[BL] B. Brainerd and J. Lambek, On the ring of quotients of a Boolean ring, Canad. Math. Bull. 2 (1959), 25-29.
[Ce] E. Čech, Topological Spaces, Wiley, New York 1966.
[Dl] R. P. Dilworth, The normal completion of the lattice of continuous functions, Trans. Amer. Math. Soc. 68 (1950), 427-438.
[FGL] N. J. Fine, L. Gillman and J. Lambek, Rings of Quotients of Rings of Functions, McGill University Press, 1965.
[FL] G. D. Findlay and J. Lambek, A generalized ring of quotients, I, II, Canad. Math. Bull. 1 (1958), 77-85 and 155-167.
[GJ] L. Gillman and M. Jerison, Rings of Continuous Functions, GTM 43, Springer, Berlin 1976.
[Gr] G. Grätzer, General Lattice Theory, Math. Reihe Bd. 52, Birkhäuser 1978.
[La] J. Lambek, Lectures on Rings and Modules, Blaisdell, 1966.
[MM 1] F. R. McMorris, On quotient semigroups, J. Math. Sci. 7 (1972), 48-56.
[MM 2] F. R. McMorris, The maximal quotient semigroup, Semigroup Forum 4 (1972), 360-364.
[PS] D. Papert-Strauss, Extremely disconnected spaces, Proc. Amer. Math. Soc. 18 (1967), 305-309.
[Sch1] J. Schmid, Multipliers on distributive lattices and rings of quotients, I. Houston J. Math. 6 (1980), 401-425.
[Sch2] J. Schmid, Distributive lattices and rings of quotients, in Contributions to Lattice Theory, Proc. Coll. Math. Soc. Janos Bolyai, Vol. 33, Szeged 1980, 675-696.
[St] M. H. Stone, Boundedness properties in function lattices, Canad. J. Math. 1 (1949), 176-186.
[TG] N. Bourbaki, Topologie générale, Elements de mathématique, Hermann, Paris 1974.
[We] H. J. Weinert, S-sets and semigroups of quotients. Semigroup Forum 19 (1980), 1-78.