(L)$ and $y \in \hat{B}(L)$. Then

$$x = a + \sum_{i=1}^{n} b_i \bar{c}_i \quad \text{and} \quad z = e + \sum_{j=1}^{n} f_j \bar{g}_j,$$

where $a, b_i, c_i, e, f_j, g_j \in L$ and $b_i \bar{c}_i, f_j \bar{g}_j$ cannot occur. Since $y \in \hat{B}(L)$,

$$y = u + \sum_{k=1}^{n} u_k \bar{v}_k + \bar{v} \quad \text{for } u, u_k, v_k, v \in L,$$

where $u, u_k \bar{v}_k$ or \bar{v} cannot occur. If $a \in L$ and $a \leq x$, then $a \leq y$, so $a + y = y$. Similarly, since $yz = y$, we have

$$y = u'' + \sum_{k=1}^{n} u_k' \bar{v}_k'',$$

where $u'', u_k', v_k' \in L$, and u'' must occur and $u_k' \bar{v}_k'$ can or cannot occur.
Therefore, \(y \in R(L) \). Thus \(R(L) \) is convex in \(\hat{B}(L) \) and \(R(L) \in \mathcal{R} \) by Lemma 2.1.

Next we show that \(R(L) \) is the smallest relatively complemented distributive lattice containing \(L \) as a sublattice.

Let \(L' \in \mathcal{R} \) be a sublattice of \(\hat{B}(L) \) containing \(L \). We show that if

\[
x = a + \sum_{i=1}^{n} b_i \bar{c}_i \quad \text{for } a, a_i, b_i \in L,
\]

then \(x \in L' \). It suffices to show that, for any \(a, b, c \in L \), we have \(a+b\bar{c} \in L' \).

Now \(a \leq a+c \leq a+b+c \) and \(a, a+c, a+b+\bar{c} \in L' \). Since \(L' \in \mathcal{R} \), there exists \(c' \in L' \) such that \((a+c)c' = a \) and \(a+c+c' = a+b+c \).

But \(c' \in \hat{B}(L) \) implies that

\[
c' = a + (a+b+c)(a+c) = a + (a+b+c)\bar{a}\bar{c} = a + b\bar{a}\bar{c} = a + b\bar{c} \in L'.
\]

Note. \(R(L) \) contains 0 if and only if \(L \) contains 0; similarly for 1.

Definition. Let \(B \in \mathcal{B} \) and let \(L \in \mathcal{D} \) be a sublattice of \(B \). The convex hull of \(L \) in \(B \), denoted by \(L_B^* \), is the smallest convex sublattice of \(B \) containing \(L \).

Theorem 2.3. If \(L \in \mathcal{D} \), then \(L_B^* = R(L) \).

Proof. Clearly, \(\hat{B}(R(L)) = \hat{B}(L) \) since \(L \subseteq R(L) \subseteq \hat{B}(R(L)) \). Thus, by Theorem 1.1, \(R(L) \) is convex in \(\hat{B}(L) \), and \(L_B^* \) is a sublattice of \(R(L) \).

Also, \(L_B^* \in \mathcal{R} \), and \(L \) is a sublattice of \(L_B^* \). Hence \(R(L) \) is a sublattice of \(L_B^* \) by Theorem 2.2.

Definition. Let \(L \in \mathcal{D} \). Then \(\langle R(L), \lambda(L) \rangle \) is the free relatively complemented extension of \(L \) if \(R(L) \in \mathcal{R} \), \(\lambda(L) : L \rightarrow R(L) \) is an imbedding map and whenever \(M \in \mathcal{R} \) and \(f \in \text{Hom}_{\mathcal{D}}[L, M] \), then there exists a unique \(f^* \in \text{Hom}_{\mathcal{R}}[R(L), M] \) such that \(f^* \circ \lambda(L) = f \).

Theorem 2.4. Let \(L \in \mathcal{D} \) and let \(\lambda(L) : L \rightarrow R(L) \) be the imbedding map. Then \(\langle R(L), \lambda(L) \rangle \) is the free relatively complemented extension of \(L \).

Proof. Let \(M \in \mathcal{R} \) and let \(f \in \text{Hom}_{\mathcal{D}}[L, M] \). Then

\[
\hat{B}(f) \in \text{Hom}_{\mathcal{R}}[\hat{B}(L), \hat{B}(M)]
\]

is the unique extension of \(f \) to \(\hat{B}(L) \). Let \(f^* = \hat{B}(f)|_{R(L)} \). We claim that \(\text{Im} f^* \subseteq M \). Indeed, let \(x \in R(L) \). If \(x \in L \), then \(f^*(x) = f(x) \in M \). Now suppose

\[
x = b + \sum_{i=1}^{n} c_i \bar{d}_i, \quad \text{where } b, c_i, d_i \in L.
\]

Then

\[
f^*(x) = f^*(b + \sum_{i=1}^{n} c_i \bar{d}_i) = f^*(b) + \sum_{i=1}^{n} f^*(c_i)f^*(\bar{d}_i)
\]

\[
= f(b) + \sum_{i=1}^{n} f(c_i)f(\bar{d}_i) \in R(f(L)).
\]
Also, \(f(L) \subseteq M \) implies \(R(f(L)) \subseteq M \) by Theorem 2.2. Thus \(\text{Im} f^* \subseteq M \).

Clearly, \(f^* \in \text{Hom}_D[R(L), M] \) and \(f^* \circ \lambda(L) = f \). The uniqueness of \(f^* \) follows from the uniqueness of \(\hat{B}(f) \).

Remarks. (1) By Theorem 2.4, \(R : \mathcal{D} \to \mathcal{R} \) can be extended to a reflector functor.

(2) It is well known (see [1]) that the free distributive lattice on \(n \) generators, \(n \) being finite, has the length \(2^n - 2 \). If \(L \in \mathcal{D} \), \(|L| < \aleph_0 \) and \(\mathcal{C} \) is a maximal chain of \(L \), then \(\hat{B}(L) = \hat{B}(\mathcal{C}) \). If the length of \(L \) is \(k \), then \(|\hat{B}(L)| = 2^k \).

(3) Let \(\mathcal{A} \) and \(\mathcal{C} \) be categories that have free objects. Let \(F : \mathcal{A} \to \mathcal{C} \) be a reflector functor. Then it is known (see [2]) that if \(S \) is a set and \(A_S \) is free on \(S \) in \(\mathcal{A} \), then \(F(A_S) \) is free on \(S \) in \(\mathcal{C} \).

From Remarks (2) and (3) we get the following characterization of the free objects in \(\mathcal{R} \).

Theorem 2.5. Let \(S \) be a non-empty set. If \(F_S \) is the free object on \(S \) in \(\mathcal{D} \), then \(R(F_S) \) is the free object on \(S \) in \(\mathcal{R} \). If \(|S| = n \), then \(R(F_S) \in \mathcal{B} \) and \(|R(F_S)| = 2^{2^n - 2} \).

References

Reçu par la Rédaction le 10. 1. 1973 ; en version modifiée le 10. 2. 1974