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We discuss the authors’ recent results [7] concerning the description of orbit
spaces of representations of compact Lie groups.

0. Introduction

We begin by discussing two problems:

0.1. Let p: R"— R™ be a polynomial mapping. Then the image Im p of
p is a semialgebraic subset of R™. How can one find “simply” or “explicitly”
the inequalities defining Im p?

0.2. Let K be a compact Lie group and W a real representation space
for K. Can one find a nice description of the orbit space W/K?

In Section 1 we will see that Problem 0.2 is a special case of Problem
0.1, and we describe the solution to 0.2. In Section 2 we present the details
for the case of a finite group. In Section 3 we discuss some connections with
Hilbert’s 17th problem.

The contents of this paper approximate the talk given by the second
named author at the Semester on Singulanties held at the Stefan Banach
Center in Warsaw, Spring 1985. He thanks the organizing committee for
their invitation and hospitality.
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1. Orbit spaces

1.0. Let W and K be as in 0.2. Then the graded algebra R[W]X of K-
invariant polynomial functions is finitely generated ([9], p. 274). Let
Pi» ..., Pm D€ homogeneous generators of R[W]X and let p =(p,, ..., p,) be
the associated mapping from W to R™. Then p is proper and constant on the
orbits of K, hence it induces a homeomorphism of W/K (quotient topology}
with X =Imp < R™ ([8)).

Let I denote the ideal of relations of the p, in R[y,, ..., y,], and let Z
denote the corresponding algebraic subset of R™. Then p induces an isomor-
phism p*: R[Z] - R[W]¥, and X = Z. Note that Z is determined by R[W]¥
and our choice of generators, while to describe X we need some extra
information.

1.1. Exampie. Let K = {41} act by multiplication on W = R% Then
R[W1* is generated by polynomials p, = x>+ 2, p, = x>—y? and p; = 2xy.
Their ideal of relations is generated by the single polynomial y?—y%—y?i.
Thus Z = {(y,, y2, y3)eR*: y? =y} +y3}. Since p, is non-negative, we must
have that X < (v, y;, y3)€Z: y; = 0}. We will see that, in fact, there is
equality.

1.2. ExampLE. Let W = R? and K the group of rotations by angles 0,
2n/3, and 4n/3. Then R[W1]X is generated by p, = x*+y? p, = x> —3xy?
and p; = y*> —3x?y. Their ideal of relations is generated by y3 —y3—y3,s0 Z
= {(y1» ¥2- ¥3): ¥ = y3+yi}, and one can show that X =Imp = Z in this
case.

13. ExampLE. Let W be the space of n xg real matrices, and let K
= 0(n) = O(n, R) act by left multiplication. Then W is just g copies of the
standard representation of K on R". By classical invariant theory, the K-
invariants are generated by the inner products of the various copies of R",
i.e, of the columns of our n xq matrices. Thus we can define

p: W-,Squ, AHA'A,
where Sym, denotes the space of real symmetric g x g matrices. It is an easy
exercise to show that X is the set of all matrices Be Sym, such that:
(1.3.1) rank B < n.
(1.3.2) B is positive semidefinite.

Then Z is defined by (1.3.1), i.e,, by the condition that the determinants of all

(n+1) x(n+1) minors of B are zero. The inequalities defining X come from
the following:
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14. Remark. Let C be a real symmetric matrix. Then C is positive
semidefinite (we write C = 0) if and only if C, > 0 for all a, where {C,} is the
set of determinants of principal (i.e. symmetric) minors of C.

We now show how to find the inequalities describing X in general. The
description was, essentially, conjectured by the physicists Abud and Sartori
([1], [2]): Let (,) denote a K-invariant inner product on W as well as the
dual inner product on W*. The differentials dp,: W — W* are K-equivariant,
and the functions w —(dp; (w), dp;(w)) give an m x m symmetric matrix valued
function Grad (w) with entries in R[W]¥X. There is a unique matrix valued
function Grad on Z such that Grad (w) = Grad(p(w)) for all we W.

1.5. Remark. One may choose orthonormal co-ordinates x,, ..., x, on
W relative to (. ). Then Grad~(w) = J(w)J (w)' where J(w) is the Jacobian
matrix of p at w. This shows that Grad (w) = 0, or, in other words, Grad (x)
=2 0 for all xe X.

1.6. THeoreM. X = {zeZ: Grad(z) > 0}.

In Example 1.1, the theorem gives inequalities y, > 0; y7 —y2 > 0 and y?
—y2 > 0. But the last two inequalities are automatically satisfied on Z (since
yE=yi+yd), so X =1I{yeZ: y, 20}. In 1.2 one similarly gets that the
inequality y, > O defines X, but this is already forced by the equality y3 = y}
+y3, hence X = Z. (In [7] we show that X = Z if and only if K (assumed
acting effectively on W) is a finite group of odd order.) In 1.3 the theorem
gives a redundant set of inequalities. One gets the condition in (1.3.2) exactly
by applying a variant of Theorem 1.6 (see [7]).

1.7. Let f(x)=x"~b;x" *+ ... +(—1)b, be a real polynomial. When
does f have only real roots? We use Theorem 1.6 to recover the classical
criterion of Sylvester: Let K = S, denote the symmetric group which acts as
usual on W =R". Let ag,, ..., g, denote the elementary symmetric functions
on the co-ordinates x,, ..., x, of R". Then R[W]* = R[s,,....0,]. Let p
=(064, ..., 0,): W— R" Then [ has real roots a,, ..., a, if and only if p(q)
= b, where a =(a,, ..., a,) and b =(b,, ..., b,). In other words, f has only
real roots if and only if beImp.

We apply Theorem 1.6: Let r; = ) xj,i 2 0. Then t,, ..., 7, generate
i=1

J
R[WIX. Let p'=(ty....,1,): W— R" The classical Newton formulae: 1,
=0,, 1, = 01 —20,, 13 = 01— 30, 63+ 30;, etc. give a polynomial isomor-
phism ¢: R" = R" so that the following diagram commutes.

R L

AP
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Thus belmp if and only if ¢(b)elmp’. Now (dt;, dtj) = ijr;,;_,, and by
Theorem 1.6 and our remarks above we see that beIm p if and only if B(b)
> 0, where B = (B;)) and Bj;(o, ..., 0,) = ij7;4;_,. It does not affect positive

1
semidefiniteness if we replace B;; by - B;; and in this way we arrive at the
]

“Bezoutiant” matrix Bez of Sylvester. We have shown:

1.8. CoroLLARY (Sylvester, see [6])). Let f(x)=x"—b, x" '+ ...
... +(=1)"b, be a real polynomial. Then f has only real roots if and only if
Bez(b) 2 0.

For n =2, one can compute that

2 b
Bez(b) = [b1 b%_ %z]

and for n =3 one has

3 b, b?—2b,
BCZ(b) = bl b%'—sz bi_3bl b2+3b3
b>—2b, b3—3b, b,+3by bt—A4b2b,+2b2+4b, b,

2. Finite groups

We give a proof of Theorem 1.6 in the case that K is finite: Let W, k, p and
X < Z < R™ be as before. Recall that we have K-invariant inner products
(,) on W and W*, and Grad (w) = (dp;(w), dp;(w)). We have a point ze Z
with the property that Grad(z) > 0, and we want to show that ze X.

Let V = W®gC. Our K-invariant inner products extend to K-invariant
non-degenerate symmetric bilinear forms on V and V*, denoted as usual by
(,). We identify R[W]X with the elements of C[V1* which are real on W,
and then p,, ..., p, generate C{VJ*. Our mapping p: W — R" extends to
p: V— C" and the image p(V) lies in the set of complex zeroes Z of the
ideal of relations of the p; (see 1.0).

21. LemMma. (1) p(V)=Z.

(2) The fibers of p are (set-theoretically) the orbits of K.

Proof. Let g: C[V]— C[V]* be the Reynold’s operator (averaging
over the group). Let zeZ, let I, be the corresponding maximal ideal of
C[V]¥ and set J, =1, C[V]. Then g(J,)=1,, so J, is a proper ideal of
C[V] and p(x) =z for any zero x of J,. Thus (1} holds, and another

averaging over the group argument shows that C[V]¥ separates distinct
K -orbits, proving (2). O

It follows from Lemma 2.1(1) that:
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22. There is a point veV such that p(v) = z.

Write v = w, +iw, where w;, woe W. Then © = w; —iw,. Assume the
following:

2.3. ProposiTioN. Define AcV* by A(x) =(x, iw,), xe V. Then there
are ay, ..., a,€R such that 1 =3 a,dp;(v).

Proof of Theorem 1.6. Consider the value of (4, 4) where 4 is as above.
On the one hand

(4, ) = a;dpi(v), ), a;dp;(v)) = ) a;a;Grad (p(v));; = 0
since p(r) =z and Grad(z) =2 0. On the other hand
(4, 2) = (iw,, iwy) = —(w,, w) <0
Hence (w,, w;) =0 and v = w,;c W. Hence z = p(w,)e X. |
We now establish Proposition 2.3: Since p is real on W, it follows that

p(?) = p(v) = z. Hence, by Lemma 2.1{2).

24. There is a koe K such that kov = b.
Set

4(v) = (4",
where K, is the isotropy group of K at v, and set
D(v) = {df (v): feC[V]*}.
25. Remarks. (1) If fe C[V]X, then
df (v) = d(f ok)(v) = df (kv)ok

for all ke K, hence df (v) is K, -invariant. Thus D(v) < 4(v).
(2) Since the p; generate C[V]X, the complex span of the dp; (v) is D(v).

26. Lemma. D{(v) = A(v).
We establish Lemma 2.6 below. Now set
A(v) = {peA(o): poky = i},
where ji(x) = ﬁ Note that each dp;(v) is 4x(v), since
dp;(v) 0ko = dp; (kg ' v) = dp; (D) = dp;(v)

Now by Lemma 2.6, each p in A(v) is a sum ) a;dp;(v), and if pe Ax(v) one
easily sees, using our computation above, that one may assume that the g,
are real. Hence

24 — Banach Center 1. 20
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2.7. Ag(v) is the real span of the dp;(v).

Proof of Proposition 2.3. Let f(x) = 4(x, x), xeV. Then fis real on W
and A, : = df (v)edg(v), where A,(x)=(x,v). Define A,eV* by A,(x)
=(x, 7). Using 24 and the fact that K,=K;=K, nK,, one easily
establishes that A, e dg(v). Hence A = 4(4, — A,) e 4x(v), where A(x) = (x, iw,).

O

Proof of Lemma 2.6. Let B, be a small ball containing » so that, for any
ke K, either kB, = B, or B,nkB, = @. Let #'(U) denote the holomorphic

functions on U, for U an open subset of V. Then # (KB,)X ~ J{"(B,J)K”. If
,ue(V*)K”, then the function f(x) : = u(x—v), xe B,, lies in %(Bv)x" and has
differential p at v. Now C[V] is dense in #(B,), hence C[V]X is dense in
A (KB,)¥, and it follows that 4(v) = D(v). O

28. Remark. In case K is not finite, one has to consider the action of
the complexification K. of K on V. Not all orbits of K. are closed, which
presents complications. The new ingredients needed for the proof of Theorem
1.6 are Luna's slice theorem [5] (to prove the appropriate analogue of
Lemma 2.6) and some results of Kempl and Ness [4] (to establish 2.4).

3. Hilbert’s seventeenth problem

We pgive some applications of Theorem 1.6 to a version of Hilbert’s 17th
problem: The solution to Hilbert’s 17th reads as follows:

3.1. THeorem. Let feR(xy,..., x,) be positive, 1.¢., { is non-negative
wherever it is defined. Then there are g, ..., gse R(xy, ..., x,) such that f
=gi+ ... +4i.

Let K and W be as in Introduction. Does Theorem 3.1 remain true if we
replace R(W) by R(W)*? The answer is:

32. ExamprLe. Let K = {+1} act by multiplication on W= R. Then
R(W)X consists of rational functions of x2, and f(x) = x? is positive. If f(x)

=g, (x?)?+ ... +g4(xH? then x = g, (x)*+ ... +g4(x)% a contradiction. How-
ever, one can show that f is, in some sense, the only problem. In other
words, if g(x)e R(W)* is positive, then

g(x) = go (x*)+g,(x*) f (x),

where ¢, and g, are sums of squares.

33. Let F be a subfield of R(x,, ..., x,). We say that F has property
(H) if there are positive elements h,, ..., h,e F such that every f e F which is
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positive can be written in the form

(3.0 f=Zsih

where the s; are sums of squares in F.

34. THEOREM. Let K and W be as in 0.2. Then R(W)* has property
(H).

Procesi [6] established Theorem 3.4 and found the polynomials h; of 3.3
in case K =8, acting standardly on R". Bochnak and Ffroymson [3] first
conjectured Theorem 3.4. We now show how to obtain Theorem 3.4 from
Theorem 1.6.

Let P be a closed semialgebraic subset of R™. We assume that the
Zariski closure T of P is irreducible. We say that P is elementary il there are
Jis -, JaeR[T] such that P={teT: fi()>0,i=1,...,d}. We say that P
is quasi-elementary if there is an algebraic subset Y of T such that dimY
<dimT and PU Y is elementary.

35. ProposiTioN ([3]). Let P and T be as above.

(1) If P is quasi-elementary, choose f;, ..., fsc R[T] so that |te T f(t)
20,i=1,...,d} =PuUY, where Y is algebraic and dimY < dim T. Then
every [ € R(T) which is positive on P can be written in the form (3.3.1), where
the h; are all possible products f, ... fi, 1 <i, <...<i <d, 0<r<d

(2) If every fe R(T) which is positive on P can be written in the form
(3.3.1) for some h;, then P is quasi-elementary.

Proof of Theorem 34 Let X, Z and Grad be as in Theorem 1.6. Then
one can show that Z is irreducible, that Z is the Zariski closure of X and
that p* induces an isomorphism of R(Z) with R(W)X. Let f,, ..., f; be the
determinants of the principal minors of Grad. Then X = {zeZ: f(z2) =0, i
=1,...,d}. Hence X is elementary, and Theorem 3.4 follows. O

If we drop the assumption that K is compact, then R(W)X may fail to
have property (H) ([7]). The problem is that the corresponding orbit space
X = Z may fail to be quasi-elementary!
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