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0. Introduction

The set C(X) of all real-valued continuous functions defined on a
topological space X may be equipped with various algebraic structures. Most
prominently, C(X) is a commutative ring with unit as a subdirect product of
copies of the field R. As such, it has been explored very profoundly (see, e.g.,
[GJ]); however, it seems that the algebraic structure of C(X) prevalently was
used as a tool to investigate the topological structure of X and related
spaces. There is one notable exception: In [FGL], a purely ring-theoretic
concept, that of a maximal ring of quotients (alias maximal rational exten-
sion) is studied for its own sake in the case of rings C(X) (yielding
topological benefits also, naturally). C(X) is also a distributive lattice as a
subdirect product of copies of the chain R. Interest in the lattices C(X)
centered on completeness properties; see, e.g., [St] and [DI]. The latter
paper, on the MacNeille completion of C*(X), highlights the role of semi-
continuous functions in this context.

The present paper tries, to some extent, to blend ring-theoretic and
lattice-theoretic aspects of C(X). The unifying concept is that of a rational
extension of a semigroup. Given two commutative semigroups S, T such that
S < T, call T a rational extension of S provided that for any triple t, t,, t,e T
with £, # t, there exists se § satisfying ste S, st, # st,. This concept obvious-
ly generalizes to the noncommutative case, but this will not be needed for
our purposes. Terminology goes back to Findlay and Lambek [FL]; T is
commonly called a semigroup of quotients of § today, but we stick to
“rational extension” in order to avoid conflicting uses of “quotient” in the
case S, T are lattices. The concept of rational extensions of semigroups is
mainly due to McMorris and Berthiaume (see, e.g, [Be], [MM 1], [MM 2]),
generalizing work by Findlay and Lambek (see [FL], [BL]) on the ring case.
We refer the reader to Lambek’s book [La] and to Weinert’s survey article
[We].

The key fact in the theory of rational extensions is the existence — under
mild assumptions on S — of a maximal rational extension Q(S) of a given
semigroup S (called commonly maximal ring of quotients, respectively maxi-
mal semigroup of quotients). The present paper considers C(X) endowed with
one or more of the operations of pointwise sum, product, infimum or
supremum of functions and computes Q(C(X)) in each of these cases. It
turns out that all these extensions — including the case of the ring C(X) —
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fit nicely in the framework of semicontinuous extended-real-valued functions
defined on X, that they are rather closely interrelated and that they all turn
up as sublattices of the MacNeille completion of the lattice C(X) of all
continuous extended-real-valued functions defined on X.

The paper is organized as follows: Section 1 sets up terminology and
notation and gives a few relevant facts on spaces, extended-real-valued
functions and rational extensions of semigroups. In Section 2 we collect the
necessary material on semicontinuous functions; this seemed necessary since
the facts we need are rather scattered through the literature and sometimes
stated, we feel, under unnecessarily restrictive conditions. Section 3 contains
(the more algebraic) properties of certain well-behaved semicontinuous func-
tions. Most of the material presented goes essentially back to Dilworth [DI],
he considered such functions — calling them normal — which were, additio-
nally, finite-valued and bounded. Section 4 describes the maximal rational
extension of the semigroup C(X) with pointwise infimum as operation. This
turns out to be a distributive lattice contained in the lattice of all normal
(lower) semicontinuous functions on X, and related to the MacNeille comple-
tions of C (X) and C(X). In Section 5, the effects of forming maximal rational
extensions — successively —with respect to pointwise infimum and supremum
as semigroup operations are studied. The key ingredient here is that of
a normal semicontinuous function which is continuous on a dense open set.
Finally, Section 6 deals with C(X) as a multiplicative semigroup and as a
ring. The maximal rational extension is seen to be a reduct of the maximal
ring of quotients of C(X), and both in their natural order form a sublattice
of the MacNeille completion of C(X). We conclude by locating the MacNeille
completions of the various maximal rational extensions obtained in the
preceding sections.

1. Notations and basic facts

X always denotes a topological space, which is completely regular and
Hausdorff unless otherwise stated. R stands for the reals in their usual
topology. The set of extended reals is R = Ru {— o0, +00!, with additional
order relations —oo < x < + oo for all xeR. R is topologized by taking all
sets of the form [ -0, a), (a, fi), (B, +0o] with «, e R as an open base. For
any space X and point xe X, U(x) denotes the neighbourhood filter of x.

We will be concerned mainly with maps f/: X =R or f: X - R for
some topological space X. The latter are called extended-real-valued or
numeric, according to Bourbaki jargon. A map will be called function iff it
satisfies one of the continuity properties considered below. We put

C(X)=\f: X - R; [ continuous'
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and
C(X)=|f: X - R: { continuous’.
C(X) and C(X) denote just sets since different algebraic structures on them
will be considered.
A map f: X — R is lower semicontinuous (Isc) iff f~(a, +o0] is open

for all aeR; dually, upper semicontinuous (usc) iff f~'[— o0, &) is such for
all xeR. As usual,

Z(f)=xeX;f(x)=0} and coz(f) = {xeX; f(x) #0};
furthermore,
cont(f) = |xe X; [ is continuous at x} and disc(f) = X\cont(/).

For any aeR o1 stands for the constant function with value a where 1(x)
=1 and 0(x) =0 for each xe X.

Let f: X — R be any map, and suppose P is any local property which f
may possess at any given point xe X (e.g., continuity). We will say that [ is
almost. P iff there exists a dense open set U < X such that f has P at every
point xe U.

C(X) is a ring under pointwise addition and multiplication, likewise, it is
a lattice under pointwise order. C(X) is a lattice, too, under pointwise order
and contains C(X) as a sublattice, but ring operations do not extend from
C(X) to C(X) since, e.g., 0-(+ ) is not defined. More generally, RX is a
‘lattice under pointwise order; we will be concerned mainly with lattices L
consisting of certain semicontinuous functions such that C(X) < L < RX. If
fit X — R are any maps (i), then sup f; and inf f; will always mean the

pointwise sup and inf taken in R¥ (which always exists since _l_t is a complete
lattice); if the sup or inf is taken within some sublattice L == R* we will write
sup; and inf;. Given two lattices L; = L,, L, is a regular sublattice of L, iff

sup, X; =supy, X; (€L, iel)
whenever the left-hand side exists and analogously for inf. C(X) is clearly a

regular sublattice of C(X), while C(X) is not a regular sublattice of R*. For
any lattice L and ae L we put

(@] = {xeL; x<al! and [a)= {xeLl; x=al.

L* stands for the MacNeille completion of L.
Let L be any lattice. L is said to satisfy join infinite distributivity (JID) iff

X Asup y; =sup(x A y)

for every set [v,eL: iel! whose sup happens to exist in L. The dual
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condition is meer infinite distributivity (MID):

x v inf y, = inf(x v y)
whenever the left-hand side exists.

Turning to C(X), we note that for any topological space X the lattice
C(X) satisfies both JID and MID. This is a direct consequence of the fact
that C(X) equipped with pointwise addition is a [-group (see [Bi, XIII, § 14]).
We proceed to show the analogous result for the lattices C(X) restricted to
the class of spaces which is of interest here, namely, that of completely
regular spaces. This must be done differently since C(X) is not a group under
addition. We isolate the crucial step of the proof since it will be used
repeatedly.

LemMA 1.1, Let A < X be closed, and p¢ A. Then there exists he C(X)
such that h=1, h(p)=1 and h(x)= + 0 for xcA.

Proof. By complete regularity, there is fe C(X) such that 0 < f <1,
f(p=1and f(x)=0 for xe A. Define

; 1/f(x), xecoz(f),
=110, xez(f)

Since pecoz(f) and A = Z(f), h has the required properties and is obvious-
ly continuous. =

ProrosiTioN 1.2. C(X) satisfies both JID and MID.
Proof. Assume that {s;};., € C(X) is such that s =supgy, s, exists,
A

and consider any feC(X). In order to obtain a contradiction to JID, we
suppose that there is a geC(X) such that f As>g > f A s, for all AEA.
f ~s and g being continuous, there exists @ # U =X open and a, feR
satisfying « > f and (f A s)(x) > a > f > g(x) for all xe U. Adding a suitable
constant function -1 to all functions involved, we may restrict ourselves to
the case where B =0. Select peU and find, by Lemma 1.1, heC(X)
satisfying h > 1, h(p) =1 and h(x) = + oo for xe X\ U. Now, for xe U, we
have 5, (x) < g(x); thus s A 3(e* 1) h is a new upper bound for {s,};., strictly
less than s. This is the desired contradiction and establishes JID. MID now
follows from the fact that inf s, = —sup(—s,) whenever it exists. m
2 A

Remark. We have not determined for what class of spaces C(X)
satisfies JID and MID. Complete regularity is certainly not a necessary
condition: For any indiscrete space X we have C(X) = R, and R has both
JID and MID.

In the remainder of this section we list some basics on rational exten-
sions. Let § and T be two commutative semigroups, S = T. T is a rational
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extension of S — or equivalently, S is rationally dense in T — iff for all ¢,
t; # t,e T there exists se S such that steS, st; # st,. Under mild assump-
tions — always satisfied in this paper — S is a rational extension of itself,
and then there exists a semigroup Q(S) such that (i) Q(S) is a rational
extension of S and (ii) whenever T is any rational extension of S, then
T <= Q(S). Q(S) is called the maximal rational extension of S or the rational
completion of S. Generally, any semigroup § with S = Q(S) is called rationally
complete, since Q(S) = Q(Q(S)) our use of “completion” is justified. Finally, if
S is rationally dense in T and T is rationally complete, then Q(S) = T. The
semigroups we are concerned with here are always certain sets of numeric
functions endowed with one of the operations of pointwise sum, product, sup
or inf, written +, ;, v and A. The rational completions of say, C(X), with
respect to one of these operations will be written as

Q(+H)CX), Q()C(X), Q(v)C(X), Qa(A)C(X),

respectively, and similarly for other semigroups of functions. In order to
indicate unambiguously the semigroup operation in question, we shall also
write (say) ( A)-rational extension or completion, and ( A)-rationally’ dense
(and the like). There is one exception to this rule: The maximal ring of
quotients of the ring (C(X), +, -) will be denoted by Q(X) in order to stay
consistent with [FGL].

We conclude with a brief sketch of the construction of Q(S) from S.
D =S is a dense ideal iff DS = S and § is a rational extension of D, A map
f: D—S is a S-homomorphism iff f(ds)= f(d)s for all deD, seS. Write
Homg (D, S) for the collection of all S-homomorphisms from D into S and
put

Hg =) {Homg(D, S); D =S is a dense ideal}.

For f,geHg define fg by (fg)(x)=f(g9(x)) for all xedom(g) such that
g(x)edom(f) (it must be shown, of course, that this set is a dense ideal in S).
Moreover, put f =g iff dom(f)ndom(g) includes a dense ideal. = is a
congruence on Hg with respect to the operation defined above, and Q(S)
=~ Hy/ =. S embeds canonically into Q(S) by assigning to each xe S the S-
homomorphism f,: S— S given by f,(s) = xs for all seS.

Finally, for any unexplained notions the reader is referred to [Bi] and
[Gr] for lattices and to [La], [MM 1] and [We] for rational extensions.
[GJ] and [Au] are the standard references for functions.

2. Semicontinuous functions

This section lists, in loose form, some of the pertinent properties of
semicontinuous functions. Most of the facts given below are well known, at
least in similar forms. Our standard reference is [Au].
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2.1. We start by delining the upper and lower limit functions [* and f,
of any given map j: D — R where D = X is dense (more generally, we might
consider maps f: S — R with S any subset of X, but this will not be needed
for our purposes). For xe X, define

f*(x)= inf sup f(y) and f,(x)= sup inl f(y).

Uel(x) yeU D UeU(x) yeUnD
Obviously, f* and f, are well defined maps from X to R.

2.2. For any map f: D— R (D + X dense) f*: X — R is usc and Sy
X — R is Isc (which justifies our use of “function” in 2.1). Moreover, for any
map ¢: X — R, g is usc iff g = g* and Isc iff g = g,.. Hence, g is continuous
iff g, =g=g*

For proofs of these facts see [Au], 54.1.3, 54.3, 54.6.

2.3. Properties of the operations * and .. Let f, g: D — R be any maps,
D = X dense. Then:

(i) fi < f* and for all xeD, f,(x) < f(x) < [*(x);

(i) f < g implies f, <g, and [* < g*;

(iii) (f*)* = f* (f)s = [is

(V) () ) = s ()" = (%

Proofs of these properties may be found in [Au], 5.4.1, 54.9.

24. Let f: X — R be usc. Then [ is the (pointwise) inf of {ge C(X);
g= f!. Dually, any Isc function f: X — R is the (pointwise) sup of
{geC(x); g < f). In fact, each of these relations characterizes completely
regular spaces . Proof. See [TG], IX § 1.

It follows that if f is usc and there exists geC(X) such that
g =/, then f=inf|geC(X); g= f}. Dually, any Isc function f satisfies
S =suplgeC(X); g < f] whenever this latter set is nonempty. More general-
ly, the sup of any family and the inf of any finite family of Isc functions is
again Isc. Dually, the inf of any family and the sup of any finite family of usc
functions is usc.

Proofs, see [Au], 54.6.1.

2.5. The following is the central definition of this section. Assume f: X
— R is semicontinuous, that is, f = f* or f = f,. Then [ is called normal iff
even f =(f,)* respectively f = (f*),. So the normal usc (resp. Isc) functions
form subclasses of the class of all semicontinuous functions from X to R,
each containing all continuous functions. We have the following characteriza-
tion of normal usc functions:

Let f: X— R be usc. Then f is normal iff for every ¢ >0,
(x)  every xe X and every Ue U(x) there exists Vopen, @ # V < U such
that f(y) > f(x)—¢& for all yeV.
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Proof. See [DI], 3.1.

The dual condition for Isc functions requires, of course, under the same
hypotheses the existence of @ # V = U open such that f(y) < f(x)+¢ for
all yeV.

Normal usc, respectively Isc functions may be thought of as being
“minimally discontinuous”. This may be made precise in different ways, cf.
[Au] 5.5.3.4, 5.5.8 for one possibility. Another is given in [DI], 3.2:

An usc function f is normal iff for every acR f~'(x, +0] is a

(x%) union if not of open sets — which would make f continuous — but
at least of closures of open sets (for [ Isc, f~'[—o0,a) must
have this property).

2.6. We pause to illustrate these concepts by an example, hereby show-
ing that normal semicontinuous functions may still be pretty discontinuous.

Let X =R and enumerate the rationals in a sequence {9i}ien- Define
J: R—R by

fly= % 27"

Clearly, 0 < f <1 and f is strictly increasing. [/ is continuous at each
irrational a: |f(x)—f (o)) may be made arbitrarily small by choosing «’ such
that the open interval between o and a' does not contain any member of a
certain finite list of rational numbers, On the other hand, for any ¢;e Q@ and
g; < 2 R we have f(x)—f(q;) = 27", so ['is discontinuous at each rational. It
follows that disc(f) is dense in R. f is, however, normal Isc: If f(x) > 8, then
by the same arguments we may find o’ <o such that still f(«') > f§, hence
f~Y(B, +] is open. For normality, use monotonicity of f and select,
applying (), any open interval contained in U to the left of a given point
a(Ue U(a)), or applying (»*), observe that f(a) < p implies f[—co,a] &
[_ oo, B)

27. cont(f), disc(f) for f semicontinuous. If f: X — R is semicon-
tinuous, X an arbitrary space (not necessarily completely regular), the only
thing that can be said about disc(f) in general is that this set is of first
category, see [Ce], 22 B 5. Additional hypotheses on the function or the
space will produce the property we are interested in: (i) If X is arbitrary, but
£ is normal, then cont(f) is dense in X; (ii) if X is a Baire space, then every
semicontinuous f has cont (f) dense in X, see [An], 5.5.

2.8. Extending continuous functions. Let D = X be dense, f: D — R
continuous. We examine the possibilities of extending f to a semicontinuous
function f: X — R. Without loss of generality — the usc case being entirely
analogous — we restrict ourselves to Isc extensions.
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SEPARATION LEMMA. Assume g, h: X — R are lsc, g normal and g(x,)
< h(xy) for some xoeX. Then there exist @+#V S X open and a, ficR
satisfying g(xo) < a < f < h(xo) such that g(y) <a and f < h(y) for all yeV.

Proof. Assume g(xo), h(xo) are finite (the cases where h(xo) = + o
and/or g(xg) = — oo are quite obvious). Put & = 37" (h(xo) —g(x,)). Since A is
Isc, we find Ue U(x,) such that h(y) > h(xo)—e for all ye U. g being normal
we find, applying (*), V open, @ # V < U such that g(y) <g(xo)+e¢ for all
ye V. V together with a = g(xg)+e&, B = h(xo)—e will do the job. =

Now let f: D— R be continuous, D dense. Consider g = (f*),. g is
normal Isc, and for deD we have g(d) = f(d). Suppose g’ has the same
properties as g. If g(xo) # g'(xo) for some xp€ X, then g(y) # g'(y) for all
yeV, V some nonempty open set by the preceding lemma. But this is
impossible since g and g’ agree on D which is dense. If h: X — R is Isc and
extends f, then the same argument rules out that g(xo) <h(x,) for some
Xo€ X. Summing up, we have:

EXTENSION LEMMA. Let f2 D — R be continuous, D < X dense. Then there
exists ‘a unique normal Isc function g: X — R extending f. g equals (f*), and
is the maximal — in the pointwise order — lIsc function extending f. Dually, h
= (fo)* is the unique normal usc function extending f, and it is the minimal usc
extension of fto X.

3. Lattices of normal semicontinuous functions

We denote by NLSC(X) and NUSC (X), respectively, the collections of
all normal Isc, respectively usc, functions f: X — R defined on a (completely
regular) space X. If clear from the context, (X) will be dropped. Equipped
with the pointwise order, these sets become lattices which we will denote by
the same symbols.

ProrosiTion 3.1 (Dilworth). NLSC (X) and NUSC(X) are complete latti-
ces. Lattice operations are given as follows:
For A = NLSC,
SUPNrsC A= ((Sllp A)*)* and ianLSCA = (lan)‘,
for A =NUSC,
Supyusc A = (SupAy*  and  infyysc A = ((inf 4),)*.
Proof. As in [DI], 42. =

By 2.3, *: NLSC — NUSC and ,: NUSC — NLSC are order-preserving
maps, and since their arguments are restricted here to normal semicon-
tinuous functions, *, = Iy;sc, * = Iyusc- Let A € NLSC, x = supypgc A.
Hence x* = a} for all a;ed. If ze NUSC, z>a* for all a;eA, then
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Zy 2 (af), —al, whence z, > x and thus (z,)* > x*. But (z)* =z, so x*
= supyysc af: a;eA}. This essentially proves

ProrosITION 3.2. NLSC and NUSC are isomorphic lattices, and
*: NLSC— NUSC, ,: NUSC — NLSC are inverse complete lattice isomor-
phisms.

Instead of investigating directly the algebraic properties of the lattices
NLSC and NUSC, we will establish a representation theorem which essen-
tially goes back to Dilworth ([D1], Section 6). Our setting is somewhat more
general (an arbitrary completely regular space instead of a compact Haus-
dorff space, numeric functions instead of real-valued bounded functions). The
proof is facilitated by the use of a particular construction of the projective
cover of a completely regular space, due to Papert-Strauss [PS]. We
summarize a few pertinent facts about this latter construction.

Let X be a (completely regular) space. An open filter on X is a filter in
the lattice of all open subsets of X. An open ultrafilter is a maximal proper
open filter. An open ultrafilter F on X converges to a point xe X iff F
contains every open neighbourhood of x; obviously, F converges to at most
one point. The projective cover PX of X is the space. with carrier set
consisting of all convergent open ultrafilters on X and with a (completely
regular) topology defined by taking all sets of the form

W(U)={FePX; UeF} for U< X open

as an open base. The natural projection p: PX — X is given by assigning to
every Fe PX its unique limit point. p is onto, continuous, closed, compact
(ie., p~'(x) is compact for every xe X) and proper (that is, p maps any closed
proper subset of PX onto a closed proper subset of X). Finally, PX is an
extremally disconnected space, that is, the closure of any open subset of PX is
open.

Tueorem 3.3 (essentially Dilworth). For any completely regular space X,
the lartice NLSC (X) is isomorphic with the lattice C(PX).

Proof. For any map f: X — R define f: PX— R by f = fop.

G) If fis Isc, then f* is continuous.

Indeed, for any aeR, f~1(a, +o]=p~ T +oo]) is open, smcep
is continuous and f is lIsc. Hencefls Isc. Now f*= f = f** * = (f*),* Ju*
that is, f* is normal usc. Hence f* ~!'[—oo, «) is open for any «eR, and
f* ~'(a, + 0] is a union of closures of open sets by criterion (xx) in 2.5. But
PX is extremally disconnected, so the latter set is actually open and f*is
continuous. )

(i) If f,g9: X — R are normal Isc functions, then f <g iff f* <g*.
Hence, f g implies f* # §*.
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Indeed, f < g obviously implies f<g and thus f* <g* For the
converse. assume [ £g. that is, [(xq) > g(xq) for some x,€ X. By the
Separation Lemma (2.8) we find @+ V = X open and «, fe R such that
gly) <a < pfB < f(y) whenever y =x, or ye V. X is a regular space, so we
find @ # V, open satisfying V; =cl¥; = V. Consider any Fe PX with V;eF.
Hence p(F)eclV,, and so §(F) <u, f(F)> B. Select some F,ePX with
VieF,. W, = !FePX; VyeF} is then an open neighbourhood of F;. We
obtain

g*(Fy) = inf sup g(F)= inf sup g(F) <a

WellFy) FeW WelF|) FeWnW,
(since sup g(F)<sup g(F) and W W, e U(F,)) and
FeW nW FeW
f*(F)= inf supf(F)= inf sup f(F)>§.
WeUF ) FeW WellF{) FeWnW

Hence §*(F,) < f*(F,), that is f* <« g*.

(iii) Let he C(PX). For xe X, define f(x)=inf |h(F); p(F)=x!. Then
feNLSC(X) and f*=h.

Indeed, given x,eX and &>0, we will find Ue U(xy) such that
1) > f(xg)—¢ for all ye U, thus proving that f'is lsc. Since p is compact, h
attains its minimum on p~!(x,). Pick Foe PX with h(Fy) = f(x,). Since h is
continuous,

W, = [Fe PX; h(F) > f(xo)—¢]

is an open neighbourhood of F,. Since p is closed, U := X \p[PX\Wy] € X
is open and xqe U. Consider any ye U: For an arbitrary Fep~!(y) we have
Fe W,, thus h(F) > f(xo,)—¢; h attains its minimum on p~!(y), so we obtain
that f(y) > f(xo)—e.

It remains to prove the normality of f We will find, for any given
Ue U(xy) open and ¢ > 0, some @ # V < U open such that f(y) < f(xo)+¢
forall ye V. Let W =p~![U] and put W, = {FeW, h(F) < f(xo)+¢). W, is
open since /1 is continuous, and nonempty since Foe W;. So PX\W, is a
closed proper subset of PX, and because p is closed and proper, U,
;= X\p[PX\W;] =X is open and nonempty. Since W; = W,

U, € X\p[PX\W]=X\p[PX\p'[U]]=U.

Consider any ye U,: For an arbitrary Fe p:‘(y) we have h(F) < f(x¢)+6,
whence [ (y) < f(xo)+e¢. In order to obtain f* = h, observe first that for any
given Foe PX we have

J(Fo) = (pFo) = inf {h(F); pF = pFo} < h(Fo).

Hence f < h and consequently f* < h* = h. Suppose there is Foe PX such
that f*(Fo) <h(Fy). f* and h both being continuous, there exists
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@ # W, = PX open such that f*(F)<a <f <h(F) for all Fe W, with
suitable a, fe R. Using closedness and properness of p, we see that W,
=p? [X\p[PX\Wo]] is a nonempty open subset of W such that Fe W,,
F'e PX and p(F) = p(F’) imply that F'e W,. Select F,e W;:

f*(F)= inf supf(F)= inf sup f(F)

WelUFy) FeW WeclUF ) FeEWnW;

(as in part (ii) above), but for any Fe W,,
S(F) = inf {R(F"); p(F") = p(F)} = B,

since p(F) = p(F) implies F'e W,. It follows that f*(F,) > f, contradicting
f*(F) <a. :

Summing up, the assignment fi—f* maps NLSC(X) bijectively onto
C(PX) and preserves order in both directions, so these lattices are
isomorphic. m

Apart from its intrinsic interest, Theorem 3.3 yields immediately.

CoroLLARY 34. NLSC(X) and NUSC(X) are distributive lattices satis-
fying both JID and MID,

Proof: This is a direct consequence of Proposition 1.2.

We shall use Corollary 3.4 in order to obtain information on certain
sublattices of NLSC, respectively NUSC. We concentrate on normal Isc
functions, understanding that analogous results hold in the usc case.

Let fe NLSC. Cont(f) is then dense in X (2.7), but this does not
exclude the possibility that disc(f) is also dense — see the example given in
2.6. According to our general terminology, we call any map f: X — R almost
continuous (abbreviated a.c.) iff cont(f) contains a dense open set. This is
equivalent to disc(f) being nowhere dense, the case which we are interested
in.

LemMMma 3.5. Let f, g be ac. Then f ~ng, fvg, f* and f, are also a.c.

Proof. cont(f v g) 2cont(f) ncont(g), and since the intersection of
two dense open sets is dense open, f v g must be a.c.; similarly for f A g.
Moreover, cont(f) < cont(f*)ncont(f,) which proves the rest. m

Define
AC(X) = {fe NLSC(X); f is almost continuous}.

CoroLLARY. 3.6. AC(X) is a sublattice of NLSC(X) containing C(X).
The natural embedding AC(X) < NLSC(X) is sup-regular; hence, AC(X)
satisfies JID.

Proof. Only the last assertions need checking. Consider any subset
B = AC(X) such that s = sup,c B exists. Suppose there is fe NLSC(X) such
that B < [ < 5. The Separation Lemma (2.8) provides @ # V < X open and
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a, fe R with f(y) <a <p <s(y) for all yeV. Use Lemma 1.1 to produce
foeC(X)such that fy>a-1, f = +o0 on X\Vand f(p) =« for at least one
point pe V. Then (s A fo),€ AC, (s A fo) = f = B but (s A fp), <s, contra-
dicting s = sup,c B. Hence s = supyrsc B. Now any instance violating JID in
AC would via embedding in NLSC violate JID in NLSC which is impossible
by Corollary 34. u

4. 0(A)C(X)

Our description of Q(A)C(X) will be based on [Ba-Sch], [Sch1] and
[Sch?2], where for an arbitrary distributive lattice L its maximal A -rational
extension Q ( A) L is constructed in terms of certain ideals of L and shown to
be a distributive lattice. We review, therefore, a few basic notions on lattice
ideals relevant in our context.

Let L be any lattice, 4 < L any subset of L. We write

A'={xeL; x< a for all ac 4}

and dually
A" = {xeL; x> a for all ac A).

An ideal J c L is called normal iff J =J*. J is called complete provided
sup, GeJ whenever G =J is such that sup; G exists. It is immediate from
these definitions that every normal ideal is complete. We aim to characterize
complete ideals in the lattices C(X) and C(X) by means of

_ Lemma 4.1. Let fe NLSC(X) and put Jr=1{heC(X); h< f). Then
J; < C(X) is a complete ideal and supJ s (pointwise!) equals f.
Proof. Let MheJ;, (iel) and suppose h=supgyh exists. If
1

h(xo) > f(xo) for some x,e X, then the Separation Lemma (2.8) provides us
with @# V < X open and «, feR such that f(y) <a < B < h(y) for all
yeV. Pick pe V. Using Lemma 1.1, we construct ge C(X) such that g > a1,
g(p)=a and g=+ow on X\V. Consider hag: hagzh (all iel)
but (h A g)(p) =a <h(p), hence h cannot be the sup of the h; taken in
C(X). This contradiction proves h < f, that is, heJ, and J, is thus complete.
The second part of the assertion is clear by 24. a

The converse to Lemma 4.1 is also true:
LemMa 4.2. Suppose J = C(X) is a complete ideal. Then f =supJ
(pointwise!) is normal Isc and J =J; = {heC(X); h< f}.

Proof. fis Isc (24). Put g = (f*),.. Then f <g and g is normal Isc. In
view of the preceding lemma, it will suffice to show that J = J,. Consider

helJ,. Put J,={jeJ;j<h}. Suppose there exists hoeC(X) such that
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hy < h but hy 2 J,. Then for some @ # V < X open and a, BeR, ho(y) <«
< B <h(y) for all yeV. Since f =sup J, we conclude f(y) < ho(y) for all
ye V. Hence f(y) <a <f <g(y)=(f*),() for ye V which is impossible by
the definitions of * and .. Hence, h, as considered will not exist and h is the
sup — in C(X) — of Jo =J. J being complete, this implies heJ. But heJ,
was arbitrary, thus J, =J and consequently J =J, as claimed. w

ProrositioN 4.3. For a completely regular space X, the lattice of all

complete ideals in C(X) — with set inclusion as order — is isomorphic with
NLSC(X) and NUSC(X).

Proof. Lemmata 4.1, 42 and Proposition 3.2. Note that the empty
ideal is not complete in C(X). u

Remark. With the obvious adaptations, Lemmata 4.1 and 4.2 in [DI]
show that normal lIsc functions X — R are in bijective correspondence with
normal ideals in C(X) — whence the nomenclature. We infer that in C(X)
normal and complete ideals coincide. Further, it follows that NLSC(X) and
NUSC (X) provide isomorphic copies of the MacNeille completion C(X)” of
C(X). Indeed, a “symmetric” realization of C(X)" may be obtained as
follows: Call a pair (f,g) of semicontinuous functions conjugate iff
feNLSC(X), ge NUSC(X) and f* =g, g, = f Then C(X) is isomorphic to
the set of all conjugate pairs endowed with the following operations A and
v

(f1. 90 ~(f2, 1) = ((fl A f2)us ((fl N fz)*)*)
(f1+91) v (f2r 92) = (91 v 92)*)s> (81 v 92)%).

Turning to C(X), we note that the collections of normal, respectively
complete, ideals do not coincide, since C(X) lacks universal bounds. Indeed,
consider any continuous function f: X — R such that f(x) > —oo for all
xeX and f(xo) = +o0 for at least one xqe X. The principal ideal (f] in
C(X) is clearly complete, and since the natural embedding C(X) < C(X) is
regular, J =(f]nC(X) is also complete, and nonempty (containing, e.g.,
f Aa'1for any ae R). But JY — taken in C(X) — is empty, whence the last
normal ideal — taken in C(X) — which contains J equals C(X). But if
J(x) # 4+ for some x in X, J # C(X) and J is not normal then. The next
lemma shows every complete ideal in C(X) is, at least, the trace of a
complete ideal in C(X).

LemMMA 44. Let J < C(X) be a complete ideal, and J' the complete ideal
geherated by J in C(X). Then J =J nC(X).

Proof. Since C(X) satisfies JID (1.2), J' consists of all suprema existing
in C(X) of functions in C(X) which are majorized by some member of J.

2 - Disserlationes Mathemalicae 270
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have

/= SUPCex) (f ~ng)= SQPC(X)(f A gp)

(recall the embedding C(X) < C(X) is regular), whence feJ by the complete-
ness of J. Thus J'nC(X) <J. The converse inclusion is immediate by
regularity: J'nC(X) is a complete ideal in C(X) whenever J' is such in
C(X). Note that the empty ideal is complete in C(X). w

Lemma 4.5. An ideai J = C(X) is complete iff it is of the form J =J,
='geC(X); g < [} for some fe NLSC(X). Moreover, @ #J; =J., im-
plies f; = f5.

Proof. In view of the preceding lemmata, only the last assertion needs
verification. Consider ge C(X) such that g < fie NLSC for i=1,2. If
fi # 5, then w.Lo.g. fi(xo) < fa(x,) for some x,e X. The Separation Lemma
yields @ # V< X open and a, fe R with f)(y) <a < f < f,(y) for all yeV.
Hence

ao =supg(y) S a.
yeV
Select pe Vsuch that 2o—g(p) < (f—2)/2 and use complete regularity of X to
obtain he C(X) satisfying 0 < h< h(f—ag)' I, h=0 on X\V and h(p) =
f—xq. Then g+heC(X), g+h < f> but g+h £ f; whence J, #J;,. =

We agree to call any semicontinuous function f: X — R lower C-
hounded (resp. upper C-bounded) iff there exists ge C(X) such that g < f
(resp. g = f), C-bounded has the natural meaning. It is clear from these
definitions that if f, g are lower C-bounded, then also f v ¢, f A g, f* and
f+ are such (and analogously for upper C-boundedness). In particular, lattice
operations in either NLSC or NUSC take C-bounded functions of either
type again to such functions.

The following proposition sums up our preceding discussion of complete
ideals in C(X):

ProrosiTION 4.6. For a completely regular space X, the lattice of all
nonempty complete ideals in C(X) — with set inclusion as order — s

isomorphic to the sublattice of NLSC(X) consisting of all lower C-bounded
functions in NLSC(X).

Remark. The standard application of the Scparation Lemma (2.8) will
easily show at this point that an ideal J = C(X) is normal iff J = @, J
= C(X) or J is a complete ideal satisfying J" # @. This gives a description
of the MacNeille completion C(X)" of C(X) analogous to that established for
C(X)" in the remark following Proposition 4.3: C(X)" is isomorphic to the
sct of all conjugate pairs (f, g) of C-bounded normal semicontinuous lunc-
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tions, together with pairs (—oo-1, —o0-1) and (+ o0 -1, +c0-1), endowed
with the same operations A, v (if one does not insist on “symmetric” lattice
operations — with respect to their definition in terms of pointwise inf and
sup, * and , — a simpler realization of C(X)" is provided by the set of all
C-bounded functions in NLSC together with + o001, —o0-I in their natural
order).

To complete the groundwork for our description of Q ( A) C(X), we need
one last definition. If L is any lattice and J = L any ideal, the principal
extension PJ of J is defined by

PJ ={xeL; (x]nJ is a principal ideal!.

If L is distributive, PJ clearly is an ideal in L containing J. For L = C(X),
principal extensions of complete ideals are easy to describe:

Lemma 4.7. Let J = C(X) be a nonempty complete ideal, and fe C(X).
Then fePJ iff [ ansupJeC(X).

Proof. Put g=supJ. By 45 geNLSC and J=J,={heC(X);
h<g}. Now for any feC(X), Jn(f]=J;,,. This is a principal ideal in
C(X) iff f A geC(X); indeed, since g and thus f A g are lower C-bounded,
f A~ g is the pointwise sup of all functions in C(X) contained in f A g
(2.4). m

By [Ba-Sch], pp. 341 ff, Q(A)L is a distributive lattice whenever L is
such. The structure of Q( A) L for L a distributive lattice has been elaborated
on in [Schl] and [Sch2]. We cite [Sch1]: Theorem 6.5 together with
Lemma 6.2 there show that in the presence of JID Q(A)L actually is
isomorphic to the set of all complete ideals J = L having the additional
property that PJ is join-dense in L (under set inclusion as order). (For a
slightly different approach, see [Sch 2], pp. 683 ff.). Since C(X) has JID, this
covers our situation, and by 4.6 we are left with the task of formulating the
property “PJ is join-dense in C(X)” in terms of semicontinuous functions.
Recall that in any lattice L a subset D = L is join-dense (in L) provided for
each xelL,

x =sup, |deD; d < x}.

LemMma 4.8. An ideal D = C(X) is join-dense in C(X) iff for any aeR the
set D, ={xeX; d(x) >a for some deD} is dense in X.

Proofl Assume the condition stated is satisfied, and consider any
feC(X). Choose xqe X and o > f(xp). Since feC(X), there is an open
neighbourhood V of x, such that f(y) <a« for all ye V. For each ze D,n ¥,
pick d,eD satisfying d,(z) > . It follows that f Ad,eD and (f A d.)(z)
= f(z) for all ze D, V. Now if he C(X) and h=(f]n D, then h(z) = f(2)
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for all ze D, nV. But D,V is dense in ¥, whence h(xo) 2 f(x,). Since x,
was arbitrary, we conclude that & > f and thus

f =super, ((f1n D).

Conversely, assume D, is not dense for some o R. We find @ #V = X
open such that d(y) €< « for all de D and ye V. By complete regularity there is

he C(X) such that 02 h> ~1, h=0 on X\Vand h(yy) = —1 for some
point yoe V. Denote g = (w+1)-1. Then (g+h] nD =(g] N D, so g is not the
sup — in C(X) — of its predecessors in D. m

LemMMA 4.9. Let J = C(X) be u complete ideal. Then PJ is join-dense in
C(X) iff supJ is lower C-bounded and almost continuous.

Proof. Since P@ = ¢ and @ is not join-dense in C(X), J must be
nonempty. Equivalently (4.6), ¢ = sup J is normal lsc and lower C-bounded
(by goe C(X), say). Assume first that g is almost continuous. So there exists
¥V = X dense open with V =cont(g). Select any point pe ¥V and any aeR.
We will construct fePJ with f(p) > «; by 4.8 then, PJ will be join-dense in
C(X). If go(p) > a, put f =g, and we are done since goeJ = PJ. If not, we
may assume go(p) <a w.lo.g. since « was arbitrary, especially, arbitrarily
large. Put B =a—g,(p) and choose he C(X) with 0<h<28-1, h=0 on
X\Vand hip)=2p. Put f =go+h Thus feC(X) and f(p) > a. Consider
f rg: On X\V, [ Ag agrees with g, which is continuous, and on V, f A g
is continuous since ¥V =cont(g). Thus f A geC(X) and fePJ by 4.7.

For the converse assume that g = sup J is not almost continuous. We
find @# U <X open such that disc(g) nU is dense in U. Consider an
arbitrary fe C(X). If for some peU we have f(p) > g(p), the Separation
Lemma (2.8) produces @ V < U open and «, feR with g(y) <a <f
< f(y) for all yeV. Hence, g A f and g agree on Vand g A f is thus not
continuous. But now Lemma 4.7 implies that f(p) <g(p) for all peU
whenever f e PJ. Pick sedisc(g) n U. It follows that g(s) =: B < + 0. So for
any ¢ ~ 0, there exists @ # W, 2 U open such that g(p) < fi+¢ for all pe W,
since gy is normal lsc. It follows that for any fe PJ we must have [ <
(B+¢)-1 on W,; but then D, "W, = @ whenever « > +¢. By 4.8 then PJ
is seen not to be join-dense in C(X) which completes the proof. =

We are now ready to state the main result of this section:

Theorem 4.10. Q( A) C(X) is isomorphic with the sublattice of AC(X)
consisting of all lower C-bounded functions in AC(X).

Proofl. Combine 3.6, 4.6 and 49. »
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5. Q(A)C(X) versus Q(v)C(X)

Since f— —f defines a lattice antiisomorphism of C(X) onto itself,
C(X) is a selfdual lattice (and so is C(X)). Hence, in order to obtain
Q(v)C(X), we may dualize easily all notions and constructions used so far;
naturally, Isc functions will be replaced by usc functions, lower C-bounded
ones by upper C-bounded ones and so on. As expected, this results in a
description of Q(v)C(X) as the lattice of all normal usc, upper C-bounded
almost continuous functions, in complete analogy with Theorem 4.10. For a
better comparison with Q(A)C(X), it is however desirable to have a
description of Q(v)C(X) based on Isc functions. Now observe that ,
preserves normality, almost continuity and upper C-boundedness. We obtain

Trheorem 5.1. Q(v)C(X) is the dual of Q(A)C(X); explicitly,
Q(v)C(X) is the sublattice of AC(X) consisting of all upper C-bounded
functions in AC(X).

The obvious question at this point is: What happens if we start out
with C(X) and apply alternatively the Q(A) — and Q(v) — operators? As
we shall see, this process will become stationary after two steps; moreover, it
doesn’t matter whether we start with Q( A) or with Q(v).

We consider Q(v)C(X) in its Isc version. To ease notation, put

L={feAC(X); f upper C-bounded].

We aim to describe Q( A)L. Now it is immediate from 3.6 that L satisfies
JID, so — see the discussion after Lemma 4.7 — our task reduces again to a
characterization of those complete ideals J in L which have PJ join-dense in
L. Fortunately, the desired result as well as the proofs are almost identical
with the material developed in the previous section.

We claim that an ideal J = L is complete iff J = J, = {heL, h<f) for
some normal Isc function f: X — R. Indeed, the proofs of Lemmata 4.1 and
4.2 work with only trivial changes (in 4.2, comparing h, and h now requires
the Separation Lemma. Also, since the members of L are upper C-bounded,
the proof of Lemma 4.8 works literally and gives the same characterization
of join-dense (in L) ideals. As for (the analogue of) Lemma 4.9, the first half
of the proof carries over to our new setting almost unchanged (for g, just
take any member of J), while in the second half the reasoning is that g A f
cannot be a.c.; it follows that a complete ideal J < L has PJ join-dense in L
iff sup J is a.c. Summing up, we obtain

ProrosiTioN 5.2. Q(A)Q(v)C(X) = AC(X) (= the lattice of all almost
continuous normal lIsc functions X — R in the pointwise order).

CoROLLARY 5.3. Q(Vv)Q(A)C(X) = Q(A)Q)(v)C(X). Hence, AC(X) is
A-rationally complete as well as v -rationally complete.
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Proof. . provides an isomorphism from the left to the right. m

Remark. Among the lattices L which (i) contain C(X) as a sublattice
and (ii) are both A-rationally and v -rationally complete, AC(X) is, in an
obvious sense, the most “natural” one — this will be substantiated in
Corollary 5.4 below. However, if we look beyond function lattices, there are
much simpler candidates, e.g., take the set L = C(X)u iz, zy, uy, up} or-
dered pointwise inside C(X) and otherwise by z, < z; < f <u; <u, for any
feC(X). Obviously, L is a distributive selfdual lattice, satisfying both JID
and MID. Now observe that exactly the principal ideals J < L have PJ join-
dense in L: Indeed, PJ is join-dense iff uye PJ iff (ug] nJ =J is principal.
Hence, Q(A)L =L, and analogously Q(v)L = L.

CoRrOLLARY 54. Q(A)C(X) = Q(v)C(X) = AC(X).

Proof. Since AC(X) is A- and v -rationally complete, it will suffice to
show that C(X) is A- and v -rationally dense in AC(X). In view of the
obvious duality, we will only consider a-density. Select functions h, h;,
h,e AC with h, # h,.

By the Separation Lemma, we find ¥ < X nonvoid open and a, feR
such that without loss of generality, h, (y) <a < f < h,(y) for all ye V. Now
cont (h) contains a dense open set, so we find @ # U open, U = V ncont(h).
Pick pe U arbitrarily. Use Lemma 1.1 to produce ge C(X) with g = 1, g =
+oo on X\U,g(p)=1, Put f = —g+1+p-1. Then f<B'1, f= —0 on
X\U and f(p)=p. Hence f AheC(X)(f Ah= —o0 on X\U and on U,
f A h is continuous since U < cont(h)); moreover, f A h; # f A h, since

(f A hy)(p) = B while (f A hy)(p) =hi(p) <a. =

6. Q(-) versus Q(A) and Q(v)

The other natural semigroup operations — besides A and v — on
C(X) are + and - In our context, + is not of much interest: Quite
obviously, Q(+)C(X) = C(X), so any + -rational extension of C(X) coincides
with C(X). So we turn to the semigroup (C(X), ") in order to determine
() C(X).

According to the general procedure outlined in Section 1, Q()C(X)
may be constructed as the direct limit of sets Homey, (D, C(X)), where D
ranges over dense semigroup ideals of C(X). Explicitly: DC(X) < D, for any
J1# /> in C(X) there is de D such that df; # df;, and 1€ Homey, (D, C(X))
iff : D — C(X) is such that 7(df) = t(d) f for all de D, feC(X). Q(-)C(X)
is then obtained from () {Homgy, (D, C(X)); D dense} by identifying
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1,0 Dy — C(X) and t;: D, —» C(X) iff 7, =1, on D; nD,. The semigroup
operation on Q(+)C(X) is defined by composition of maps.

The procedure described on pp. 11 ff. of [FGL] in order to obtain the
maximal ring of quotients Q(X) of the ring C(X) carries over to our setting
and shows in fact, that Q(-)C(X) is isomorphic to the multiplicative
semigroup of Q(X). We summarize the main points:

If D = C(X) is a semigroup ideal with df; # df;, for some de D whenever
fi # f2 in C(X), then the set

V(D) =1)icoz(d); deD} = X
is open and dense.

Suppose we are given 1: D — C(X) satisfying t(df) = t(d) [ for all de D,
feC(X). Consider any point pe V(D): There exists de D with d(p) # 0. Put
h(p) := (xd)(p)/d(p). For any d, e D, we have t(dd,) = 7(d)d, =1(d,)d; hence
if also d,(p) # O, then (zd)(p)/d(p) = (zd,)(p)/d; (p), so the value of h(p) does
not depend on the particular deD (subject to d(p) # 0) chosen for its
computation. In other words, h: V(D)— R is a well-defined real-valued
function. We claim that h is continuous: Indeed, for any pe V(D) and de D
with d(p) # 0, h(x) = (td)(x)/d(x) on the open neighbourhood coz(d) of p; so
h agrees with a continuous function on a neighbourhood of each point in
V(D).

Consider a fixed de D and select, for each pe V(D), some d,eD with
d,(p) # 0. Then

(zd) (p) = (1d)(p) d, (p)/d,, (p) = (x (dd,))(P)/d,, (P)
= d(p)(zd,)(p)/d,(p) = d(p) h(p).

It follows that 1d = m, the (unique) continuous extension of h-d from V(D)
to all of X, Put D’ = lall finite sums of functions in D}. Evidently, D’ is a
semigroup ideal and D' 2 D. If ge D', g =d, +...+d,, define t'g:=h-d, +...
+h-d.. v is clearly well defined, t'(gf) =1'(g)f for all feC(X) and 7'
extends 7. Hence, in forming Q () C(X), = and ¢’ will be identified. But 7’ is
also additive (obviously, t'(g; +¢2) =t'g, +1'g; for all g;, g,eD’); and D’ is
a ring ideal in the ring C(X). In view of the construction presented in
[FGL], § 2, we have:

Lemma 6.1, The carrier sets of Q(+)C(X) and of Q(X) coincide hoth
with lim C(V), V ranging over all dense open sets of X. Operations + and -

are defined pointwise, hence, Q (') C(X) coincides with the multiplicative semi-
group of Q(X).
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The obvious question is now the relate this description of Q(-)C(X)
with the results on Q( A) C(X) obtained in Sections 4 and 5. The key is given
by the Extension Lemma in 2.8 which yields a description of Q(:)C(X) in
terms of semicontinuous functions.

Consider a dense open set V¥ = X and feC(V). The Extension Lemma
tells us that there is a unique normal Isc function f: X — R such that f|V
= f; [ is given as (f*),. If /i, f, are in C(V) and f(x) # f(x) for some
xeV, then clearly f; # f,. On the other hand, if f; e C(V), fe C(V,) (where
¥, = X dense open for i =1, 2) and f,(x) = f,(x) for xe V{ nV,, then f;
=J7; since extensions to normal lsc functions are unique. Consequently, the
assignement f —(f*), sets up an embedding of lirp C(V) into NLSC(X).

Conversely, if fe NLSC(X) happens to be continuous and finite on some

dense open set V = X, then clearly f=f_|l_/. According to our use of
“almost”, we call such functions almost continuous-finite and put

ACF (X) = {fe NLSC(X); f is almost continuous-finite}.
Operations @ and O are readily introduced to ACF(X) by

1®fa:=Nith, fiOfi:=/f1"f; for any f, € ACF

where f,+f,, f, ' f> are defined pointwise on the dense open set on which fj,
f, are jointly continuous and finite. We obtain

ProrosiTioN 6.2. Q(*)C(X) =(ACF(X), ©) and Q(X)=(ACF(X),
@a O)

ACF under its pointwise order is a lattice, easily seen to be a sublattice
of NLSC(X). Q(-)C(X) and Q(X) are lattices as direct limits of the lattices
C(V), V dense open in X.

CoroLLARY 6.3. The lattices Q(-)C(X), Q(X) and ACF(X) are isomor-
phic sublattices of NLSC (X).

All the rational completions obtained so far — viz. Q( A)C(X),
Q(v)C(X), Q(A)C(X), Q(v)C(X) and Q(-)C(X) — turned up as sublat-
tices of NLSC(X) which is isomorphic with the MacNeille completion of
C(X), see the remark after Proposition 4.3. It seems thus natural to look at
the MacNeille completions of these lattices. We do this in some detail for
0(')C(X) = ACF(X) and just state the results for the others.

Consider a normal ideal @ #J < ACF with J* (taken in ACF) nonempty.
Let g =sup J. f is clearly normal Isc, moreover, there exists f; e ACF with
g < /. Hence, there is a dense open set V; = X and h,e C(V;) — viz. f;| Vi
— such that g < h; on Vj. Naturally, since g > J and J # 0, there is ¥,
dense open and h, e C(V,) such that g > h, on V;. Consequently, h, < ¢ < hy
on the dense open set V; nV,, or in other words, g is almost C-bounded.
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Conversely, let geNLSC be almost C-bounded and put J
= /€ ACF; f < g}. We claim that J < ACF is a normal ideal, J # @ and
JU# @.Let ¥ = X the dense open set on which g is C-bounded, and put J v
= heC(V); h<g|V}. Clearly, J, # @ and J% (taken in C(V)) is nonvoid,
too. Hence, Jy is a normal ideal in C (V) (see the remark after Proposition
4.6). Our assertions about J and J“ now follow by observing that the
members of J and J* are just the normal Isc extensions to all of X of the
members of J, and Jy, respectively (Extension Lemma).

Let @ # J < ACF be normal, J' # @, g = sup J, feNLSC almost C-
bounded, f <g. If f¢J, then f & J*since J is normal; but then also FEY
since clearly g < J“ We conclude feJ; this shows that the assignement
J +>sup J between nontrivial normal ideals in ACF and almost C-bounded
functions in NLSC is bijective; it clearly preserves order in both directions.
Hence:

CoroLLARY 64. The MacNeille completion of Q(-)C(X) is isomorphic
with the lattice of all almost C-bounded functions in NLSC(X) together with
—o0+1 and + o0 -1; moreover,

[Q()C(X)]" =lim C(V)",

V ranging over the dense open sets V < X.

Proof. As for the last assertion, observe that any [eNLSC(X) is
determined by its restriction f|V on any dense open V < X by virtue of the
Extension Lemma (2.8); if f is C-bounded on ¥, then f|V may be identified
with a member of C(V)" since clearly f|Ve NLSC(V). u

In a similar way, we may derive that
[Q(A)C(X)]" = {f eNLSC(X); f lower C-bounded} L {—o0 -1}

and

[Q(v)C(X)]" = {feNLSC(X); f upper C-bounded} U {+ -1},

the right-hand sides as lattices under the pointwise order.

The sublattices of NLSC(X) which turned up in this paper may be
ordered by inclusion, the resulting finite poset is a lattice whose diagram we
give below (note it is not sublattice of the lattice of all sublattices of
NLSC(X)!). We recall here, for convenience, that any fe NLSC(X) belongs
to

— Q(A)C(X), iff it is almost continuous and lower C-bounded;

— Q(v)C(X), iff it is almost cantinuous and upper C-bounded;
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Cixio

Rational extensions of C(X) and semicontinuous functions
— AC(X), iff it is almost continuous;

— Q()C(X), iff it is almost continuous-finite;
- C(X)*, iff it is C-bounded or equal to +o0-1.

NLSCx/)=C(x) = ACix?

AC(X)=@(v)A(AICIX)
=QIAOWICIX)
20(CIX)
20mCLx)

@icixm
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