A REPRESENTATION OF RELATIVELY COMPLEMENTED DISTRIBUTIVE LATTICES

 \mathbf{BY}

DAVID C. FEINSTEIN (CHICAGO, ILLINOIS)

It is known [1] that every distributive lattice can be imbedded in a Boolean lattice. It is shown in this paper that, for every relatively complemented distributive lattice L, there exists a Boolean lattice B such that L is equal to the intersection of a prime ideal and an ultrafilter of B (Theorem 1.4 (b)). We also show that the free relatively complemented extension of any distributive lattice exists. Using this result, we give a characterization of free relatively complemented distributive lattices (Theorem 2.5).

0. Background. The following categories will be considered in this paper:

the category D whose objects are distributive lattices and whose morphisms are lattice homomorphisms;

the category \Re whose objects are relatively complemented distributive lattices and whose morphisms are lattice homomorphisms;

the category B whose objects are Boolean lattices and whose morphisms are lattice homomorphisms.

Let $L \in \mathfrak{D}$ and let $a, b \in L$. Then a+b will denote the join of a and b, ab the meet of a and b, a^* the set of all proper prime ideals of L which do not contain a, and $L^* = \{a^* : a \in L\}$. The lattice L itself will be considered as a prime ideal and an ultrafilter of L.

It is well known (see [1]) that the ring of sets L^* is lattice-isomorphic to L and that if $\hat{B}(L)$ is the field of sets generated by L^* , then $\langle \hat{B}(L), i(L) \rangle$ is the free Boolean lattice extension of L, where $i(L): L \to \hat{B}(L)$ is the natural imbedding of L in $\hat{B}(L)$. That is, if $B_1 \in \mathfrak{B}$ and $f \in \operatorname{Hom}_{\mathfrak{D}}[L, B_1]$, then there exists a unique $f^*: \hat{B}(L) \to B_1$ such that $f^* \circ i(L) = f$. Then $\hat{B}: \mathfrak{D} \to \mathfrak{B}$ can be extended to a reflector functor. L^* will be identified with

L, and $x \in \hat{B}(L)$ if and only if

$$x = a + \sum_{i=1}^{n} a_i \overline{b}_i + \overline{b},$$

where $a, a_i, b_i, b \in L$ and \bar{b}_i is the complement of b_i in $\hat{B}(L)$.

1. Characterization of a relatively complemented distributive lattice.

THEOREM 1.1. If $L \in \mathbb{R}$, then L is convex in $\hat{B}(L)$.

Proof. Suppose $a \leq b \leq c$, where $a, c \in L$ and $b \in \hat{B}(L)$. Since $b \in \hat{B}(L)$, b can be written in the form

$$b = u + \sum_{i=1}^n u_i \bar{v}_i + \bar{v},$$

where $u, u_i, v_i, v \in L$ and u, \bar{v} or $u_i \bar{v}_i$ cannot occur. Now $a \leq b$ implies

$$b = a + b = a + u + \sum_{i=1}^n u_i \overline{v}_i + \overline{v},$$

and $b \leqslant c$ implies

$$b = a + cu + \sum_{i=1}^{n} cu_{i} \overline{v}_{i} + c\overline{v}.$$

Thus we can assume

$$b = u + \sum_{i=1}^n u_i \bar{v}_i,$$

where u always occurs and $u_i \bar{v}_i$ can or cannot occur. If no $u_i \bar{v}_i$ occurs, then $b = u \in L$. Assume that

$$b = u + \sum_{i=1}^n u_i \bar{v}_i$$

and that $u_i \overline{v}_i$ occurs. Then $uv_i \leq v_i \leq u_i + v_i$ for every i and there exists $v_i' \in L$ such that v_i' is the complement of v_i in $[uv_i, u_i + v_i]$. Hence

$$v_i' = (u_i + v_i)\bar{v}_i + uv_i = u\bar{v}_i + uv_i$$

and

$$b = \underbrace{\sum_{i=1}^{n} u_i \overline{v}_i}_{i} = u + \underbrace{\sum_{i=1}^{n} (u_i \overline{v}_i + u v_i)}_{i} = u + \underbrace{\sum_{i=1}^{n} v_i' \epsilon L}_{i}.$$

LEMMA 1.2. Let $B \in \mathfrak{B}$ and let $L \in \mathfrak{R}$ be a sublattice of B such that $0 \in L$ and $\hat{B}(L) = B$. Then L is a prime ideal of B.

Proof. If $1 \in L$, then $L \in \mathfrak{B}$ implies $\hat{B}(L) = L$, so L = B. Assume $1 \notin L$. By Theorem 1.1, L is convex in $\hat{B}(L)$, and $0 \in L$, $1 \notin L$ imply L is a proper ideal of B.

We claim that L is a prime ideal of B. Indeed, given $a \in B - L$, we show that $\bar{a} \in L$. The assumption $B = \hat{B}(L)$ yields

$$a = u + \sum_{i=1}^n u_i \bar{v}_i + \bar{v},$$

where $u, u_i, v_i, v \in L$ and u, v or $u_i \overline{v}_i$ need not occur. If $u_i \overline{v}_i$ occurs, we get $0 \leq u_i \overline{v}_i \leq u_i$; $0, u_i \in L$ implies $u_i v_i \in L$ by convexity of L. Thus $a = u + \overline{v}$, where $u, v \in L$ and $\overline{a} = \overline{u}v$. Since $v \in L$, $\overline{a} = \overline{u}v \in L$ by convexity of L.

A similar argument yields

LEMMA 1.3. Let $B \in \mathfrak{B}$ and let $L \in \mathfrak{R}$ be a sublattice of B such that $1 \in L$ and $\hat{B}(L) = B$. Then L is an ultrafilter of B.

THEOREM 1.4. Let $B \in \mathfrak{B}$.

- (a) If P and F are a non-principal prime ideal and ultrafilter, respectively, such that $F \neq B-P$, then P, F and $P \cap F$ are relatively complemented convex sublattices of B and $\hat{B}(P) = \hat{B}(F) = \hat{B}(P \cap F) = B$.
- (b) If $L \in \mathbb{R}$ is a sublattice of B such that $\hat{B}(L) = B$, then $L = P \cap F$, where P is either a non-principal prime ideal of B or P = B and F is either a non-principal ultrafilter of B or F = B.

Proof. (a) P is obviously a relatively complemented lattice and, clearly, P is a sublattice of B such that $0 \in P$. Suppose $a \in B - P$. Then $\bar{a} \in P$ implies $\hat{B}(P) = B$. Thus P is convex in B by Theorem 1.1.

Similarly, F is convex in B.

Now consider $P \cap F$. Clearly, $P \cap F$ is a relatively complemented sublattice of B. We show that $\hat{B}(P \cap F) = B$. Let $a \in B - P \cap F$. Then there are the following three possibilities:

- (i) $a \notin P$ and $a \notin F$. Then $\bar{a} \in P \cap F$ and $a = \bar{a} \in B(P \cap F)$.
- (ii) $a \notin P$ and $a \in F$. Then, for any $b \in P \cap F$, we have $ab \in P \cap F$ and $\bar{a} + b \in P \cap F$. Thus $a\bar{b} = \overline{\bar{a} + b} \in \hat{B}(P \cap F)$ and $ab \in P \cap F$ implies

$$a = ab + a\bar{b} \in \hat{B}(P \cap F).$$

(iii) $a \in P$ and $a \notin F$ — dual to (ii).

Thus $\hat{B}(P \cap F) = B$ and, by Theorem 1.1, $P \cap F$ is convex in B.

(b) If $0 \in L$, then L is a prime ideal by Lemma 1.2. If $1 \in L$, then L is an ultrafilter of B by Lemma 1.3.

Suppose $0 \notin L$ and $1 \notin L$. Then $\hat{B}(L) = B$, so that L is convex in B by Theorem 1.1. Let

$$P = \{x \in B : x \leq a \text{ for some } a \in L\}.$$

Then P is a proper ideal of B, and $P \supseteq L$ implies $\hat{B}(P) = B$. Hence P is a prime ideal of B by Lemma 1.2. Dually,

$$F = \{x \in B : x \geqslant a \text{ for some } a \in L\}$$

is an ultrafilter of B. Now $L \subseteq F$ and $L \subseteq P$ imply $L \subseteq P \cap F$. Let $x \in P \cap F$. Then there exist $a \in L$ such that $a \leq x$ and $b \in L$ such that $x \leq b$. Since L is convex in B, $x \in L$.

COROLLARY 1.5. Every lattice $L \in \mathbb{R}$ can be imbedded in a Boolean lattice B so that $L = P \cap F$, where P is a prime ideal of B and F is an ultrafilter of B.

Proof. The proof follows if we take $B = \hat{B}(L)$ and apply Theorem 4 (b).

2. The free relatively complemented extension of a distributive lattice. LEMMA 2.1. If $L \in \mathfrak{D}$ is a convex sublattice of $B \in \mathfrak{B}$, then $L \in \mathfrak{R}$.

Proof. Suppose $a, b, c \in L$ and $a \le b \le c$. Then there exists $b' \in B$ such that b+b'=c and bb'=a. Since $a \le b' \le c$, $b' \in L$ by convexity of L. Thus $L \in \Re$.

THEOREM 2.2. Let $L \in \mathfrak{D}$ and consider L as a sublattice of $\hat{B}(L)$. Then

$$R(L) = \left\{ x \in \hat{B}(L) : x \in L \text{ or } x = \sum_{i=1}^{n} a_i \overline{b}_i, \text{ where } a, a_i, b_i \in L \right\}$$

is the smallest relatively complemented sublattice of $\hat{B}(L)$ that contains L as a sublattice.

Proof. First we show that R(L) is a relatively complemented lattice. Clearly, R(L) is a lattice. Suppose $x \leq y \leq z$, where $x, z \in R(L)$ and $y \in \hat{B}(L)$. Then

$$x = a + \sum_{i=1}^{n} b_i \bar{c}_i$$
 and $z = e + \sum_{j=1}^{n} f_j \bar{g}_j$,

where $a, b_i, c_i, e, f_j, g_j \in L$ and $b_i \bar{c}_i, f_j \bar{g}_j$ cannot occur. Since $y \in \hat{B}(L)$,

$$y = u + \sum_{k=1}^{n} u_k \overline{v}_k + \overline{v} \quad \text{for } u, u_k, v_k, v \in L,$$

where $u, u_k \overline{v}_k$ or \overline{v} cannot occur. If $a \in L$ and $a \leq x$, then $a \leq y$, so a + y = y. Similarly, since yz = y, we have

$$y = u'' + \sum_{k=1}^n u'_k \overline{v}'_k,$$

where u'', u'_k , $v'_k \in L$, and u'' must occur and $u'_k \overline{v}'_k$ can or cannot occur.

Therefore, $y \in R(L)$. Thus R(L) is convex in $\hat{B}(L)$ and $R(L) \in \Re$ by Lemma 2.1.

Next we show that R(L) is the smallest relatively complemented distributive lattice containing L as a sublattice.

Let $L' \in \mathbb{R}$ be a sublattice of $\hat{B}(L)$ containing L. We show that if

$$x = a + \sum_{i=1}^{n} b_i \bar{c}_i \quad \text{ for } a, a_i, b_i \in L,$$

then $x \in L'$. It suffices to show that, for any $a, b, c \in L$, we have $a + b\overline{c} \in L'$. Now $a \le a + c \le a + b + c$ and $a, a + c, a + b + c \in L'$. Since $L' \in \mathbb{R}$, there exists $c' \in L'$ such that (a+c)c' = a and a+c+c' = a+b+c. But $c' \in \hat{B}(L)$ implies that

$$c'=a+(a+b+c)\overline{(a+c)}=a+(a+b+c)\overline{a}\overline{c}=a+b\overline{a}\overline{c}=a+b\overline{c}\epsilon L'.$$

Note. R(L) contains 0 if and only if L contains 0; similarly for 1.

Definition. Let $B \in \mathfrak{B}$ and let $L \in \mathfrak{D}$ be a sublattice of B. The convex hull of L in B, denoted by L_B^* , is the smallest convex sublattice of B containing L.

THEOREM 2.3. If $L \in \mathfrak{D}$, then $L_{B(L)}^* = R(L)$.

Proof. Clearly, $\hat{B}(R(L)) = \hat{B}(L)$ since $L \subseteq R(L) \subseteq \hat{B}(R(L))$. Thus, by Theorem 1.1, R(L) is convex in $\hat{B}(L)$, and $L^*_{\hat{B}(L)}$ is a sublattice of R(L).

Also, $L^*_{\hat{B}(L)} \in \Re$, and L is a sublattice of $L^*_{\hat{B}(L)}$. Hence R(L) is a sublattice of $L^*_{\hat{B}(L)}$ by Theorem 2.2.

Definition. Let $L \in \mathfrak{D}$. Then $\langle R(L), \lambda(L) \rangle$ is the free relatively complemented extension of L if $R(L) \in \mathfrak{R}$, $\lambda(L) : L \to R(L)$ is an imbedding map and whenever $M \in \mathfrak{R}$ and $f \in \operatorname{Hom}_{\mathfrak{D}}[L, M]$, then there exists a unique $f^* \in \operatorname{Hom}_{\mathfrak{R}}[R(L), M]$ such that $f^* \circ \lambda(L) = f$.

THEOREM 2.4. Let $L \in \mathfrak{D}$ and let $\lambda(L) : L \to R(L)$ be the imbedding map. Then $\langle R(L), \lambda(L) \rangle$ is the free relatively complemented extension of L.

Proof. Let $M \in \Re$ and let $f \in \operatorname{Hom}_{\mathfrak{D}}[L, M]$. Then

$$\hat{B}(f) \in \operatorname{Hom}_{\mathfrak{B}}[\hat{B}(L), \hat{B}(M)]$$

is the unique extension of f to $\hat{B}(L)$. Let $f^* = \hat{B}(f)|_{R(L)}$. We claim that $\text{Im} f^* \subseteq M$. Indeed, let $x \in R(L)$. If $x \in L$, then $f^*(x) = f(x) \in M$. Now suppose

Then
$$x = b + \sum_{i=1}^{n} c_i \overline{d}_i, \quad \text{where } b, c_i, d_i \in L.$$

$$f^*(x) = f^* \left(b + \sum_{i=1}^{n} c_i \overline{d}_i \right) = f^*(b) + \sum_{i=1}^{n} f^*(c_i) f^*(\overline{d}_i)$$

$$= f(b) + \sum_{i=1}^{n} f(c_i) \overline{f(d_i)} \in R(f(L)).$$

Also, $f(L) \subseteq M$ implies $R(f(L)) \subseteq M$ by Theorem 2.2. Thus $\mathrm{Im} f^* \subseteq M$. Clearly, $f^* \in \mathrm{Hom}_{\mathfrak{D}}[R(L), M]$ and $f^* \circ \lambda(L) = f$. The uniqueness of f^* follows from the uniqueness of $\hat{B}(f)$.

Remarks. (1) By Theorem 2.4, $R: \mathfrak{D} \to \mathfrak{R}$ can be extended to a reflector functor.

- (2) It is well known (see [1]) that the free distributive lattice on n generators, n being finite, has the length 2^n-2 . If $L \in \mathfrak{D}$, $|L| < \aleph_0$ and C is a maximal chain of L, then $\hat{B}(L) = \hat{B}(C)$. If the length of L is k, then $|\hat{B}(L)| = 2^k$.
- (3) Let $\mathfrak A$ and $\mathfrak C$ be categories that have free objects. Let $F:\mathfrak A\to\mathfrak C$ be a reflector functor. Then it is known (see [2]) that if S is a set and A_S is free on S in $\mathfrak A$, then $F(A)_S$ is free on S in $\mathfrak C$.

From Remarks (2) and (3) we get the following characterization of the free objects in \Re .

THEOREM 2.5. Let S be a non-empty set. If F_S is the free object on S in \mathfrak{D} , then $R(F_S)$ is the free object on S in \mathfrak{R} . If |S|=n, then $R(F_S) \in \mathfrak{B}$ and $|R(F_S)|=2^{2^{n}-2}$.

REFERENCES

- [1] G. Grätzer, Lattice theory, San Francisco 1971.
- [2] B. Mitchell, Theory of categories, New York 1965.

Reçu par la Rédaction le 10. 1. 1973; en version modifiée le 10. 2. 1974