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A REPRESENTATION
OF RELATIVELY COMPLEMENTED DISTRIBUTIVE LATTICES

BY

DAVID C. FEINSTEIN (CHICAGO, ILLINOIS)

It is known [1] that every distributive lattice can be imbedded in
a Boolean lattice. It is shown in this paper that, for every relatively com-
plemented distributive lattice L, there exists a Boolean lattice B such
that L is equal to the intersection of a prime. ideal and an ultrafilter of
B (Theorem 1.4 (b)). We also show that the free relatively complemented
extension of any distributive lattice exists. Using this result, we give
a characterization of free relatively complemented distributive lattices
(Theorem 2.5).

0. Background. The following categories will be considered in this
paper:

the category © whose objects are distributive lattices and whose
morphisms are lattice homomorphisms;

the category R whose objects are relatively complemented distribu-
tive lattices and whose morphisms are lattice homomorphisms;

the category B whose objects are Boolean lattices and whose mor-
phisms are lattice homomorphisms.

Let Le® and let a, be L. Then a+b will denote the join of a and b,
ab the meet of a and b, a* the set of all proper prime ideals of Z which do

not contain a, and L* = {a”* : ae L}. The lattice L itself will be considered
a8 a prime ideal and an ultrafilter of L.

It is well known (see [1]) that the ring of sets L* is lattice-isomorphic
to L and that if B (L) is the field of sets generated by L*, then (ﬁ (L), t(L))
is the free Boolean lattice extension of L, where ¢(L): L —>1§(L) is the
natural imbedding of L in ]§(L).A That is, if B,eB and fe Homgy[L, B,],
then there exists a unique f*: B(L) — B, such that f*oi(L) =f. Then
B :D — B can be extended to a reflector functor. L* will be identified with
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L, and ze 1§(L) if and onmly if

r = a+2a¢5i+l_),

i=1
where a, a;, b;, be L and b, is the complement of b, in ﬁ(L).

1. Characterization of a relatively complemented distributive lattice.
THEOREM 1.1. If Le R, then L is convex in B(L).

Proof. Suppose a < b < ¢, where a, ce L and be1§(L). Sincebeﬁ(L),
b can be written in the form

b = u—l—Zu;ﬁi—i-'T),

=1

where wu, u;, v;,ve L and u, v or u;v; cannot occur. Now a < b implies

b=a+b=a+u+ ) ubi+7,
i=1

and b < ¢ implies

n
b=a+cu+ 2 cu;v; + 6.
i=1

Thus we can assume
n
3 -
i=1

where u always occurs and %;9; can or cannot occur. If no %;v; occurs,
then b = ue L. Assume that '

b =u+ Zn:uﬁ‘

i=1

and that u;v; occurs. Then wv; < v; < u;+v; for every ¢ and there exists
v;e L such that v; is the complement of v; in [uv;, w; +v;]. Hence

v; = (Ug+0;)0; - uv;, = wv; +uv; .
and
n n n
b =;u—|— Zuiﬁi = U+ Z(uiﬁﬁ—uv,-) = U+ vageL.
i=1 i=1 i=1
LEMMA 1.2. Let Be B and let Le R be a sublattice of B such that O L
and B(L) = B. Then L is a prime ideal of B.
Proof. If 1¢ L, then LeB implies B(L) = L, so L = B. Assume

1¢ L. By Theorem 1.1, L is convex in B(L), and Oe¢ L, 1¢ L imply L is
a proper ideal of B.
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We claim that L is a prime ideal of B. Indeed, given ae B— L, we
show that @e L. The assumption B = B(L) yields

n
a = uU-+ Zuﬁi—}—ﬁ,
i=1

where u, u;, v;, ve L and u,v or u;7; need not occur. If »,v; occurs, we

get 0 < w;7; < u;; 0, u;e L implies u;v;¢ L by convexity of L. Thus ¢ = u +

+ 9, where 4, ve L and @ = uv. Since ve L, @ = uve L by convexity of L.
A similar argument yields

LEMMA 1.3. Let BeB and let Le R be a sublattice of B such that 1e L
and ﬁ(L) = B. Then L is an ultrafilter of B.
THEOREM 1.4. Let Be'B.

(a) If P and F are a non-principal prime ideal and ultrafilier, respec-
tively, such that F + B — P, then P, F and PNF are relatively complemented

convex sublattices of B and B(P) B(F) B(PnF) B.

(b) If LeR is a sublattice of B such that B(L) = B, then L = PN F,
where P is either a non-principal prime ideal of B or P = B and F is either
a non-principal ultrafilter of B or ¥ = B.

Proof. (a) P is obviously a relatively complemented lattice and,
clearly, P is a sublattice of B such that 0e¢ P. Suppose ae¢ B—P. Then

a ¢ P implies 1§(P) = B. Thus P is convex in B by Theorem 1.1.
Similarly, F is convex in B.
Now consider PNF. Clearly, PnF is a relatively complemented

sublattice of B. We show that B(PNF) = B. Let ae B—PNF. Then
there are the following three possibilities:

(i) a¢ P and a¢ F. Then @e PAF and @ = ae B(PNF).
(ii) a¢ P and ac F. Then, for any be PNF, we have abe PN F and
@+bePNnF. Thus ab = a+beB(PnF) and abe PNF implies

& = ab-+abe B(PNF).

(iii) ae P and a¢ F — dual to (ii).
Thus B(PNnF) = B and, by Theorem 1.1, PNF is convex in B.

(b) If O0¢ L, then L is a prime ideal by Lemma 1.2. If 1¢ L, then L
is an ultrafilter of B by Lemma 1.3.

Suppose 0¢ L and 1¢ L. Then B(L) = B, so that L is ‘convex in B
by Theorem 1.1. Let

= {zeB: 2 < a for some ae L}.
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Then P is a proper ideal of B, and P = L implies I}(P) = B. Hence
P is a prime ideal of B by Lemma 1.2. Dually,

F = {xe B: x> a for some ac L}

is an ultrafilter of B. Now L < F and L < Pimply L < PnF.Let xe PNF.
Then there exist ae¢ L such that a < and be L such that x < b. Since
L is convex in B, xe L.

COROLLARY 1.5. Every lattice LeR can be imbedded im a Boolean
lattice B so that L = PNF, where P is a prime ideal of B and F is an ulira-
filter of B.

Proof. The proof follows if we take B = }}(L) and apply Theo-
rem 4 (b). '

2. The free relatively complemented extension of a distributive lattice.

LEMMA 2.1. If Le®D is a convex sublattice of BeB, then Le R.

Proof. Suppose a, b,ce L and a < b<c. Then there exists b'e B
such that b4 b" = ¢ and bb’ = a. Since a < b < ¢, b’ L}by convexity of L.
Thus LeR.

THEOREM 2.2. Let LeD and consider L as a sublattice of ﬁ’(L). Then

R(L) = {we B(L):xe<L or ¢ = Zaiz,-, where a, a;, b;e L}
i=1
18 the smallest relatively complemented sublattice of ﬁ(L) that contains L
as a sublattice.

Proof. First we show that R(L) is a relatively complemented lattice.
Clearly, R(L) is a lattice. Suppose r < y < 2, where x, 2¢ R(L)and y ¢ ﬁ(L).
Then

n n
r = a+2bi6i and 2= e—i—Zf,gj,
=1

i=1

where a, b;, ¢;, €, f;, 9;¢ L and b,¢;, f;J; cannot occur. Since ye fB(L),

n
Yy = u—}-Zu,ﬁk—l—'T) for w, uy, vy, ve L,

k=1

where u, u, %, or ¥ cannot occur. If ae L and a < #, then a <y, so a+vy
= y. Similarly, since yz = y, we have

' n
y=u"+ 2'“;:5;:7

k=1

where u'’, uy, vye L, and %'’ must occur and w7, can or cannot occur.
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Therefore, ye¢ R(L). Thus R(L) is convex in 1§(L) and R(L)e R by
Lemma 2.1.

Next we show that R(L) is the smallest relatively complemented dis-
tributive lattice containing L as a sublattice.

Let L'« R be a sublattice of B(L) containing L. We show that if
T = a+2b,-6,- for a, a;, b;e L,
=1

then xe L’. It suffices to show that, for any a, b, ce L, we have a +bce L.

Now a<atce<a+b+c and a,atc,a+b+cel’. Since L' %R,
there exists ¢« L’ such that (a+e¢)¢’ =a and a+e¢+¢ =a+b+te.
But ¢’ <B(L) implies that

¢ =a+(a+b+e)ate) =at(at+b+c)de =a+bac =a+bée L.

Note. R(L) contains 0 if and only if L contains 0; similarly for 1.

Definition. Let BeB and let Le® be a sublattice of B. The con-
vex hull of L in B, denoted by L%, is the smallest convex sublattice of
B containing L. '

THEOREM 2.3. If LeD, then Lﬁ(L) = R(L).

Proof. Clearly, B(R(L )= B(L) since L < R(L) < B(R(L)) Thus, by
Theorem 1.1, B(L) is convex in B(L), and Lﬁ(L) is a sublattice of E(L).

Also, LB(L) e R, and L is a sublattice of L_g(L) Hence R(L) is a sub-
lattice of L3 by Theorem 2.2.

Definition. Let Le®. Then (R(L),A(L)) is the free relatively
complemented extension of L if R(L)e R, A(L) : L - R(L) is an imbedding
map and whenever M e R and fe Homgy[L, M], then there exists a unique
f*e« Homg[R(L), M] such that f*oA(L) = f.

THEOREM 2.4. Let Le® and let A(L): L — R(L) be the imbedding
map. Then {R(L), A(L)) is the free relatively complemenied éxtension of L.

Proof. Let Me R and let fe Homy[L, M]. Then
B(f)« Homg[B(L), B(M)]
is the unique extension of f to B(L). Let f* = B(f)| rz)- We claim that Imf*
S M. Indeed, let ze R(L). If e L, then f*(x) = f(x)e M. Now suppose
n
x = b—l—Zc,-E,., where b, ¢;, d;c L.

Then o "
ffl@) =f* (b"l‘zci‘_li) =f*(b)+2f*(ci)f*(zi)
{=1 i=1

=f®)+ D f(e)f(d) <« R(f(L)).

i=1
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Also, f(L) = M implies R(f(L)) < M by Theorem 2.2. Thus Imf* c M.

Clearly, f*¢ Homgy[R(L), M] and f*oA(L) = f. The uniqueness of
f* follows from the uniqueness of B(f).

Remarks. (1) By Theorem 2.4, R:D — R can be extended to
a reflector functor.

(2) It is well known (see [1]) that the free distributive lattice on
n generators, n being finite, has the length 2" —2.If Le D, |L| <N, and
C is a maximal chain of L, then ﬁ(L) = f?(G). If the length of L is k,
then |B(L)| = 2.

(3) Let A and € be categories that have free objects. Let F: U — ¢
be a reflector functor. Then it is known (see [2]) that if § is a set and Ag
is free on 8 in A, then F(A)g is free on S in C.

From Remarks (2) and (3) we get the following characterization
of the free objécts in R.

THEOREM 2.5. Let 8 be a non-empty set. If Fg is the free object on S in

D, then R(Fy) is the free object on 8 in R. If |S| = n, then R(Fg)eB and
|R(Fg)| = 22"2.

/
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