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Abstract

The paper deals with function-valued and numerical measures of absolute and directed
divergence of one probability measure from another. In case of absolute divergence, some new
results are added to the known ones to form a unified structure. In case of directed divergence,
new concepts are introduced and investigated. It is shown that the notions of absolute and
directed divergences complement each other and provide a good insight into the extent and the
type of discrepancy between two distributions. Consequently, these measures applied together
to suitably chosen pairs of distributions prove useful to express such statistical concepts as
inequality, dependence, and departures from proportionality.



Introduction

The central notion of the paper is the concentration curve which has been in-

troduced by Cifarelli and Regazzini (1987). Some concepts particularly important

for the definition of the divergence curve were proposed by Ali and Silvey (1965,

1966).

The concentration curve is a function-valued measure of the divergence of one

probability measure from another. It is defined for arbitrary pairs of probability

measures and reflects any kind of discrepancy between them. Thus, it measures

absolute divergence.

The concentration curve of the probability measure Q with respect to the

probability measure P refers to the most powerful test of the null hypothesis

H0 : P against the alternative hypothesis H : Q. Roughly speaking, the curve

is isometric to a plot of the distribution functions of the most powerful test

generated by P and Q, respectively. This is the plot 1 − α versus β, where α
and β are respectively the probabilities of the errors of the first and second kind.

The plot of α versus 1− β appears in many textbooks on hypothesis testing (see

e.g. Lehmann (1959), Grove (1980)). These plots induced some orderings useful

in the testing theory. On the other hand, the plot of α versus β as a measure of

divergence of P from Q was proposed by Bromek and Kowalczyk in a paper which

appeared in 1990 in the proceedings of a conference held in 1988 in Pittsburgh.

In that paper, written parallelly to Cifarelli and Regazzini (1987), stress was laid

on properties of the ordering based on the α− β plot.

The notion of concentration curve can be used to define other statistical

concepts when the curve is applied to suitably chosen pairs of probability me-

asures. One objective of the present paper is to describe such applications in

the case of inequality, dependence, and departures from proportionality. In the

case of inequality the concentration curve becomes the Lorenz curve, which is

a well-known function-valued measure of inequality. It has been frequently used

in socio-economic investigations of income and other distributions. The interest

in this parameter and its applications is still vivid. Recent contributions to the

subject were given e.g. in the works by Arnold (1987) and Foster (1985). The

counterparts of the Lorenz curve are used in various fields of applied stochastic

science. This is exemplified by the curve related to the so called total-time-on-test-

transformation which has an important place in reliability theory (cf. Chandra

and Singpurwalla (1981), Klefsjö (1984)).
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Links between divergence and inequality are of two kinds. First, the diver-

gence of any two mutually absolutely continuous probability measures is equal

to the inequality of the distribution of their likelihood ratio generated by the

first measure. This was mentioned in Cifarelli and Regazzini (1987), while Ga-

frikova and Kowalczyk (1994) used it to study duality of orderings of inequality

and divergence. Second, the inequality of a nonnegative variable X with finite

expectation may be represented as the divergence between the distribution PX

of X and the distribution λPX
which assigns to any B ∈ B(R+) the probability∫

B
x dPX(x)/E(X).

It is worth noting that Fogelson (1933) introduced a curve measuring inequ-

ality for any nonnegative random variable X with finite expectation as a plot of

the distribution function of PX and λPX
. Thus, he invented the concentration

curve for this particular case.

A Lorenz-type approach to dependence relates to the fact that dependence can

be considered as divergence between the joint distribution and the product of the

marginal distributions. The related dependence curve was introduced during the

conference on dependence in Pittsburgh independently by Bromek and Kowalczyk

and by Scarsini (cf. the proceedings edited by Block, Sampson and Savits (1990)).

But links between dependence and divergence had been studied before by many

authors. Ali and Silvey (1965, 1966) studied measures of dependence based on

the likelihood ratio of the joint and product distributions. This subject was also

considered by Joe (1985, 1987).

Chapters 1–3 present these topics. Chapter 1 deals with measures of diver-

gence which are used in Chapters 2 and 3 to measure inequality and dependence,

respectively. These three chapters contain only few new results but collect ma-

terial from many papers, some of them by this author, into a systematic and

unified structure. An effort has been made to unify the terminology. New results

of Chapters 1–3 are given in Sections 2.5 and 3.3.

Chapter 4 deals with evaluating absolute departures from proportional repre-

sentation. In this case there are two vectors with positive integer components.

The first vector represents a partition of a finite population, the second vector

represents a related partition of a representation of prescribed size.

Representation can be formed in a number of ways. It can be a sample drawn

from the population according to a chosen rule, deterministic or probabilistic. In

the paper we are concerned with representations as near as possible to propor-

tional. Thus, we are interested in the minimal elements for the ordering based on

divergence curves.

The idea to use the divergence curve for the population and representation

to measure departures from proportionality appeared first in Bondarczuk et al .

(1994), and will be reminded in Sec. 4.1 of the present paper. The remaining two

sections of Chapter 4 provide new results concerning the minimal and maximal

elements for the ordering based on divergence curves, applied to departures from

proportional representation.
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Chapter 5 introduces the directed divergence. The difference between absolute

and directed divergence is best explained in the case of univariate distributions.

Then, the directed departure of P from Q tells how much to the “left” of Q is P .

A function-valued measure of this tendency of P is the plot of the distribution

function of Q with respect to P . This plot is a special case of the directed con-

centration curve. If the likelihood ratio of Q with respect to P is increasing then

the plot becomes the divergence curve of Q from P .

The general definition and properties of the directed concentration curve are

given in Sec. 5.1. This curve coincides with the concentration curve of Q w.r.t.

P , introduced in Chapter 1 when P and Q are univariate and the direction is

indicated by increasing real values. In Sec. 5.2 any two probability measures on

the real line are mapped onto a pair (P ′, Q′) on [0, 1] such that P ′ is uniform

and the distribution function of Q′ lies on the directed concentration curve of

Q w.r.t. P . It is shown that Q is then mapped onto Q′ by the same transition

probability function which maps P onto the uniform distribution. It follows that

(P ′, Q′) represents the class of pairs (P,Q) with the same directed concentration

curve.

The concentration curve measuring absolute departures of Q from P can be

used jointly with a suitably chosen directed concentration curve to describe not

only the extent but also the type of departures. The two curves coincide when

directed departures are the only ones present. In the case of bivariate dependence

between random variables X and Y , the two curves can be used to measure

both the absolute and the monotone (positive or negative) dependence. Positive

dependence is the tendency of larger (smaller) values of X to coappear with larger

(smaller) values of Y ; negative dependence is described analogously.

The dependence of Y on X is often described by means of the regression

r(x) = E(Y | X = x). Taguchi (1987) in his study on the so-called concentration

surface considered the plot of E(r(X);X ≤ x)/E(Y ) versus P (X ≤ x), which

he called the correlation curve. If Y is nonnegative and E(Y ) is finite then this

curve is the directed concentration curve for the two distributions. Taguchi also

introduced the plot of E(r(X);X ≤ x)/E(Y ) versus E(X;X ≤ x)/E(X) as the

ratio curve. This plot is a directed concentration curve if both X and Y are

nonnegative with finite expectations.

Some new properties of the two curves, obtained under restrictions which turn

each of them into a directed concentration curve, are presented in Theorems 5.3.1

and 5.3.2. Some properties of the correlation curve follow from its links with the

monotone dependence function for (X,Y ) (cf. Kowalczyk (1977)). Each curve

can be used to study monotone dependence of Y on X as compared with suitably

measured absolute dependence.

Monotone (directed) departures from proportionality are considered in Sec-

tion 5.4. A comparison of monotone departure with absolute departure leads to

conclusions concerning the extent and direction of overrepresentation. The results

obtained in this paper throw some new light on the classical divisor methods con-

sidered in Baliński and Young (1982).
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The last chapter deals with numerical measures which are consistent with the

respective function-valued measures of divergence. Section 6.1 deals with the

numerical inequality measures which are simultaneously absolute and monotone.

Sections 6.2 and 6.3 deal with absolute and directed divergence, respectively. The

numerical measures introduced in Section 6.3 are generalized versions of the in-

dices considered in Section 6.2. In particular, formula (6.3.1) defines the directed

Pietra index which has not appeared previously in the statistical literature.Nume-

rical measures of dependence and proportional representation are also introduced

and investigated.

Summing up, we propose here tools to measure jointly absolute and direc-

ted (monotone) divergence, and we use them to generate measures of absolute

and directed departures from a prescribed pattern in several areas of statistical

modelling.

Further applications are now under investigation. One of them concerns effects

of aggregation. An appropriate continuity index (Ciok et al . (1994)) could be used

to describe and analyze mixed data, resampling techniques etc.

Another direction of further study concerns stratified populations. The idea

is to compare each of the strata distributions with the common distribution in

the population, using the proposed measures of absolute and directed divergence.

This would give an insight into the extent and type of stratification. A preliminary

study along these lines was done by Kowalczyk (1990).

Our considerations here are limited to theoretical distributions which corre-

spond to infinite populations. Finite populations are mentioned only with respect

to fair representation, while inference based on samples is not tackled at all. We

believe, however, that the results obtained so far for general distributions pro-

vide a good starting point for developments in these directions. It seems that

the measures used here could be easily generalized to finite populations. More-

over, a unified approach to different fields of applications mentioned above should

generate estimators equally applicable to all of them.

1. Divergence of probability measures

1.1. Divergence of probability measures connected with two-class

classification problems. Let P andQ denote probability measures on the same

measurable space (Ω,A). There is a general feeling (cf. Ali and Silvey (1966)) that

some probability distributions are “closer together” than others and consequently

that it may be “easier to distinguish” between the distributions of one pair than

between those of another. The respective intuitions have been formalized in many

ways. Among them, a suggestive formalization refers to the two-class classification

problem. In such a problem we deal with a population of objects divided into

two classes. Each object in any class has its own description ω ∈ Ω (e.g., it is

described by a vector of real-valued features). The descriptions are chosen so that
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there exists a suitable σ-field A of subsets of Ω such that the two classes can be

presented as some probability measures, say P and Q, on (Ω,A). The investigator

can observe the description(s) ω of an object(s) but its (their) class-membership

is not observable. His goal is to recognize for each object where it comes from.

Let a classification rule be a Borel measurable function δ : Ω → [0, 1], where

δ(ω) is the probability of taking the decision that the observed ω is from the first

class. Let a12(δ), a21(δ) be the probabilities of misclassification:

a12(δ) =
∫

Ω

(1 − δ(ω)) dP (ω), a21(δ) =
∫

Ω

δ(ω) dQ(ω).

The probabilities a12(δ), a21(δ) describe the quality of the classification rule δ.
Basing on them, we introduce the following natural ordering in the set ∆ of all

classification rules on Ω:

Definition 1.1.1. We say that a rule δ′ is not worse than a rule δ (δ � δ′) if

(1.1.1) a12(δ
′) ≤ a12(δ), a21(δ

′) ≤ a21(δ).

We will restrict ourselves to the set of rules admissible with respect to the

ordering (1.1.1). In order to characterize this set, we introduce the generalized

Radon–Nikodym derivative of Q with respect to P : let Q = Qabs +Qsing be the

Lebesgue decomposition of Q relative to P , where Qabs is absolutely continuous

with respect to P (Qabs ≪ P ) and Qsing is singular with respect to P (Qsing ⊥ P ),

and let N,N c ⊂ A be a partition of Ω such that P (N) = 0, Qsing(N) = Qsing(Ω).

The generalized Radon–Nikodym derivative of Q with respect to P , denoted by
dQ
dP

, is

dQ

dP
(ω) =

{
dQabs

dP
(ω) for ω ∈ N c,

∞ for ω ∈ N .

It follows from the Neyman–Pearson Lemma that the set of rules admissible

with respect to the ordering (1.1.1) consists of all rules δκ,s of the form

δκ,s(ω) =





1 if
dQ

dP
(ω) < κ,

s if
dQ

dP
(ω) = κ,

0 if
dQ

dP
(ω) > κ,

for κ ∈ (0,∞) and s ∈ [0, 1]. These rules are called threshold rules with respect

to dQ
dP

.

It is convenient to extend the set of admissible rules adding the threshold rules

for κ = 0 and κ = ∞. We denote the extended set by ∆0
(P,Q):

(1.1.2) ∆0
(P,Q) = {δκ,s : κ ∈ [0,∞], s ∈ [0, 1]}.
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The set ∆0
(P,Q) determines the lower boundary of the so-called risk set, i.e. the

closed convex set consisting of points (a12(δ), a21(δ)) for all classification rules

δ ∈ ∆. This boundary, which is a continuous, convex and nonincreasing curve

joining the points (0, 1) and (1, 0), will be denoted by K(P,Q) and called the

divergence curve ofQ from P (see Bromek and Kowalczyk (1990)) or the Neyman–

Pearson curve of Q with respect to P (see Kowalczyk and Mielniczuk (1990)):

(1.1.3) K(P,Q) = {(a12(δκ,s), a21(δκ,s)) : κ ∈ [0,∞], s ∈ [0, 1]}.

Obviously,

K(P,Q) =
{(
P

{
ω ∈ Ω : dQ

dP
(ω) > κ

}
+ (1 − s)P

{
ω ∈ Ω : dQ

dP
(ω) = κ

}
,

Q
{
ω ∈ Ω : dQ

dP
(ω) < κ

}
+ sQ

{
ω ∈ Ω : dQ

dP
(ω) = κ

})
: κ ∈ [0,∞], s ∈ [0, 1]

}
.

In particular, for any pair of k-valued distributions

P = (p1, . . . , pk), Q = (q1, . . . , qk),

the curve K(P,Q) is piecewise linear with vertices

( l∑

r=1

pir
, 1 −

l∑

r=1

qir

)
for l = 0, . . . , k,

where
∑0

1 = 0 and (i1, . . . , ik) is a permutation of (1, . . . , k) such that

qi1
pi1

≥ . . . ≥
qik

pik

.

If Q≪ P then K(P,Q) is the graph of a nonincreasing function K(P,Q)(·) defined

on [0, 1]. Otherwise, this function is not defined at 0 and the curve contains an

interval of the y-axis (from (0, Qabs(Ω)) to (0, 1)).

Apart from convexity and monotonicity, K(P,Q) has the following properties

(for proofs see Gafrikova and Kowalczyk (1994)):

1. K(P,Q) and K(Q,P ) are related as follows:

K(Q,P ) = {(u, v) : (v, u) ∈ K(P,Q)}.

2. P = Q iff K(P,Q) = {(u, v) : v = 1 − u, u ∈ [0, 1]} (i.e. P = Q iff K(P,Q) is

the segment joining (0, 1) and (1, 0)).

3. P ⊥ Q iff K(P,Q) = {(u, v) : (u = 0, 0 ≤ v ≤ 1) ∨ (0 ≤ u ≤ 1, v = 0)} (i.e.

P and Q are singular (in particular, have disjoint supports) iff K(P,Q) consists of

the two edges of the unit square emanating from (0, 0)).

Properties 1, 2, 3 indicate why K(P,Q) is called here the divergence curve of

Q from P .

1.2. Concentration curve and its link with the Neyman–Pearson

curve. Cifarelli and Regazzini (1987) approach problems of divergence of prob-

ability measures on (Ω,A) as problems of their relative concentration on sets
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belonging to A. To this end, they choose the generalized Radon–Nikodym deriva-

tive dQ
dP

(ω) for a pointwise index of concentration of Q with respect to P . Loosely

speaking, the value of dQ
dP

(ω) increases when so does the concentration in ω of Q

with respect to P , and dQ
dP

(ω) ≡ 1 when P = Q. Cifarelli and Regazzini compare

the masses of P and Q on subsets of Ω consisting of ω’s with sufficiently small

concentration (not exceeding a given level). They introduce the set

(1.2.1)
{(
P

{
ω : dQ

dP
(ω) ≤ z

}
, Q

{
ω : dQ

dP
(ω) ≤ z

})
: z ∈ [0,∞]

}
.

This set, completed if necessary by linear interpolation, is called the concentration

curve of Q with respect to P . It will be denoted here by L(P,Q), or L[P,Q]

whenever the notation for P or Q is so complicated that the subscript (P,Q) is

not convenient (this happens e.g. in Sec. 5.3).

The curve L(P,Q) contains the graph of (L(P,Q)(t), t ∈ [0, 1]), where

L(P,Q)(t) =





0 for t = 0,

Q
{
ω : dQ

dP
(ω) < ct

}
+ ct{t−H(ct−)} for t ∈ (0, 1),

Qabs(Ω) for t = 1,

H(z) = P
{
ω ∈ Ω : dQ

dP
(ω) ≤ z

}
,

ct = inf{z ∈ R : H(z) ≥ t},

H(z−) = H(z − 0).

The curve L(P,Q) is convex and nondecreasing in [0, 1]2. If P and Q are non-

atomic measures, then any set
{
ω ∈ Ω : dQ

dP
(ω) ≤ ct

}
has P -measure t and

Q-measure L(P,Q)(t).
If P and Q are atomic then the curve L(P,Q) consists of segments and the

remark above is valid for t corresponding to the vertices of the curve.

Obviously, the concentration curve is linked with the Neyman–Pearson curve

by

K(P,Q)(t) = L(P,Q)(1 − t) for t ∈ (0, 1],

K(P,Q)(0
+) = L(P,Q)(1).

1.3.Divergence ordering �NP. Let P be the set of all probability measures

defined on the same measurable space (Ω,A). We introduce an ordering �NP in

P ×P with respect to divergence of measures from one another (cf. Bromek and

Kowalczyk (1990)).

Definition 1.3.1. We say that

(P,Q) �NP (P ′, Q′),

i.e. the divergence of Q′ from P ′ is not smaller than that of Q from P , if for every

classification rule δ for (P,Q) there exists a classification rule δ′ for (P ′, Q′) such

that

a′12(δ
′) ≤ a12(δ), a′21(δ

′) ≤ a21(δ).
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The rules δ and δ′ in this definition belong to the whole set ∆ but, obviously,

this set can be restricted to the set ∆0
(P,Q) of admissible rules in the case of δ and

to the set ∆0
(P ′,Q′) of admissible rules in the case of δ′, where ∆0

(P,Q) and ∆0
(P ′,Q′)

are given by (1.1.2). Therefore, in view of definition (1.1.3), �NP coincides with

the ordering based on divergence curves:

(P,Q) �NP (P ′, Q′) iff K(P,Q)(t) ≥ K(P ′,Q′)(t) for t ∈ (0, 1].

This ordering has the following properties (see Bromek and Kowalczyk (1990)

and Gafrikova and Kowalczyk (1994)):

Property 1. (P,Q) �NP (P ′, Q′) iff (Q,P ) �NP (Q′, P ′).

Property 2. (P,Q) is a smallest element for �NP iff P = Q.

Property 3. (P,Q) is a largest element for �NP iff P ⊥ Q.

Property 4. Suppose that y = f(ω) is a measurable transformation from

(Ω,A) onto a measurable space (Y,G). Let Pf−1, Qf−1 denote the measures

induced by f on Y from P,Q respectively. Then

(Pf−1, Qf−1) �NP (P,Q).

(P,Q) and (Pf−1, Qf−1) are equivalent with respect to �NP iff

dQ

dP
(ω) =

d(Qf−1)

d(Pf−1)
(f(ω))

for all ω.

As a special case of Property 4 we have:

Property 4′. Let P = (p1, . . . , pk), Q = (q1, . . . , qk) be k-valued distributions

and let (P ′, Q′) be (k − 1)-valued distributions obtained from (P,Q) by pooling

any two values of (P,Q). Then

(P ′, Q′) �NP (P,Q).

Property 5. Suppose that α, β ∈ [0, 1], α ≤ β. Then

(βP + (1 − β)Q,αP + (1 − α)Q) �NP (P,αP + (1 − α)Q) �NP (P,Q).

Property 6. Suppose that α ∈ [0, 1]. Then

(P,Q) �NP (P ′, Q′) iff (P,αP + (1 − α)Q) �NP (P ′, αP ′ + (1 − α)Q′).

Property 7. Let P , Q, Qε be k-valued distributions,

P = (p1, . . . , pk), Q = (q1, . . . , qk), Qε = (qε
1, . . . , q

ε
k),

such that q1/p1 ≤ . . . ≤ qk/pk, and qε
i = qi + ε, qε

j = qj − ε, qε
s = qs for some
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i < j, s 6= i, j, s = 1, . . . , k, where ε is a nonnegative number such that

ε ≤





qi+1pi − qipi+1

pi + pi+1
for j = i+ 1,

min

(
pi

(
qi+1

pi+1
+
qi
pi

)
, pj

(
qj
pj

+
qj−1

pj−1

))
for j > i+ 1.

Then

(P,Qε) �NP (P,Q).

Three other important properties of �NP, based on the notion of generalized

expectation, will be presented in Sec. 2.4.

2. Link between divergence and inequality

2.1. Initial inequality axioms. The notion of inequality of a random va-

riable appears in statistical literature in many contexts; most contributions (inc-

luding the oldest ones) refer to various economical situations such as welfare or

income inequality in a human population. Generally, we deal in practice with two

populations of objects of the same kind, described by a variable X, which is addi-

tive, nonnegative and has finite mean. It will be convenient to assume for a while

that both populations are finite and each of them has n elements. Thus, we deal

with two vectors of values of the feature under consideration in each population,

say x = (x1, . . . , xn) and x′ = (x′1, . . . , x
′
n). We ask which vector is less “equal”

than the other, i.e. for which of them the components are more distant from one

another.

An axiomatic approach to comparing inequality of vectors with n nonnegative

components is due to Fields and Fey (1978). They formulate three axioms for an

ordering � according to inequality in the set of such vectors, where x � x′ means

that x is less equal than x′. (Fields and Fey used � instead of �; we changed

this notation to ensure consistency with the rest of this paper). The axioms are

as follows:

Axiom 1 (Scale Irrelevance). If x = ax′, i.e. xi = ax′i for i = 1, . . . , n, a > 0,

then x ∼= x′ (which means that x � x′ and x′ � x, i.e. x and x′ are equally

unequal).

This axiom allows us to normalize all vectors, so that
∑n

i=1 xi = 1. The set of

all normalized vectors will be denoted by D0:

D0 =
{
x = (x1, . . . , xn) : xi ≥ 0, x1 ≤ . . . ≤ xn,

n∑

i=1

xi = 1
}
.

Axiom 2 (Symmetry). If (i1, . . . , in) is any permutation of (1, . . . , n) then

(xi1 , . . . , xin
) ∼= (x1, . . . , xn).
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Axiom 3 (Rank-Preserving Equalization). If x, x′ ∈ D0 and if for some i < j
and ε > 0,

xk = x′k for k 6= i, j, k = 1, . . . , n,

xi = x′i + ε, xj = x′j − ε,

where

ε ≤

{
1
2 (x′j − x′i) for j = i+ 1,

≤ min(x′i+1 − x′i, x
′
j − x′j−1) for j > i+ 1,

then x � x′.

Fields and Fey proved that if x, x′ ∈ D0 and if x is obtained from x′ by a

finite sequence of transformations described in the third axiom, then

(2.1.1)
x1 + . . .+ xi ≥ x′1 + . . .+ x′i for i = 1, . . . , n − 1,

x1 + . . .+ xj > x′1 + . . .+ x′j for some j < n,

and vice versa: the inequalities (2.1.1) imply that x ∈ D0 is obtainable from x′

by a finite sequence of such transformations.

J. Foster (1985) extended the axioms by the following one aimed at comparing

vectors which describe populations of different sizes. Let

D =

∞⋃

n=1

Dn, Dn =
{
x ∈ R

n :

n∑

i=1

xi > 0, xi ≥ 0, i = 1, . . . , n
}
.

Axiom 4 (Population Principle). If x′ is a replication of x (i.e. x ∈ D and for

some m ≥ 2 we have x′ = (x′(1), . . . , x
′
(m)), where each x′(i) = x) then x ∼= x′.

2.2.The Lorenz curve for nonnegative random variables. Inequalities

(2.1.1) can be interpreted graphically by means of the so-called Lorenz curves for

x and x′.

The Lorenz curve was introduced in 1905 for the population {x1, . . . , xn} of

n individual incomes by setting

LX

(
i

n

)
=

∑i
j=1 xrj∑n
j=1 xrj

for i = 0, . . . , n,

where xr1
≤ . . . ≤ xrn

are the ordered individual incomes in the population.

The points (i/n, LX(i/n)) for i = 0, . . . , n are then linearly interpolated to get

the corresponding Lorenz curve. Thus, we have defined the Lorenz curve for a

random variable X taking values x1, . . . , xn with probabilities P (X = xi) = 1/n
for i = 1, . . . , n (if xi

,s are not all distinct then the probabilities are changed in

an obvious way).

Generally, let L be the set of all nonnegative random variables with finite

nonzero expectations. For any X ∈ L with distribution function FX , the Lorenz
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curve LX is

(2.2.1) LX(u) =

∫ u

0
F−1

X (y) dy
∫ 1

0
F−1

X (y) dy
for u ∈ [0, 1],

where F−1
X (y) = inf{t : FX(t) ≥ y} for 0 < y < 1.

Sometimes it is convenient to use the parametric representation of the Lorenz

curve (Arnold (1987)) as the set of points

(2.2.2) {(FX(t), F
(1)
X (t)) : t ∈ [0,∞]},

in the unit square, completed if necessary by linear interpolation, where

(2.2.3) F
(1)
X (t) =

1

E(X)

t∫

0

u dFX(u), t ∈ [0,∞].

Formula (2.2.2) follows directly from (2.2.1).

Another form of the Lorenz curve, obviously equivalent to (2.2.2), is

LX(u) =





0 for u = 0,

E(X;X < xu) + xu(u− P (X < xu))

E(X)
for u ∈ (0, 1),

1 for u = 1,

where xu is any quantile of X of order u for u ∈ (0, 1), i.e.

P (X < xu) ≤ u ≤ P (X ≤ xu).

The function F
(1)
X is called the first moment distribution function. Suppose

that X is the length of life in some population. Then F
(1)
X (t) denotes the mean

life length of an element which dies till t, divided by the mean life time. Now,

another partition of the mean life time is also in use. It refers to the total time

on test (TTT ) transform. The related distribution function F
(2)
X is defined by

F
(2)
X (t) =

1

E(X)

t∫

0

(1 − FX(s)) ds

where F
(2)
X (t) denotes the mean length of life truncated at the moment t, divi-

ded by the mean life time. The curve TTT(p) = F
(2)
X (F−1

X (p)) for p ∈ [0, 1] is

a counterpart of the Lorenz curve L(p) = F
(1)
X (F

(−1)
X (p)). The two curves are

interrelated in the following way (see e.g. Klefsjö (1984)):

L(p) = TTT(p) −
1

E(X)
(1 − p)F−1

X (p), p ∈ [0, 1].

2.3. Inequality ordering �L. The ordering �L according to inequality in

the set L (Arnold (1987)) is based on comparing the Lorenz curves.
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Definition 2.3.1. For any X,X ′ ∈ L, we say that X does not exhibit more

inequality in the Lorenz sense than X ′ does, and write X �L X
′, if

LX(u) ≥ LX′(u) for u ∈ [0, 1].

It is easy to check that for the empirical distributions considered in Sec. 2.2

the ordering �L satisfies Axioms 1–4. Moreover, �L has the following properties:

Property 1o. A random variable X is a minimal element for �L iff X is

concentrated at one point x > 0 (i.e. X is degenerate). The Lorenz curve for a

degenerate random variable coincides with the 45◦ line in the square [0, 1]2.

Property 2o. Let X ∈ L be a discrete k-valued random variable with P (X =

xi) = πi for i = 1, . . . , k,
∑k

i=1 πi = 1. Let X ′ be the random variable obtained

from X by aggregating any two values, say xi, xj , i, j ∈ {1, . . . , k}, to the value

πi

πi + πj

xi +
πj

πi + πj

xj .

Then X ′ �L X.

Property 3o. Let X ∈ L and α, β ∈ [0, 1], α ≤ β. Then

α+ (1 − α)X

β + (1 − β)X
�L (1 − α)X + α �L X.

Property 4o. Suppose that X,X ′ ∈ L and α ∈ [0, 1]. Then

X �L X
′ iff (1 − α)X + α �L (1 − α)X ′ + α.

Property 5o. Let X ∈ L be a discrete k-valued random variable with P (X =

xi) = πi,
∑k

i=1 πi = 1, x1 < . . . < xk. Let X ′ be a random variable with k values

such that P (X ′ = x′i) = πi, i = 1, . . . , k, where x′s = xs for s 6= i, j, for some

i < j, s = 1, . . . , k, and x′i = xi + ε/πi, x
′
j = xj − ε/πj with

ε ≤





(xi+1 − xi)πiπi+1

πi + πi+1
for j = i+ 1,

min(πi(xi+1 − xi), πj(xj − xj−1)) for j > i+ 1.

Then X ′ �L X.

One of the most important properties of �L is its characterization by means

of convex functions:

Property 6o. Let X,X ′ ∈ L, EX = EX ′. Then

(2.3.1) X �L X
′ iff E(Φ(X)) ≤ E(Φ(X ′))

for every convex continuous function Φ.

Property 7o. I. Let g : R
+ → R

+. The following conditions are equivalent:

(i) g(X) �L X for every X ∈ L,

(ii) g(x) > 0 for every x > 0, g(x) is nondecreasing on [0,∞) and g(x)/x is

nonincreasing on (0,∞).
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II. Let g : R
+ → R

+. The following conditions are equivalent:

(i) X �L g(X) for every X ∈ L,

(ii) g(x) > 0 for every x > 0, g(x) is nondecreasing on [0,∞) and g(x)/x is

nondecreasing on (0,∞).

Property 8o. Suppose that X,X ′ ∈ L, EX = EX ′ and X and X ′ are

absolutely continuous with densities fX(x) and fX′(x). A sufficient condition for

X �L X
′ is that fX(x) − fX′(x) changes sign twice on (0,∞) and the sequence

of signs of fX − fX′ is − + −.

Properties 1o, 6o, 8o are proved e.g. in Arnold (1987), and properties 2o–5o,

7o in Gafrikova and Kowalczyk (1994).

Orderings stronger than �L have been investigated in statistical literature.

In particular, reliability theory introduces the star-ordering such that F is star-

ordered w.r.t. G (written F �∗ G) if G−1(F (x))/x is increasing on 0 < x <
F−1(1). Chandra and Singpurwalla (1981) proved that F �∗ G implies LF (p) ≥
LG(p) for 0 ≤ p ≤ 1 if F and G have the same mean.

2.4. Inequality versus divergence. Let h(ω) be the generalized Radon–

Nikodym derivative of Q with respect to P :h(ω) = dQ
dP

(ω). Let Fh
i (i = 1, 2) be

the distribution functions of the transformed measures Ph = Ph−1, Qh = Qh−1,

respectively, i.e.

Fh
1 (t) = Ph([0, t]) = P (ω : h(ω) ≤ t),

Fh
2 (t) = Qh([0, t]) = Q(ω : h(ω) ≤ t).

Note that Ph([0,∞)) = 1 but Qh([0,∞)) = 1 − Q(h = ∞) = 1 − Q(N). From

(1.2.1) we see that the concentration curve L(P,Q) is the subset

(2.4.1) {(Fh
1 (t), Fh

2 (t)) : t ∈ [0,∞]} =
{(
Fh

1 (t),
t∫

0

s dFh
1 (s)

)
: t ∈ [0,∞]

}

of the unit square, completed if necessary by linear interpolation. Let Z be a

random variable defined on (Ω,A) and let Z ∼ P (i.e. Z is distributed according

to P ). Comparing the sets (2.4.1) and (2.2.2) we obtain an important statement

which will be formulated first for Q≪ P . Under this assumption h(Z) ∈ L since

EP (h(Z)) = 1. Then the concentration curve L(P,Q) is the Lorenz curve for the

random variable h(Z):

(2.4.2) L(P,Q)(u) = Lh(Z)(u) for u ∈ [0, 1].

When the assumption Q ≪ P is omitted, let h̃(ω) = (dQabs/dP )(ω) for

ω ∈ N c and Z̃ be the random variable defined on Ω \N such that Z̃ ∼ P (note

that for Q ≪ P we have Q(N) = 0 and h̃(Z̃) = h(Z)). Then h̃(Z̃) ∈ L since

E(h̃(Z̃)) = 1 −Q(N). The equality (2.4.2) is now generalized to

(2.4.3) L(P,Q)(u) = (1 −Q(N))L
h̃(Z̃)

(u) for u ∈ [0, 1).
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We see from (2.4.2) that for Q≪ P , measuring divergence by means of L(P,Q)

is equivalent to measuring inequality for h(Z) by means of Lh(Z). Also, there

exists an obvious correspondence between the orderings �NP and �L: if Q≪ P ,

Q′ ≪ P ′ then

(2.4.4) (P,Q) �NP (P ′, Q′) iff h(Z) �L h
′(Z ′),

where h = dQ
dP

, h′ = dQ′

dP ′
, Z, Z ′ are random variables defined on Ω, and Z ∼ P ,

Z ′ ∼ P ′.

The equivalence (2.4.4) is an important link between divergence and inequality.

It is obvious that under the condition Q ≪ P any property of the divergence of

Q from P can be reworded as some property of the inequality in the class L1 ⊂ L
of all nonnegative random variables with expectation 1 (since E(h(Z)) = 1). For

example, the counterparts of properties 2, 4′, 5, 6, 7 of �NP are properties 1o, 2o,

3o, 4o, 5o, respectively, of the ordering �L in the class L1.

Further, the equivalence (2.4.4) implies the characterization (2.3.1) for X =

h(Z), X ′ = h′(Z ′) where h, h′, Z, Z ′ have the same meaning as in (2.4.4). In

the general case (without the assumption Q ≪ P ) we have to use the so-called

generalized expectation E∗ of Φ(h(Z)). This notion was introduced by Ali and

Silvey (1966):

E∗(Φ(h(Z))) =
∫

h(z)<∞

Φ(h(z)) dP (z) +Q(N) lim
t→∞

Φ(t)

t

provided that the right-hand side is meaningful (i.e. limt→∞ Φ(t)/t exists and the

stated expression does not take the indeterminate form ∞−∞). Ali and Silvey

show that for any continuous convex function Φ, E∗(Φ(h(Z))) is either a finite

number or ∞. Let us note that E∗(h(Z)) = 1. Now, the following characterization

of the ordering �NP may be added to the seven properties stated in Sec. 1.3:

Property 8. For every convex continuous function Φ for which E∗(Φ(h(Z)))

and E∗(Φ(h′(Z ′))) are finite,

(2.4.5) (P,Q) �NP (P ′, Q′) iff E∗(Φ(h(Z))) ≤ E∗(Φ(h′(Z ′))).

Moreover, making use of (2.4.3) and Property 7o in Sec. 2.3, we obtain the

following:

Property 9. Let (P,Q), (P ′, Q′) ∈ P × P and let h, h′ be the respective

generalized Radon–Nikodym derivatives. Let h′ = g(h) where g : R
+ ∪ ∞ →

R
+ ∪∞ is nondecreasing on R

+. Then

(i) (P,Q) �NP (P ′, Q′) if g(x)/x is nondecreasing on (0,∞) and Q(h = ∞)

≤ Q′(h′ = ∞),

(ii) (P ′, Q′) �NP (P,Q) if g(x)/x is nonincreasing on (0,∞) and Q(h = ∞)

≥ Q′(h′ = ∞).

Finally, Property 8o of Sec. 2.3 can be used to prove the following property of

�NP:
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Property 10. Let ν be a real parameter and let {Pν : ν∈(a, b)} be a family of

mutually absolutely continuous distributions on the real line such that the family

of densities pν(x) with respect to a fixed measure ν has monotone likelihood ratio

in x (see Lehmann (1959)). Let a < ν1 < ν2 < ν3 < b. Then

(Pν1
, Pν2

) �NP (Pν1
, Pν3

).

To end this section, we use the above considerations to indicate the most

important link between divergence and inequality. To this end, for any random

variable X ∈ L defined on (Ω,A, P ), we compare P with some other distribution

on (Ω,A). Its distribution function λX
P (·) is given by

(2.4.6) λX
P (A) =

∫
A
X(ω)P (dω)∫

Ω
X(ω)P (dω)

for A ∈ A.

The notation λX
P will be simplified to λP whenever X(ω) = ω. The distribution

λX
P plays an important role in the present paper.

Note that λX
P ≪ P . The density function of λX

P w.r.t. P is X(ω)/E(X), which

is equal to the ratio of the densities (w.r.t. P ) of λX
P and P . It follows that the

Lorenz curve of X/E(X), or equivalently of X, coincides with the concentration

curve of λX
P w.r.t. P .

By Property 4 of �NP (Sec. 1.3) the concentration curve of λX
P w.r.t. P is

the same as the concentration curve of these distributions transformed by X. We

have PX−1 = PX and λX
P X

−1 = λPX
(we write λPX

instead of λid
PX

). Indeed,

λX
P (X−1(B)) = λPX

(B) =
E(X; X ∈ B)

E(X)
.

Thus, the concentration curve of λPX
w.r.t. PX coincides with the Lorenz curve

LX . It is worth noting that the definition (2.4.1) of the concentration curve,

applied to (PX , λPX
), leads to formula (2.2.2) for the Lorenz curve LX .

2.5. Ratio variables. At the beginning of this chapter it was indicated that

in practice the notion of inequality is introduced for variables which are addi-

tive, nonnegative and have finite mean in the considered population of objects.

Additivity, nonnegativity and finite mean are necessary to form the distribution

λX
P , which is constructed from means corresponding to particular fractions of the

population. On the other hand, two variables X and Y are �L equivalent (i.e.

have identical inequalities) if X ∼ aY for some a > 0. We shall consider all this

in more detail, referring to a measurement scale called ratio.

In measurement theory, a relational structure R0 on a population Ω0 is con-

sidered together with a relational structure R on a certain subset Ω̃ ⊂ R
k. A

measurement scale is a homomorphism of R0 into R. An admissible function is

a mapping ψ : Ω̃ → Ω̃ which transforms one scale into another. The set Ψ of all

admissible mappings defines the type of measurement scale. In particular, when

Ω̃ = R, the most common types of scales are nominal, ordinal and interval scales,
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for which Ψ is the set of all injections, increasing and linear increasing mappings,

respectively. When Ω̃ = R
+, we deal with the ratio scale for which Ψ is the set

of the mappings y = ax, a > 0.

A parameter γ defined on a set J of random variables will be called an indi-

cator of the measurement scale type Ψ in J if:

1o. J is closed under Ψ , i.e. for each X ∈ J and each ψ ∈ Ψ , ψ(X) ∈ J .

2o. For each X ∈ J and each ψ ∈ Ψ , γ(X) = γ(ψ(X)).

3o. Let g : R → R and γ(g(X)) = γ(X) for every X ∈ J . Then g ∈ Ψ .

Notice that if γ is an indicator of the scale type Ψ in J , then a transformation

of γ, say f ◦ γ, is also an indicator of Ψ in J only if f is a bijection. Moreover, if

a scale Ψ ′ is weaker than Ψ , i.e. Ψ ⊂ Ψ ′, Ψ 6= Ψ ′, and γ is an indicator of Ψ in J ,

then γ is not an indicator of Ψ ′ in J .

These remarks justify the following one concerning the relations between sta-

tistical theory and practice: if γ is an indicator of a scale type Ψ in a set J of

random variables, then it should not be used in a practical statistical study unless

the variables appearing in the study are all measured on a scale not weaker than

Ψ . In the practical context it is also worth noting that if γ is an indicator of the

scale type Ψ in J , and if γ(X) = γ(Y ) for X,Y ∈ J , then either Y ∼ ψ(X) for

some ψ ∈ Ψ , or X and Y are not both measured on the scale Ψ .

The type of measurement scale may be linked with an ordering relating to

the considered parameter: if γ is an indicator of a scale Ψ in a set J and if γ is

strictly monotone with respect to some ordering � in J , then

X ≺ Y iff ψ(X) < ψ(Y ) for ψ ∈ Ψ,

where X ≺ Y means that X � Y and not X ∼= Y .

Now, let us use the above considerations putting J = L (where L is the set

of nonnegative random variables with finite nonzero expectations). It is easy to

check that the Lorenz curve is an indicator of the ratio scale in L. Moreover, the

Lorenz order satisfies conditions 1o–3o when Ψ is the set of the mappings y = ax,
a > 0.

Random variables from L will be called “ratio variables” in the sequel. It

is well known that in practice inequality is evaluated for variables measured on

the ratio scale (income, welfare, length of life, various “size” and some “shape”

variables, and so on).

3. Link between divergence and dependence

3.1. Preliminary remarks. In this chapter we deal with bivariate distri-

butions only. Therefore we assume that Ω = R
2, B2 is the σ-field of Borel sets

on the plane, and consider pairs (X,Y ) of random variables on (R2,B2). Let P
denote the joint distribution of (X,Y ).
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We start with some remarks concerning dependence when at least one random

variable in the pair (X,Y ) is a ratio variable.

According to the definition (2.4.6) we introduce λX
P if X is a ratio variable,

and λY
P if Y is a ratio variable, where for any A,A′ ∈ B(R+),

λX
P (A×A′) =

∫
A

∫
A′
x dP (x, y)∫

R+

∫
R+ x dP (x, y)

=
E(X;X ∈ A, Y ∈ A′)

E(X)
,

λY
P (A×A′) =

∫
A

∫
A′
y dP (x, y)∫

R+

∫
R+ y dP (x, y)

=
E(Y ;X ∈ A, Y ∈ A′)

E(Y )
.

Note that

λX
P (A× R

+) = λPX
(A) =

E(X;X ∈ A)

E(X)
=

∫
A
xfX(x) ν(dx)

E(X)
,

λY
P (A× R

+) = λ
r(X)
PX

(A) =
E(E(Y | X);X ∈ A)

E(Y )
=

∫
A
r(x)fX(x) ν(dx)

E(Y )
,

where r(x) = E(Y | X = x) and fX is the density of X with respect to the given

measure ν on B(R+).

Following the schemes appearing in the previous chapter, one could investigate

dependence as divergence between two distributions on (Ω,B), in particular

(P, λX
P ) when X is a ratio random variable,

(P, λY
P ) when Y is a ratio variable,

(λX
P , λ

Y
P ) when both variables are ratio variables.

In Taguchi (1987) the triple (P, λX
P , λ

Y
P ) was considered in order to introduce

a concentration surface.

Among other pairs of distributions which are worth attention when Y is a

ratio variable, let us mention here the pair (PX , λ
r(X)
PX

). The curve L[PX , λ
r(X)
PX

]

coincides with Lr(X) since the likelihood ratio of λ
r(X)
PX

w.r.t. PX is equal to

r(x)/E(Y ) for x such that fX(x) > 0 and X ∼ PX . Moreover,

(3.1.1) LY (u) ≤ Lr(X)(u) for u ∈ [0, 1]

(see Arnold (1987), p. 39).

We will use λX
P and λY

P in Sec. 5.3 in the context of the so-called directed

concentration curve to be introduced in Sec. 5.1. There we will consider some

aspects of monotone stochastic dependence. In this chapter we deal with absolute

stochastic dependence between X and Y in the case when no restrictions are

made on the measurement scales of the variables. In Sec. 3.2 we introduce an

ordering of stochastic dependence and investigate its properties. In Sec. 3.3 we

compare this ordering with other orderings concerning dependence, including the

so-called quadrant dependence ordering which is used only when the variables X,

Y are measured at least on the ordinal scale.
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3.2. Dependence ordering �D. Denote by P0 the product measure on

(Ω,B) corresponding to the marginal distributions PX , PY of PXY : P0 =PX×PY .

Absolute dependence between X and Y can be treated as divergence of PXY

from P0. This approach based on the Neyman–Pearson curve was proposed by

Bromek and Kowalczyk (1990). The authors dealt with a vector (X1, . . . ,Xk) for

k ≥ 2 and proposed the ordering �D defined in the bivariate case by

(X,Y ) �D (X ′, Y ′) if L(P0,PXY ) ≥ L(P ′

0
,PX′Y ′ ).

The same idea of measuring absolute dependence was simultaneously proposed

by Scarsini (1990) (both papers were presented at the same conference). The main

properties of the ordering are:

Theorem 3.2.1. (i) For any random vectors (X,Y ) and (X ′, Y ′) defined re-

spectively on Ω, Ω′,

1o if f : Ω → R
2 and g : Ω′ → R

2 are Borel measurable functions such that

f(x, y) = (f1(x), f2(y)), g(x, y) = (g1(x), g2(y)) and fi, gi are injections then

(X,Y ) �D (X ′, Y ′) iff f(X,Y ) �D g(X ′, Y ′);

2o we have

(X,Y ) �D (X ′, Y ′) iff (Y,X) �D (Y ′,X ′).

(ii) (X,Y ) is a minimal element for �D iff PXY = P0.

(iii) For (X,Y ) with continuous marginal distributions, (X,Y ) is a maximal

element for �D iff PXY is singular w.r.t. P0.

(iv) Let

(X,Y ) ∼ N2(νX , νY , σX , σY , ̺), (X ′, Y ′) ∼ N2(νX′ , νY ′ , σX′ , σY ′ , ̺′)

where N2 is the bivariate normal distribution with respective parameters. Then

(X,Y ) �D (X ′, Y ′) iff |̺| ≤ |̺′|.

(v) Let (X,Y ), (X ′, Y ′) have densities fXY , fX′Y ′ (with respect to some mea-

sure ν) with marginal densities fX , fY , fX′ , fY ′ respectively. Then

(X,Y ) �D (X ′, Y ′) iff
∫
Ψ

(
fXY

fXfY

)
fXfY dν ≤

∫
Ψ

(
fX′Y ′

fX′fY ′

)
fX′fY ′ dν

for all continuous convex functions Ψ .

It is evident that the above properties pertain to absolute dependence between

X and Y . Properties (i)–(iv) were proved in Bromek and Kowalczyk (1990).

Property (v) follows from the characterization (2.4.5).

3.3.Orderings related to �D. Joe (1987) defined a preorder for measurable

functions on a measure space which is a generalization of vector majorization.An

equivalent form of this definition is the following: let (Ω,A, ν) be a measure
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space, and let f and g be nonnegative integrable functions on (Ω,A, ν) such that∫
fdν =

∫
g dν. We say that f is majorized by g (written f ≺ g) if

∫
Φ(f) dν ≤

∫
Φ(g) dν

for all convex, continuous real-valued functions Φ with domain including the ran-

ges of f and g such that Φ(0) = 0 and the integrals exist.

Let Ω = ΩX × ΩY , ν = νX × νY , let fX , fY be densities on ΩX , ΩY with

respect to νX , νY , and Π(fX , fY ) be the class of densities ϕ on (Ω,A, ν) such that∫
ϕdνX = fX ,

∫
ϕdνY = fY . Then the ordering ≺, restricted to Π = Π(fX , fY ),

can be interpreted as an ordering according to dependence, with g representing

stronger dependence than f if f ≺ g for f, g ∈ Π(fX , fY ).

A special case is the matrix majorization due to Joe (1985), where ΩX =

{1, . . . , r}, ΩY = {1, . . . , c}, r and c are positive integers, and νX , νY are counting

measures.

The orderings ≺ and �D are equivalent if the marginal densities are uniform

(see property (v) in Sec. 3.2).

If we fix a probability measure P0 on (Ω,A) and consider divergence of pro-

bability measures Q from P0 for Q≪ P0 then

(P0, Q) �NP (P0, Q
′) iff

dQ

dP0
≺
dQ′

dP0
.

This is another form of the equivalence (2.4.4) restricted to the case P = P ′ = P0.

Now we will investigate relations between �D and the quadrant ordering

�QD which is one of the weakest orderings connected with monotone depen-

dence (cf. Lehmann (1966)). We remind that for X ∼ X ′, Y ∼ Y ′ and for all

x, y ∈ (−∞,∞),

(X,Y ) �QD (X ′, Y ′) iff Pr(X ≤ x, Y ≤ y) ≤ Pr(X ′ ≤ x, Y ′ ≤ y).

In general, neither of the two orderings �D and �QD implies the other, as

shown by the following examples.

Let (X,Y ), (X ′, Y ′), (X ′′, Y ′′) be pairs of random vectors with values in

{1, 2, 3} × {1, 2, 3} and distributed as

P =




6
33

1
33

0
9
33

6
33 0

2
33

2
33

7
33


 , P ′ =




6
33

1
33

0
10
33

5
33 0

1
33

3
33

7
33


 , P ′′ =




7
33

0 0
7
33

8
33 0

3
33

1
33

7
33


 .

Evidently, P , P ′ and P ′′ have the same pairs of marginal distributions. Let P0

be the product independent distribution corresponding to any of P , P ′, P ′′. It is

easy to check that in each pair (X,Y ), (X ′, Y ′), (X ′′, Y ′′), the components of the

pair are quadrant dependent. Moreover,

P �QD P ′
(
i.e. for any i0, j0 ∈ {1, 2, 3},

∑

i≤i0

∑

j≤j0

pij ≤
∑

i≤i0

∑

j≤j0

p′ij

)
.
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However, neither P �QD P ′′ nor P ′′ �QD P since

p11 < p′11, p11 + p21 > p′′11 + p′′21.

On the other hand, the curves L(P0,P ) and L(P0,P ′) intersect each other and

L(P0,P ′′) ≤ L(P0,P ),

so that

(X,Y ) 6�D (X ′, Y ′), (X ′, Y ′) 6�D (X,Y ), (X,Y ) �D (X ′′, Y ′′).

These examples supplement the evidence given by many contributors that stocha-

stic dependence is a complicated notion which can be approached on many ways.

We still have to look for a consistent set of orderings and families of distributions

connected with absolute and monotone dependence. An ordering of absolute de-

pendence should satisfy the condition that, restricted to an appropriately chosen

family of monotone dependent pairs (X,Y ), it should be equivalent to (or at least

weaker or stronger than) an ordering particularly suited to this family of pairs.

Now we will show that in a narrow but important family of quadrant depen-

dent distributions, naturally ordered, this natural ordering is equivalent both to

�D and to �QD.

Let P =
⋃

α∈[0,1] P
+
α ∪ P−

α , where

P+
α = {P+

α : P+
α = αP+ + (1 − α)P0}, P−

α = {P−
α : P−

α = αP− + (1 − α)P0},

and P+, P− are the upper and lower Fréchet distributions for given continuous

marginal distributions, and P0 is the product of the marginal distributions. We

have

L(P0,P+
α )(t) = L(P0,P−

α )(t) = (1 − α)t for t ∈ [0, 1].

The family P is naturally ordered according to α.

Our next example involves the set P2×2 consisting of pairs of binary random

variables. It is known that any two binary random variables X, Y are quadrant

dependent. A natural ordering �m in P2×2 which is connected with dependence

of X and Y is

P �m P ′ if pii ≤ p′ii, pij ≥ p′ij , i, j = 1, 2, i 6= j, for p11p22 ≥ p12p21

or pii ≥ p′ii, pij ≤ p′ij , i, j = 1, 2, i 6= j, for p11p22 ≤ p12p21.

It was shown in Bromek and Kowalczyk (1990) that this ordering implies �D.

This fact is a nice property of �D.

4. Link between divergence and proportional representation

4.1. Formulation of the problem and definition of the ordering �x.

Let Ω be any set, finite or infinite, and let ν be any measure defined on a σ-algebra

A of subsets of Ω, such that ν(Ω) is positive and finite. Let X : Ω → [0,∞),
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Y : Ω → [0,∞) be (Ω,A)-measurable functions such that

0 <
∫

Ω

X(ω) ν(dω) <∞, 0 <
∫

Ω

Y (ω) ν(dω) <∞

and let P (·) = ν(·)/ν(Ω). According to (2.4.6), we introduce

λX
P (A) =

∫
A
X(ω) ν(dω)∫

Ω
X(ω) ν(dω)

, λY
P (A) =

∫
A
Y (ω) ν(dω)∫

Ω
Y (ω) ν(dω)

.

We shall compare λX
P with λY

P by means of the concentration curve L[λX
P , λ

Y
P ].

Divergence of λY
P from λX

P measures the degree of departure from propor-

tionality of Y to X. Typically, this problem concerns variables X and Y with

nonnegative integer values. An important example concerns proportionality of

a representation (obtained as a result of an election) to the size of electorate.

The population consists of s units ω1, . . . , ωs with electorates xi = X(ωi) for

i = 1, . . . , s, x1 + . . . + xs = n. Suppose that the size of the representation, say

m, is selected a priori and let yi = Y (ωi) be the size of the representation of the

ith unit. We want to measure the departure from proportionality of the vector

(y1, . . . , ys) to (x1, . . . , xs). Ideal proportionality
(
yi = m

n
xi for i = 1, . . . , s

)
is

rarely possible.

Let ν be the counting measure on Ω = {ω1, . . . , ωs}. Then

∫

Ω

X(ω) ν(dω) =

s∑

i=1

xi = n,
∫

Ω

Y (ω) ν(dω) =

s∑

i=1

yi = m,

and λX
P , λY

P are defined by

λX =

(
x1

n
, . . . ,

xs

n

)
, λY =

(
y1
m
, . . . ,

ys

m

)
.

Ideal proportionality occurs when λX = λY . A departure from proportionality of

y’s to x’s corresponds to divergence of λY from λX . In this problem divergence

is never maximal since it is not possible to have λX ⊥ λY .

Let

Y(x,m) =
{
y = (y1, . . . , ys) : yi ∈ N ∪ {0}, yi ≤ xi,

s∑

i=1

yi = m
}
.

For any fixed vector x = (x1, . . . , xs) with positive integer components and for

a positive integer m ≤ n we have an ordering �x concerning proportionality of

y ∈ Y(x,m) to x.

Definition 4.1.1. We say that y is more proportional to x than y′, written

y �x y
′, if (λX , λY ) �NP (λX , λY ′).

We recall that

(λX , λY ) �NP (λX , λY ′) iff L[λX , λY ] ≥ L[λX , λY ′ ].
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The ordering �x in Y(x,m) is the restriction to this set of the relative majo-

rization ordering, considered by Joe (1990) in the set of all vectors with real

components and fixed sum. According to Joe, for any vector x with positive com-

ponents and any y = (y1, . . . , ys), y
′ = (y′1, . . . , y

′
s) with real components such

that
∑
yi =

∑
y′i,

y �r
x y

′ if

s∑

i=1

xiψ

(
yi

xi

)
≤

s∑

i=1

xiψ

(
y′i
xi

)

for all continuous convex functions ψ with domain including yi/xi and y′i/xi for

i = 1, . . . , s.
The equivalence of this ordering with �x follows from (2.3.1) and (2.4.4).

4.2. Minimal elements for �x. As mentioned before, the vector

(4.2.1)

(
m

n
x1, . . . ,

m

n
xs

)

is the smallest element in Y(x,m) if all its components are positive integers.

However, this element exists only for suitably chosen pairs (x,m). Therefore it

is important to look for minimal elements for �x in Y(x,m). Intuitively, it is

natural to consider as a candidate a vector obtained from (4.2.1) by a suitable

rounding up or down of its components.

Lemma 4.2.1. Let ui = m
n
xi −

[
m
n
xi

]
for i = 1, . . . , s, l = m−

∑s
i=1

[
m
n
xi

]
=∑s

i=1 ui and let I be the set of all permutations (i1, . . . , is) of (1, . . . , s) such that

ui1 ≥ . . . ≥ uis
.

Then any vector y0 = (y0
1 , . . . , y

0
s) such that for some (i1, . . . , is) ∈ I,

y0
j =

{
m
n
xj + 1 − uj =

[
m
n
xj

]
+ 1 for j = i1, . . . , il,

m
n
xj − uj =

[
m
n
xj

]
for j = il+1, . . . , is,

is a minimal element for �x in Y(x,m).

P r o o f. If l = 0 then (4.2.1) belongs to Y(x,m) and is the smallest element for

�x in Y(x,m). Suppose that l > 0. Let 1 < k ≤ s be the number of components

of (4.2.1) with nonzero ui’s:

ui1 ≥ ui2 ≥ . . . ≥ uil
≥ uil+1

≥ . . . ≥ uik
> uik+1

= . . . = uis
= 0.

Let S be an arbitrary subset of {i1, . . . , ik} consisting of l numbers, and let Sc =

{i1, . . . , ik} \S. Denote by yS = (yS
1 , . . . , y

S
s ) the vector obtained from (4.2.1) by

rounding up the components indexed by elements of S, and rounding down the

components indexed by elements of Sc. The sum of components of yS is m for

any S. This follows from the following equivalent equalities:

l =
∑

j∈S

uj +
∑

j∈Sc

uj ,
∑

j∈S

(1 − uj) =
∑

j∈Sc

uj .
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We show that yS minimizes the function assigning to any (x, y) the expression

(4.2.3)
1

2

s∑

i=1

∣∣∣∣
xi

n
−
yi

m

∣∣∣∣,

which is the maximal departure of the curve L[λX , λY ] from the line y = x in

(0, 1)2. Indeed,

s∑

i=1

∣∣∣∣
yS

i

m
−
xi

n

∣∣∣∣ =
∑

j∈S

(
yS

j

m
−
xj

n

)
+

∑

j∈Sc

(
xj

n
−
yS

j

m

)

=
∑

j∈S

1 − uj

m
+

∑

j∈Sc

uj

m
≥

1

m

( l∑

r=1

(1 − uir
) +

k∑

r=l+1

uir

)
.

The last inequality is sharp iff S 6= {i1, . . . , il} for every permutation (i1, . . . , is) ∈
I. The vector yS corresponding to such a set is not earlier than the vector yS′

corresponding to S′ = {i1, . . . , il} for any (i1, . . . , is) ∈ I.

To show that yS for S = {i1, . . . , il} is a minimal element in Y(x,m), it suffices

to prove that for two different permutations belonging to I either the vectors are

the same or they induce curves L[λX , λY S ] which are identical or intersect each

other.

If uil
> uil+1

for any (i1, . . . , is) ∈ I, then the vectors yS for S = {i1, . . . , il}
and any permutation (i1, . . . , is) are all equal. Assume now that uil

= uil+1
for

any (i1, . . . , is) ∈ I, and let S′ = {i′1, . . . , i
′
l} differ from S in one element only.

Since the general reasoning is the same, we will only consider this case. There

exist j and j′ such that j 6= j′ and j ∈ S, j′ ∈ Sc, j ∈ S′c, j′ ∈ S′. It follows that

yS and yS′

differ at most in components j and j′:

yS
j =

m

n
xj + 1 − u, yS

j′ =
m

n
xj′ − u,

yS′

j =
m

n
xj − u, yS′

j′ =
m

n
xj′ + 1 − u,

here u = uil
= uil+1

. Let xj ≤ xj′ . The inequalities

u

xj

≥
u

xj′

,
1 − u

xj

≥
1 − u

xj′

imply that
m
n
xj − u

xj

≤
m
n
xj′ − u

xj′

,
m
n
xj′ + 1 − u

xj′

≤
m
n
xj + 1 − u

xj

,

which is equivalent to

(4.2.4)
yS′

j

xj

≤
yS

j′

xj′

<
m

n
<
yS′

j′

xj′

≤
yS

j

xj

.

Since the slopes of the piecewise linear curve L[λX , λY ] are equal to the respective

quotients (yj/m)/(xj/n), the inequalities (4.2.4) imply that
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(i) the curves L[λX , λY S ] and L[λX , λY S′ ] coincide if xj = xj′ ,

(ii) if xj < xj′ then all inequalities in (4.2.4) are sharp, so that the two curves

L intersect.

The vectors y0 defined by (4.2.2) were considered in Baliński and Young

(1982). They are called there Hamilton’s rules as they were used by Hamilton

in apportioning seats among the states in the United States election. Baliński

and Young mentioned the fact that these rules minimize the function (4.2.3).

Note that (4.2.3) is of the form
∑

i xiψ(hi) for hi = yi/xi where ψ is a convex

continuous function. In view of (2.4.5), this suffices to prove that the Hamilton

rule is a minimal element for �x in the case when this rule is unique. Lemma 4.2.1

extends this assertion to the general case.

The vectors obtained by the Hamilton rule may also be interpreted as those

vectors from Y(x,m) which give a distribution λY such that the transfer of pro-

bability mass from λY to obtain λX is minimal.

Obviously, the Hamilton vectors are not the only minimal elements for �x.

This property is also shared by vectors obtained by some other rules of proportio-

nal apportioning mentioned in Baliński and Young (1982). These rules have been

invented as intuitively “most closest” to ideal proportional representation since

they minimize some measure of departure from proportionality. In particular, we

have the rules proposed by Adams, Jefferson, Hill and Webster. We shall not

describe each rule in detail, restricting ourselves to the following:

yAdams = arg

(
max

y
min

1≤i≤s

yi

xi

)
,

yJeff = arg

(
min

y
max
1≤i≤s

yi

xi

)
,

yHill = arg

(
min

y

s∑

i=1

yi

(
xi

yi

−
n

m

)2)
,

yWeb = arg

(
min

y

s∑

i=1

xi

(
yi

xi

−
m

n

)2)
.

All these vectors are minimal elements for �x in the case when they are unique.

For the first two methods the proof follows directly from their interpretation

involving the curve L[λX , λY ]: the Adams rule maximizes the slope of the first

segment of L while the Jefferson rule minimizes the slope of the last segment of the

curve. For the next methods, the proof follows from the fact that the minimized

functions are of the form
∑
xiψ(hi) for hi = yi/xi and some convex function ψ.

At the moment, we have neither a proof nor even an intuitive view whether

the vectors obtained by the rules proposed by Adams, Jefferson, Hill and Webster

are minimal elements for �x when they are not unique. It was not possible to find

a non-unique solution of any of these rules which would not also be a non-unique

Hamilton vector so that they were minimal elements due to Lemma 4.2.1.

The rules considered in this section will be discussed once more in Sec. 5.4.
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4.3. Maximal elements for �x. Intuitively it is clear that the departure

from proportionality will be maximal when some electorates get the maximal

possible number of representatives, and some other electorates get the minimal

possible numbers. We now provide a proof of this statement.

Let Z be a random variable taking values 1, . . . , s with probabilities λX(i) =

xi/n for i = 1, . . . , s. For any vector y = (y1, . . . , ys) ∈ Y(x,m) let hy be the

function on {1, . . . , s} defined by

hy(i) =
nyi

mxi

for i = 1, . . . , s.

We have 0 ≤ hy(i) ≤ n/m for i = 1, . . . , s, and y ∈ Y(x,m). Let

Y1(x,m) = {y ∈ Y(x,m) : yi = 0 or yi = xi and, for at most one

index i0 ∈ {1, . . . , s}, 0 < yi0 < xi0}.

If y ∈ Y1(x,m), then hy(Z) takes on at most three values: 0, n/m, and h ∈
(0, n/m). Thus we have Y1(x,m) ⊂ Y3(x,m) where

Y3(x,m) = {y ∈ Y(x,m) : hy takes on at most

three values: 0, n/m and h ∈ (0, n/m)}.

Fig. 1. The curve L[λX , λY ] for y ∈ Y3(x,m)

Lemma 4.3.1. If y, y′ ∈ Y3(x,m) then the inequalities

λX(hy(Z) = 0) ≤ λX(hy′(Z) = 0), λX

(
hy(Z) =

n

m

)
≤ λX

(
hy′(Z) =

n

m

)

imply that y �x y
′.

The proof follows immediately from Fig. 1.

Theorem 4.3.1. The set of maximal elements for �x in Y(x,m) is a subset

of Y1(x,m).
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P r o o f. In view of Lemma 4.3.1 it is enough to show that the set of maximal

elements is a subset of Y3(x,m). We shall show that a vector which does not

belong to Y3(x,m) is not a maximal element for �x.

Let {i1, . . . , ik} be the largest subset of {1, . . . , s} such that

0 <
yi1

xi1

≤ . . . ≤
yik

xik

< 1.

Since y 6∈ Y3(x,m) we have
yi1

xi1

<
yik

xik

.

Let y′ = (y′1, . . . , y
′
s) be defined by

y′j = yj for j 6= i1, ik and

y′i1 = 0, y′ik
= yi1 + yik

if yi1 + yik
≤ xik

,

y′i1 = yi1 + yik
− xik

, y′ik
= xik

if yi1 + yik
> xik

.

Since L[λX , λY ] ≥ L[λX , λY ′ ] and L[λX , λY ] 6= L[λX , λY ′ ], obviously y is not a

maximal element.

If y ∈ Y1(x,m) is such that for every i = 1, . . . , s either yi = 0 or yi = xi

then y is the largest element for �x in Y(x,m). For such a vector we have

λX(hy(Z) = 0) = 1 −
m

n
, λX

(
hy(Z) =

n

m

)
=
m

n
.

There may exist more than one largest element but all of them lead to the

same curve L[λX , λY ]. If no largest element exists, there may exist more than

one maximal element and the corresponding curves may intersect.

Examples. 1. If i0 ∈ {1, . . . , s} is such that m ≤ min{x1, . . . , xs} = xi0 , then

the maximal (and largest) vector y = (y1, . . . , ys) for �x has components

yi0 = m, yi = 0 for i 6= i0.

2. If i0, i1 ∈ {1, . . . , s} are such that

xi0 = min{x1, . . . , xs} < m < min{{x1, . . . , xs} \ {xi0}} = xi1

then there exist two maximal vectors y, y′ with components

yi0 = xi0 , yi1 = m− xi0 , yj = 0 for j 6= i0, i1,

y′i1 = m, y′j = 0 for j 6= i1.

5. Directed concentration of probability measures

5.1. Directed concentration curve. For any measurable space (Ω,A),

let P , Q be probability measures defined on it, and let �ϕ be an ordering in Ω
introduced by means of a given function ϕ : Ω → [−∞,∞]:

ω1 �ϕ ω2 if ϕ(ω1) ≤ ϕ(ω2).
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We will also consider the equivalence

ω1
∼=ϕ ω2 if ω1 �ϕ ω2 and ω2 �ϕ ω1,

and strict ordering:

ω1 ≺ϕ ω2 if ω1 �ϕ ω2 and not ω1
∼= ω2.

Obviously, ω1
∼=ϕ ω2 iff ϕ(ω1) = ϕ(ω2), and ω1 ≺ϕ ω2 iff ϕ(ω1) < ϕ(ω2).

If Ω ⊂ R, the ordering �ϕ is often identified with inequality ≤ in R.

We will consider concentration of P and Q on the sets

Aϕ
z = {ω ∈ Ω : ϕ(ω) ≤ z} for z ∈ [−∞,∞].

To this end, we introduce a curve Cϕ

(P,Q), called the ϕ-directed concentration curve

of Q with respect to P , which is defined to be the set

{(P (Aϕ
z ), Q(Aϕ

z )) : z ∈ [−∞,∞]}

contained in [0, 1]2, completed if necessary by the points (0, 0), (1, 1), and by

linear interpolation. The curve Cϕ

(P,Q) is nondecreasing (i.e. it is the graph of a

nondecreasing relation), but not necessarily convex. It lies above or below the line

y = x in [0, 1]2.
It is convenient to assign to this curve a function Cϕ

(P,Q)(·) on [0, 1] such that

(t, Cϕ

(P,Q)(t)) lies on the curve for any t ∈ [0, 1] and

Cϕ

(P,Q)(t) = Cϕ

(P,Q)(t+) for t ∈ [0, 1),

Cϕ

(P,Q)(1) = Cϕ

(P,Q)(1−).

The superscript ϕ will be omitted for ϕ(x) = x, which can happen only when

the distributions P and Q are concentrated on R. In this case we use the term

directed (instead of ϕ-directed) concentration curve.Moreover, we will also use the

notation C[P,Q] instead of C(P,Q) whenever P and Q are written in a complicated

way (e.g., P = λ
r(X)
PX

or P = λPX
).

There exists a counterpart of Cϕ

(P,Q) which has an important interpretation in

discriminant analysis. It is the set

{(x, y) : (1 − x, y) ∈ Cϕ

(P,Q)}

(i.e. this curve is related to Cϕ

(P,Q) in the same way as the Neyman–Pearson curve

is related to the concentration curve). Each point on the counterpart of Cϕ

(P,Q) is

formed by the probabilities of wrong decisions,

(a12(δ
ϕ
κ,s), a21(δ

ϕ
κ,s)),

corresponding to the decision rule based on ϕ:

δϕ
κ,s =





1 if ϕ(ω) < κ,
s if ϕ(ω) = κ,
0 if ϕ(ω) > κ,

for κ ∈ [−∞,∞] and s ∈ [0, 1].
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It is evident that for suitably chosen ϕ, the ϕ-directed concentration curve

coincides with the corresponding concentration curve (cf. property (iii) below).

The curve Cϕ

(P,Q) may be used to describe the stochastic ordering ≤st of Pϕ−1,

Qϕ−1:

Pϕ−1 ≤st Qϕ
−1 ⇔ Cϕ

(P,Q)(t) ≤ t for t ∈ [0, 1],

which is equivalent to

Pϕ−1[−∞, z] = P{ω : ϕ(ω) ≤ z} ≥ Q{ω : ϕ(ω) ≤ z} = Qϕ−1[−∞, z]

for all z ∈ [−∞,∞].

The measures Pϕ−1, Qϕ−1 are equivalent iff Cϕ

(P,Q)(t) = t for t ∈ [0, 1]. If

there exists z ∈ (−∞,∞) such that P (Aϕ
z ) = 1, Q(Aϕ

z ) = 0, we say that Q is

completely right of P with respect to �ϕ; the curve Cϕ

(P,Q) consists then (and

only then) of the two edges of the unit square emanating from (1, 0). Similarly,

if there exists z ∈ (−∞,∞) such that P (Aϕ
z ) = 0, Q(Aϕ

z ) = 1, we say that Q is

completely left of P with respect to �ϕ; Cϕ

(P,Q) consists then (and only then) of

the two edges emanating from (0, 1).
If P , Q are measures on R and ϕ(x) = x then

P ≤st Q iff Cϕ

(P,Q)(t) ≤ t for t ∈ [0, 1].

The following properties of Cϕ

(P,Q) are immediately implied by its definition:

Theorem 5.1.1. (i) If Ω ⊂ R
+ and ϕ is strictly increasing , then

Cϕ

(P,Q) = C id
(P,Q) where id(x) = x.

(ii) If Ω ⊂ R
+ and ϕ is strictly decreasing , then

Cϕ

(P,Q) = {(x, y) : (1 − x, 1 − y) ∈ C id
(P,Q)}.

(iii) The likelihood ratio dQ/dP is nondecreasing with respect to the ordering

�ϕ iff

Cϕ

(P,Q) = L(P,Q).

(iv) The likelihood ratio dQ/dP is nonincreasing with respect to �ϕ iff

Cϕ

(P,Q)(t) = L−
(P,Q)(t) for t ∈ [0, 1],

where

L−
(P,Q)(t) = 1 − L(P,Q)(1 − t).

(v) Let P , Q be measures on R with distribution functions F , H, respectively ,

such that Q≪ P and let ϕ(x) = x. Then

C(P,Q)(u) =

u∫

0

dQ

dP
(F−1(v)) dv,

where F−1(v) = inf{t : F (t) ≥ v}.

Theorem 5.1.2. Let P , Q be measures on R and let ϕ(x) = x. Then
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(i) C(P,Q) = L(P,Q) iff C(P,Q) is convex ,

(ii) C(P,Q) = L−
(P,Q) iff C(P,Q) is concave.

Corollary 5.1.1. Under the assumptions of Theorem 5.1.1(v) we have

L(P,Q)(u) =

u∫

0

(Fh)−1(t) dt,

where h = dQ
dP

, Fh = Fh−1.

P r o o f. By Theorem 5.1.1(iii) and (v),

L(P,Q)(u) = Ch
(P,Q) = C[Ph, Qh] =

u∫

0

dHh

dFh
((Fh)−1(t)) dt,

where Ph = Ph−1, Qh = Qh−1, Hh = Hh−1. The proof is complete since

dHh

dFh
(t) = t,

which follows from the equality

Hh(t) =

s∫

0

t dFh(t).

In Cifarelli and Regazzini (1987), the curve L−
(P,Q) appearing in (iv) was called

the upper concentration function of Q with respect to P . Moreover, they showed

that if P and Q are nonatomic probability measures on (Ω,A) then the range of

the vector probability measure (P,Q) is a closed, convex subset S of R
2; if A ∈ A

and P (A) = t, then

L(P,Q)(t) = min{Q(A) : A ∈ A, P (A) = t},

L−
(P,Q)(t) = sup{Q(A) : A ∈ A, P (A) = t}.

It follows that the range of (P,Q) coincides with the closed subset of R
2 boun-

ded by the graphs of the concentration function and of the upper concentration

function of Q with respect to P . Thus, for any ϕ : Ω → [−∞,∞] we have

(5.1.1) L(P,Q)(t) ≤ Cϕ

(P,Q)(t) ≤ L−
(P,Q)(t) for t ∈ [0, 1].

To illustrate, consider Cϕ

(P,Q) when (P,Q) = (PX , λ
X
P ) for a ratio random

variable X defined on R
+. It is then natural to put ϕ(x) = x. It follows that for

this pair (P,Q) and for ϕ = id, Cϕ

(P,Q) = L(P,Q) = LX , which means that the

directed concentration curve appearing naturally in inequality analysis coincides

with the concentration curve for (PX , λ
X
P ).

The curves Cϕ

(P,Q) are used to introduce an ordering �C analogous to �NP.

Let P and Q be two families of distributions defined on (Ω,A) and let �ϕ be a

fixed ordering in Ω for a given function ϕ. In P × Q we introduce an ordering

�C according to the degree of the directed concentration of Q with respect to P .
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The ordering is based on the comparison of the directed concentration curves

corresponding to the two pairs being compared: for P,P ′ ∈ P, Q,Q′ ∈ Q,

(P,Q) �C (P ′, Q′) iff Cϕ

(P,Q) ≥ Cϕ

(P ′,Q′).

If P is equal to Q and consists of all probability measures on (Ω,A) then

every pair (P,Q) with Q completely left to P is a smallest element for �C, and

every pair (P,Q) with Q completely right to P is a largest element for �C. If

ϕ = id and Ω = R then �C is equal to ≤st for pairs of measures:

(P,Q) ≤st (P ′, Q′) if Q is more left to P than Q′ to P ′.

5.2. Grade transformation of a random variable. Let X and Y be

continuous random variables on (R,B) with distribution functions F and H, re-

spectively, such that H ≪ F . Then the graph of the distribution function of

the random variable F (Y ) coincides with the directed concentration curve for the

pair (X,Y ) (we use the notation C(X,Y ) instead of C(P,Q) when X ∼ P , Y ∼ Q):

C(X,Y )(u) = H(F−1(u)) for u ∈ (0, 1),

where F−1(u) = inf{t : F (t) ≥ u}. The random variable F (Y ) will be called

the grade transformation of Y with respect to X, and C(X,Y ) will be called the

grade distribution function of Y with respect to X. These two notions will now

be generalized to arbitrary pairs of real-valued variables X and Y .

Definition 5.2.1 (cf. Szczesny (1991)). For any random variables X, Y on

(R,B) we say that YX is a grade transformation of Y with respect to X if it is a

random variable on [0, 1] with distribution function

H∗(u) =
∫

R

F ∗(x, u) dH(x),

where

F ∗(x, u) =





1 if F (x+) ≤ u,
(u− F (x−))/(F (x+) − F (x−)) if F (x−) ≤ u < F (x+),

0 if F (x−) > u.

Obviously, a grade transformation of X with respect to X is uniform on [0, 1].
The function F ∗ is the restriction to the set R ×{(0, u) : u ∈ (0, 1)} of a suitable

transition probability function defined on the cartesian product of R and the Borel

field of subsets of [0, 1]. This random transformation of Y onto YX by means of

F ∗ is in the continuous case realized by F ; in this case

F ∗(x, u) =

{
1 if u ≥ F (x),
0 otherwise,

H∗(u) = H(F−1(u)), YX = F (Y ).
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If X and Y are discrete random variables with distributions (p1, . . . , pk), (q1, . . .
. . . , qk) then

F ∗(i, u) =





(1/pi)ν([0, u] ∩ [
∑i−1

j=1 pj ,
∑i

j=1 pj ])

for i ∈ {1, . . . , k} such that pi > 0 and u ∈ (0, 1),

0 for i ∈ {1, . . . , k} such that pi = 0 and u <
∑i−1

j=1 pj ,

1 for i ∈ {1, . . . , k} such that pi = 0 and u ≥
∑i−1

j=1 pj ,

where ν is the Lebesgue measure. It follows that if pi > 0 for i = 1, . . . , k then

H∗(u) =

k∑

i=1

F ∗(i, u)qi

=





(q1/p1)u for u ≤ p1,∑i−1
j=1 qj + (qi/pi)(u−

∑i−1
j=1 pj)

for
∑i−1

j=1 pj < u ≤
∑i

j=1 pj and i = 2, . . . , k.

It follows from Szczesny (1991) that for any random variables X, Y with

distributions F , H on (R,B) the graph of the distribution function H∗ of the

grade transformation of Y with respect to X lies on the directed concentration

curve C(F,H).

Moreover, for any random variable X with distribution F the Lorenz curve

LX is the distribution function of the grade transformation of X(1) with respect

to X, where X(1) is the random variable with distribution F (1) given by (2.2.3).

5.3. Correlation and ratio curves. We mentioned in Sec. 3.1 that depen-

dence can be investigated as divergence between two distributions on (Ω,B); in

particular: (P, λX
P ) when X is a ratio random variable; (P, λY

P ) when Y is a ratio

random variable; (λX
P , λ

Y
P ) when both variables are ratio variables. Now, we are

interested in directed divergence of Y from X: we want to know whether there

exists a tendency that smaller values of Y coappear with smaller values of X
(or that smaller values of Y coappear with greater values of X). Therefore, we

should consider the measurable space ((R+)2,B2) and the function ϕ(x, y) = x.
It follows that

(x1, y1) �ϕ (x2, y2) if x1 ≤ x2

and Aϕ
z = {(x, y) : x ≤ z} for z ∈ [0,∞].

We now consider the following curves concerning directed divergence:

(1) Cϕ

(P,Q) for P = PXY , Q = λY
PXY

, given by

{(PXY (Aϕ
z ), λY

PXY
(Aϕ

z )) : z ∈ [0,∞]},

(2) Cϕ

(P,Q) for P = λX
PXY

, Q = λY
PXY

, given by

{(λX
PXY

(Aϕ
z ), λY

PXY
(Aϕ

z )) : z ∈ [0,∞]},

each curve completed if necessary by linear interpolation.
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These two curves were mentioned by Taguchi (1987) in his study on the con-

centration surface as some projection curves corresponding to this surface. The

first curve was called the correlation curve and the second the ratio curve.

It is easy to see that the correlation and ratio curves are the sets
{(

PX(X ≤ z),
1

E(Y )
E(Y ;X ≤ z)

)
: z ∈ [0,∞]

}

=

{(
PX(X ≤ z),

1

E(Y )
E(E(Y | X);X ≤ z)

)
: z ∈ [0,∞]

}

and
{(

1

E(X)
E(X;X ≤ z),

1

E(Y )
E(Y ;X ≤ z)

)
: z ∈ [0,∞]

}

=

{(
1

E(X)
E(X;X ≤ z),

1

E(Y )
E(E(Y | X);X ≤ z)

)
: z ∈ [0,∞]

}
,

respectively. Consequently, the correlation curve coincides with the directed di-

vergence curve Cϕ

(P,Q) for ϕ(x) = x, P = PX and Q = λ
r(X)
PX

, where r(x) =

E(Y |X = x). Similarly, the ratio curve is the directed divergence curve Cϕ

(P,Q)

for ϕ(x) = x, P = λPX
, Q = λ

r(X)
PX

. We simplify the notation for the correlation

and ratio curves, putting

Ccor[(X,Y )] = C[PX , λ
r(X)
PX

], Cratio[(X,Y )] = C[λX
PX
, λ

r(X)
PX

].

We have

Ccor[(X,Y )]

=

{( z∫

0

fX(x) νX(dx),
1

E(Y )

z∫

0

r(x)fX(x) νX(dx)

)
: z ∈ [0,∞]

}
,

Cratio[(X,Y )]

=

{(
1

E(X)

z∫

0

xfX(x) νX(dx),
1

E(Y )

z∫

0

r(x)fX(x) νX(dx)

)
: z ∈ [0,∞]

}
,

completed if necessary by linear interpolation.

The density ratios for the univariate distributions compared by means of the

correlation and ratio curves are, respectively,

r(x)

E(Y )
and

r(x)

xE(Y )

for any x such that fX(x) > 0.

The properties of the two curves are presented in Theorems 5.3.1 and 5.3.2.

Some of the properties of the correlation curve follow from its connections with

the monotone dependence function introduced for pairs (X,Y ) of nondegenerate
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random variables, in the continuous case in Kowalczyk and Pleszczyńska (1977)

and in the general case in Kowalczyk (1977), as

µ+
Y,X(u) =

uE(Y ) − E(Y ;X < xu) − r(xu)(u− P (X < xu))

uE(Y ) − E(Y ;Y < yu) − yu(u− P (Y < yu))
,

µ−
Y,X(u) =

uE(Y ) −E(Y ;X < xu) − r(xu)(u− P (X < xu))

E(Y ;Y > y1−u) − uE(Y ) + y1−u(u− P (Y > y1−u))
,

and

µY,X(u) =

{
µ+

Y,X(u) if µ+
Y,X(u) ≥ 0,

µ−
Y,X(u) if µ−

Y,X(u) < 0,

for u ∈ (0, 1).

By straightforward transformations,

(5.3.1) Ccor[(X,Y )](u) =
E(Y ;X < xu) + E(Y | X = xu)(u− P (X < xu))

E(Y )

=

{
u(1 − µ+

Y,X(u)) + µ+
Y,X(u)LY (u) if µ+

Y,X(u) ≥ 0,

u(1 + µ−
Y,X(u)) − µ−

Y,X(u)L−
Y (u) if µ−

Y,X(u) < 0

for u ∈ (0, 1).

Theorem 5.3.1. (i) Ccor[(X,Y )](u) ≤ u for all u ∈ [0, 1] (i.e. the correlation

curve lies under the 45◦ line) iff

E(Y | X ≤ x) ≤ E(Y ) for all x,

and Ccor[(X,Y )](u) ≥ u for all u ∈ [0, 1] iff

E(Y | X ≤ x) ≥ E(Y ) for all x.

(ii) LY ≤ Lr(X) ≤ Ccor[(X,Y )] ≤ L−
r(X) ≤ L−

Y , where for any nonnegative

random variable Z,

L−
Z (u) = 1 − LZ(1 − u) for u ∈ [0, 1].

(iii) We have

Ccor[(X,Y )] =





Lr(X) iff r is nondecreasing ,

L−
r(X) iff r is nonincreasing ,

LY iff there exists a nondecreasing function g
such that Y = g(X),

L−
Y iff there exists a nonincreasing function g

such that Y = g(X).

(iv) Assume that there exists an increasing function g+ such that g+(X) ∼ Y ;

then for each ̺ ∈ [0, 1] the necessary and sufficient condition for

Ccor[(X,Y )](u) = u(1 − ̺) + ̺LY (u)
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is that the regression function m+ of Y on g+(X) is of the form

m+(x) = ̺x+ (1 − ̺)E(Y ).

Analogously , if there exists an increasing function g− such that g−(X) ∼ (−Y ),

then for each ̺ ∈ [−1, 0] the necessary and sufficient condition for

Ccor[(X,Y )](u) = u(1 + ̺) − ̺L−
Y (u)

is that regression function m− of Y on g−(X) is of the form

m−(x) = ̺x+ (1 + ̺)E(Y ).

(v) Let (X,Y ), (X ′, Y ′) satisfy X ′ ∼ X, Y ′ ∼ Y . Then the inequality

(5.3.2) Ccor[(X,Y )] ≥ Ccor[(X
′, Y ′)]

holds if and only if

E(Y | X ≤ x) ≥ E(Y ′ | X ′ ≤ x) for all x ∈ R
+.

Moreover , equality holds in (5.3.2) if and only if

E(Y | X = x) = E(Y ′ | X ′ = x) for all x ∈ R
+.

(vi) For any u ∈ (0, 1), the equality

Ccor[(X,Y )](u) = LY (u)

holds if and only if either

P (X ≥ xu, Y < yu) = P (X ≤ xu, Y > yu) = 0

and P (X < xu) < u < P (X ≤ xu), or

P (X > xu, Y < yu) = P (X ≤ xu, Y > yu) = 0

and P (X ≤ xu) = u, or

P (X ≥ xu, Y < yu) = P (X < xu, Y > yu) = 0

and P (X < xu) = u < P (X ≤ xu).

A similar condition can be formulated for

Ccor[(X,Y )](u) = L−
Y (u).

(vii) If the sequence (Pn, n = 1, 2, . . .) of distributions of points (Xn, Yn) is

weakly convergent to the distribution P of a pair (X,Y ) such that for some a ∈
R

+, P (Y ≤ a) = 1, then

lim
n→∞

Ccor[(Xn, Yn)](u) = Ccor[(X,Y )](u) for every u ∈ (0, 1).

P r o o f. (i) Ccor[(X,Y )](u) ≤ u for all u ∈ (0, 1) ⇔ µ+
Y,X(u) ≥ 0 for all

u ∈ (0, 1) ⇔ E(Y |X ≤ x) ≥ E(Y ) for all x.
Similarly, Ccor[(X,Y )](u) ≥ u for all u ∈ (0, 1) ⇔ µ−

Y,X(u) ≤ 0 for all u ∈
(0, 1) ⇔ E(Y |X ≤ x) ≥ E(Y ) for all x.

(ii) See 3.1.1 and (5.1.1).
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(iii) The first two equalities follow from Theorem 5.1.1(iii)–(iv). Further, in

view of (5.3.1), Ccor[(X,Y )] ≡ LY ⇔ µ+
Y,X ≡ 1 ⇔ there exists a nondecreasing

function g such that Y = g(X).

Similarly, Ccor[(X,Y )] ≡ L−
Y ⇔ µ−

Y,X ≡ −1 ⇔ there exists a nonincreasing

function g such that y = g(X).

(iv)–(vi) These follow immediately from (5.3.1) and from the respective pro-

perties of the monotone dependence function (Kowalczyk (1977), p. 354).

Corollary 5.3.1. (i) If P (Y ≤ y | X = x1) ≥ (resp. ≤) P (Y ≤ y | X = x2)

for all x1 < x2, then

Ccor[(X,Y )] = L[PX , λ
r(X)
PX

] (resp. = L−[PX , λ
r(X)
PX

]).

(ii) Let (X+, Y +) (resp. (X−, Y −)) be the pair distributed according to the

upper (lower) Fréchet bound of (X,Y ), and let r+ (resp. r−) be the regression

function of Y + (resp. Y −) on X+ (resp. X−). Then

LY + ≤ Lr+(X+) = Ccor[(X
+, Y +)] ≤ Ccor[(X,Y )]

≤ Ccor[(X
−, Y −)] = L−

r−(X−)
≤ L−

Y −
.

(iii) L[PX , λ
r(X)
PX

](u) ≡ Ccor[(X,Y )](u) ≡ L−[PX , λ
r(X)
PX

](u) ≡ u iff

E(Y |X = x) = E(Y ) for all x.

P r o o f. (i) The first (resp. second) inequality implies that r is nondecreasing

(resp. nonincreasing); then the equality of C and L (resp. L−) follows from The-

orem 5.3.1.

(ii) follows from the inequalities

(5.3.3) E(Y + | X+ ≤ x) ≤ E(Y | X ≤ x) ≤ E(Y − | X− ≤ x)

and from the fact that r+ is nondecreasing while r− is nonincreasing.

Theorem 5.3.2. For the ratio curve Cratio[(X,Y )] we have:

(i) Cratio(u) = Ccor(L
−1
X (u)).

(ii) If r(x)/x is nondecreasing , then

Cratio[(X,Y )] = L[λX
PX
, λ

r(X)
PX

].

(iii) If r(x)/x is nonincreasing , then

Cratio[(X,Y )] = L−[λX
PX
, λ

r(X)
PX

].

(iv) In the set of pairs of positive random variables (X,Y ) with fixed margi-

nals, the ordering based on ratio curves is equivalent to the ordering of monotone

dependence:

Cratio[(X,Y )] ≤ Cratio[(X
′, Y ′)] iff E(Y | X ≤ x) ≤ E(Y ′ | X ′ ≤ x).
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So, if (X+, Y +), (X−, Y −) are random variables distributed according to upper

and lower Fréchet distributions, respectively , then

Cratio[(X
+, Y +)] ≤ Cratio[(X,Y )] ≤ Cratio[(X

−, Y −)].

(v) Cratio(t) = t iff E(Y |X = x) = ax for some a > 0. In particular , for

Y = aX the ratio curve lies on the 45◦ line.

(vi) If E(Y |X = x) = E(Y ) then the respective ratio curve is isometric to the

Lorenz curve LX :

Cratio(u) = L−1
X (u) for u ∈ (0, 1).

P r o o f. (i) follows immediately from the definitions of these curves.

(ii)–(iii) follow from Theorem 5.1.1(iii)–(iv) and from the equality

dλ
r(X)
PX

dλX
PX

(x) =
r(x)

xE(Y )

for x such that fX(x) > 0.

(iv) The first part of (iv) follows immediately from the comparison of

Cratio[(X,Y )](u) with Cratio[(X
′, Y ′)](u). The second part follows from the in-

equalities (5.3.3).

(v) Cratio(u) = u iff
∫ t

0
(E(X)r(x)−E(Y )x)fX(x) νX(dx) = 0 for every t ∈ R

+

iff r(x) = xE(Y )/E(X).

(vi) follows from Corollary 5.3.1(iii) and the property (i) of the theorem.

5.4. Directed departure from proportionality. In Chapter 4 we inve-

stigated the problem of proportionality of elected representation. The measures

introduced there referred to absolute departure from proportionality, with no

regard to the trend of over- or under-representation according to the size of the

electorate. More precisely, our procedures were invariant with respect to any orde-

ring of electorates. Now, we will measure directed departure from proportionality,

involving electorate sizes. This approach was investigated in Ciok et al . (1992)

and in Bondarczuk et al . (1994). We retain the notation of Sec. 4.1.

Let Ω = {ω1, . . . , ωs} where ω1 ≺ . . . ≺ ωs. For a given vector indicating the

sizes of electorates,

x = (x1, . . . , xs) = (X(ω1), . . . ,X(ωs)),
∑

i

xi = n,

and given the representative size m ≤ n, we introduce in Y(x,m) an ordering �x
C

which corresponds to “left departure” from proportionality with respect to x.

Definition 5.4.1. For y, y′ ∈ Y(x,m) we say that y exhibits more left depar-

ture from proportionality to x than y′ (written y �x
C y′) if

Cϕ

(λX ,λY ) ≥ Cϕ

(λX ,λY ′ )

for ϕ(ωi) = i.
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The ordering �x
C is equivalent to the stochastic ordering of the measures λY ,

λY ′ , where

(5.4.1) λY ≤st λY ′ iff

r∑

i=1

yi ≥

r∑

i=1

y′i for r = 1, . . . , s.

This formalizes the intuitive notion of y being “left” to y′.

If x1 ≤ . . . ≤ xs then “left departure” from proportionality means that y
tends to overrepresent small electorates. In Y(x,m) there exist smallest and lar-

gest vectors for the ordering �x
C, i.e. vectors whose components are maximally

transformed to the left and to the right, respectively. The smallest vector ymin

has components

(5.4.2) ymin
i = min

(
m−

i−1∑

j=1

ymin
j , xi

)
, i = 1, . . . , s,

0∑

1

= 0,

and the largest vector ymax has components

(5.4.3) ymax
s−i = min

(
m−

s∑

j=s−i+1

ymax
j , xs−i

)
, i = 0, . . . , s− 1,

s∑

s+1

= 0.

The curve Cϕ

(λX ,λ
Y min ) is concave, and

Cϕ

(λX ,λ
Y min )(t) = L−

(λX ,λ
Y min )(t) for t ∈ [0, 1].

On the other hand, Cϕ

(λX ,λY max ) is convex, and

Cϕ

(λX ,λY max )(t) = L(λX ,λY max )(t) for t ∈ [0, 1].

Thus, for any y ∈ Y(x,m),

Cϕ

(λX ,λY max )(t) ≤ Cϕ

(λX ,λY )(t) ≤ Cϕ

(λX ,λ
Y min )(t) for t ∈ [0, 1].

Ideal proportionality is represented by the vector

y =

(
m

n
x1, . . . ,

m

n
xs

)

whose components are positive integers; in this case we have

Cϕ

(λX ,λY )(t) = t for t ∈ [0, 1].

Now we will investigate once more the methods of Adams,Dean, Hill, Webster

and Jefferson, mentioned previously in Sec. 4.2. They were presented in Baliński

and Young (1982) as the so-called divisor methods. Each divisor method cor-

responds to a real-valued strictly increasing function d defined on the set N of

positive integers such that for any a ∈ N, a ≤ d(a) ≤ a + 1. The function d
describes a particular way of rounding any nonnegative number z up or down to

the neighbouring integer. This result of rounding, denoted by [z]d, is an integer a
satisfying d(a− 1) ≤ z ≤ d(a); it is unique unless z = d(a), in which case it takes
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on either of the values a or a+ 1. We say that a vector y is obtained from x and

m by a divisor method corresponding to d if

yi =

[
m

n
xi

]

d

for i = 1, . . . , s, and

s∑

i=1

yi = m.

The divisor methods considered in Baliński and Young (1982) are:

Adam’s rule: dA(a) = a,

Dean’s rule: dD(a) =
a(a+ 1)

a+ 1/2
,

Hill’s rule: dH(a) =
√
a(a+ 1),

Webster’s rule: dW(a) = a+
1

2
,

Jefferson’s rule: dJ(a) = a+ 1.

Baliński and Young introduced an ordering, say �BY, according to which a me-

thod M ′ is more left-biased than a method M (M ′ �BY M) if for any fixed s,
x, m, and any pair (y = (y1, . . . , ys), y

′ = (y′1, . . . , y
′
s)) such that y is obtained

under M and y′ under M ′, the implication

(5.4.4) i < j, x1 ≤ . . . ≤ xs ⇒ y′i > yi or y′j ≤ yj

holds for any i, j ∈ {1, . . . , s}. They proved that the five methods of apportion-

ment (Adams’s through Jefferson’s) are ordered according to �BY:

MA �BY MD �BY MH �BY MW �BY MJ.

This is due to the fact that (see Baliński and Young (1982))

dA(a)

dA(b)
>
dD(a)

dD(b)
>
dH(a)

dH(b)
>
dW(a)

dW(b)
>
dJ(a)

dJ(b)

for all integers a > b ≥ 0.

It is worth noting that (5.4.4) is a very strong formalization of the intuitive

notion of the vector y′ being “left” to the vector y. In particular, it is stronger

than (5.4.1), since

y′ �BY y ⇒ y′ �x
C y

and the two orderings are not equivalent (cf. Ciok et al . (1992)).

6. Numerical measures relating to divergence

6.1. Numerical inequality measures. We start with a short reference to

the finite population case considered in Sec. 2.1 and, in particular, to the axioms
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concerning measures of inequality on D =
⋃∞

n=1Dn, where

Dn =
{
x ∈ R

n : xi ≥ 0,

n∑

i=1

xi > 0
}
.

An index I defined on D with values in any set of comparison points ordered by

some binary relation � (which is reflexive, transitive and antisymmetric) is said

to be consistent with these axioms if

(i) I(x) = I(ax) for every a > 0,

(ii) I(x1, . . . , xn) = I(xi1 , . . . , xin
),

(iii) x � y, x 6≡ y ⇒ I(x) < I(y),
(iv) I(z(1), . . . , z(m))=I(x1, . . . , xn) where z(i)=(x1, . . . , xn) for i=1, . . . ,m.

Axioms (i)–(iv) are satisfied by the Lorenz curve, which is a function-valued

measure of inequality. Foster (1985) proved that a parameter I satisfies (i)–(iv)

if and only if I is Lorenz consistent , i.e. for all x, y ∈ D,

(6.1.1) LX ≥ LY , LX 6= LY ⇒ I(x) < I(y), and LX = LY ⇒ I(x) = I(y),

where X and Y are discrete random variables corresponding to equally probable

outcomes for each object in the population.

Moreover, I satisfies (i)–(iii) if and only if I is Lorenz consistent on each Dn

(this refers to the case when the population size is known).

Now we turn back to the general notation, suitable both for finite and infi-

nite populations. Evidently, the Lorenz consistency property (6.1.1) can be easily

generalized. This property holds for the well-known numerical measure of inequ-

ality, called the Gini inequality index. It is defined as twice the area between the

Lorenz curve and the diagonal:

G(X) = 2

1∫

0

(t− LX(t)) dt.

Among many possible formulas for G(X), we mention the following:

G(X) = 2

1∫

0

1∫

0

|t− t′| dPX(t) dPX (t′).

Assume that X is continuous with distribution function F , and put X ′ =

F (X(1)), where X(1) is the random variable with distribution F (1) defined by

(2.2.3) in Sec. 2.2. Then

(6.1.2) G(X) =
2

E(X)
cov(X,F (X)) =

2

E(X ′)
cov(X ′, LX(X ′)).

The first equality is proved e.g. in Lerman and Yitzaki (1984) and the second is a

particular case of the first for the random variable X ′ with distribution function

LX . The random variable X ′ = F (X(1)) was shown in Sec. 5.2 to be the grade

transformation of X(1) with respect to X for a continuous random variable X,
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and it was denoted there by X
(1)
X . Now, let us drop the assumption of continuity

and let X ′ = X
(1)
X . Then it is of course still true that

G(X) =
2

E(X ′)
cov(X ′, LX(X ′)).

It follows from the first part of (6.1.2) that for Y ≪ X,

G(YX) =
2

E(YX)
cov(YX , C(P,Q)(YX)).

Another numerical measure which is widely used although it is not Lorenz consi-

stent is the Pietra inequality index:

D(X) = max
t∈[0,1]

(t− LX(t)) =
1

2E(X)

1∫

0

|t−EX| dPX (t).

This index satisfies a condition weaker than (6.1.1), namely

LX ≥ LY ⇒ D(X) ≤ D(Y ).

Generally, in view of (2.3.1), inequality indices of the form I(X) = E(Φ(X))

for some function Φ which is convex and continuous on [0,∞) satisfy this weaker

condition:

X �L Y ⇒ I(X) ≤ I(Y ).

For the Gini and Pietra indices, the functions Φ are

ΦGini(t) =
1

4

∫
|t− t′| dPX (t′), ΦPietra(t) = |t− 1|.

6.2.Numerical measures of divergence. This section concerns divergence

considered in Chapter 1. Indices concerning directed divergence introduced in

Chapter 5 will be dealt with in the next section. To distinguish between the two

types of indices, those appearing in this section will be referred to as measures of

absolute divergence.

In the case of absolute divergence, the counterpart of the Lorenz consistency

property (6.1.1) is strict monotonicity with respect to the ordering �NP. An index

τ : P ×Q → R
+ is said to be strictly consistent with respect to �NP if

L(P,Q) ≥ L(P ′,Q′), L(P,Q) 6= L(P ′,Q′) ⇒ τ(P,Q) < τ(P ′, Q′).

Similarly, the weak Lorenz consistency of τ is equivalent to monotonicity with

respect to �NP:

L(P,Q) ≥ L(P ′,Q′) ⇒ τ(P,Q) ≤ τ(P ′, Q′).

We can exploit the links between divergence and inequality, presented in

Sec. 2.4. Let Q ≪ P , Z ∼ P , h = dQ/dP , and let E(Φ(U)) be an inequality

index for U = h(Z). Then the index τ given by

τ(P,Q) = EΦ(h(Z))

is an index of divergence of Q from P .
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Generally (omitting the assumption Q ≪ P ), the divergence indices of the

form

(6.2.1) τ(P,Q) = E∗Φ(h(Z))

are monotone with respect to �NP. The Gini divergence index

G(P,Q) =
1

2

∫ ∫
|h(t) − h(t′)| dP (t) dP (t′) +Q(h = ∞)

is strictly monotone with respect to �NP. The Pietra divergence index

D(P,Q) =
1

2

∫
|h(t) − 1| dP (t) +Q(h = ∞)

is monotone with respect to �NP but not strictly monotone.

Divergence measures can be represented in many ways. For discrete distribu-

tions on {1, . . . , s} defined by the vectors p = (p1, . . . , ps) and q = (q1, . . . , qs) the

Gini divergence index (which will be denoted by G(p, q)) is given by

(6.2.2) G(p, q) =
1

2

∑

i,j

|piqj − qipj | = 1 −
s∑

j=1

qi(j)

(
pi(j) + 2

s∑

r=j+1

pi(r)

)
,

where (i(1), . . . , i(s)) is a permutation of (1, . . . , s) such that

qi(1)

pi(1)
≤ . . . ≤

qi(s)

pi(s)
.

The right-hand side of (6.2.2) relates to the geometrical interpretation of the Gini

index as twice the area between the Lorenz curve and the 45◦ line. Many other

equivalent forms are also in use.

The Pietra divergence index is given by

D(p, q) =
1

2

s∑

i=1

|pi − qi|.

Examples of other divergence indices which are monotone with respect to �NP

but are not of the form (6.2.1) are given in Ali and Silvey (1966), for example

τ(P,Q) = 1 − α∗,

where α∗ = a12(δκ,s) (see Sec. 1.1) for κ, s such that a12(δκ,s) = a21(δκ,s).

6.3. Numerical measures of directed divergence. In this section we

consider numerical measures of divergence of Q from P directed according to ϕ,

which are connected with the ϕ-directed concentration curve Cϕ

(P,Q) (and with the

ordering �C), just as the respective numerical measures of absolute divergence

are connected with the curve L(P,Q) (and with the ordering �NP). Let τ(P,Q)

be a numerical measure of absolute divergence (e.g., G(P,Q) or D(P,Q)) and

let τϕ(P,Q) be the corresponding numerical measure of directed divergence. It

should take values in [−1, 1] and have the following properties:



46 T. Kowalczyk

(i) τϕ(P,Q) is monotone with respect to �C, i.e.

(P,Q) �C (P ′, Q′) ⇒ τϕ(P,Q) ≤ τϕ(P ′, Q′),

(ii) τϕ(P,Q) = τ(P,Q) iff the ratio dQ
dP

is nondecreasing with respect to �ϕ,

(iii) τϕ(P,Q) = −τ(P,Q) iff the ratio dQ
dP

is nonincreasing with respect to �ϕ,

(iv) τϕ(P,Q) = +1 iff Q is completely right to P ,

(v) τϕ(P,Q) = −1 iff Q is completely left to P ,

(vi) τϕ(P,Q) = 0 if P = Q.

Properties (i)–(vi) indicate that τϕ(P,Q) would be a valuable supplement to

τ(P,Q). The pair of indices (τϕ(P,Q), τ(P,Q)) serves to evaluate how strongly

Q differs from P and to what extent this departure is explained by the fact that

Q is “right” (“left”) to P .

The directed Gini divergence index Gϕ(P,Q) is defined as twice the difference

between the two areas: the first one between the 45◦ line and the part of the curve

Cϕ which lies above it, and the second between the 45◦ line and the remaining

part of Cϕ:

Gϕ(P,Q) = 2

1∫

0

(t− Cϕ

(P,Q)(t)) dt.

It satisfies postulates (i)–(vi).

It seems that the directed version of the Pietra divergence index has not been

introduced yet. We propose the following definition, formulated first under the

assumption that P and Q are defined on Ω = R
+, have densities p, q with respect

to the Lebesgue measure, and ϕ(x) = x for x ∈ R
+.

Let F , H be the distributions induced by the measures P , Q, respectively.

The Pietra index D(P,Q) can be represented in this case as

D(P,Q) = D(p, q) =
1

2

∫

R
+

|p(t) − q(t)| dt

=
1

2

( ∫

{t:H(t)≥F (t)}

|p(t) − q(t)| dt +
∫

{t:H(t)≤F (t)}

|p(t) − q(t)| dt
)
.

The first term of the right-hand side represents the mass of probability in the

distribution Q which should be transferred from left to right in order to transform

Q onto P . The second term has an analogous interpretation for the transfer from

right to left. Thus, the directed Pietra index is defined to be

(6.3.1) Dd(P,Q) =
1

2

∫

{t:H(t)≥F (t)}

|p(t) − q(t)| dt −
1

2

∫

{t:H(t)≤F (t)}

|p(t) − q(t)| dt.

Since the curve C(P,Q) is the set

{(F (t),H(t)) : t ∈ (0,∞)},
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the sets {t : H(t) ≥ F (t)} and {t : H(t) ≤ F (t)} are of course determined by

the segments of C(P,Q) lying above the diagonal y = x and below it, respectively.

If C(P,Q) lies below (resp. above) the diagonal then Dd(P,Q) = D(P,Q) (resp.

= −D(P,Q)).

We now turn to the case when P and Q are atomic, defined on {1, . . . , s} by

p = (p1, . . . , ps), q = (q1, . . . , qs). Let

F (i) =

i∑

j=1

pj , H(i) =

i∑

j=1

qj , for i = 0, . . . , s,

0∑

1

= 0,

and let DL(P,Q) and DR(P,Q) be the (discrete) counterparts of the “left” and

“right” components of the sum (6.3.1) with the same interpretation:

DL(P,Q) =
1

2

s∑

i=1

|pi − qi|ψ[H(i−1)≥F (i−1),H(i)≥F (i)]

+

s∑

i=1

(H(i − 1) − F (i− 1))ψ[H(i−1)>F (i−1),H(i)<F (i)]

+

s∑

i=1

(H(i) − F (i))ψ[H(i−1)<F (i−1),H(i)>F (i)],

DR(P,Q) =
1

2

s∑

i=1

|pi − qi|ψ[H(i−1)≤F (i−1),H(i)≤F (i)]

+

s∑

i=1

(F (i) −H(i))ψ[H(i−1)>F (i−1),H(i)<F (i)]

+

s∑

i=1

(F (i − 1) −H(i− 1))ψ[H(i−1)<F (i−1),H(i)>F (i)].

where ψ[ · ] is the indicator function.

The indices DL and DR are formed as follows: if H(i− 1) ≥ F (i− 1), H(i) ≥
F (i) (i.e. the points (F (i − 1),H(i − 1)), (F (i),H(i)) lie above the diagonal

y = x), then the difference |pi − qi| enters DL(P,Q); if these points lie below

the diagonal, then |pi − qi| enters DR(P,Q); if F (i− 1) < H(i− 1), F (i) > H(i)
(i.e. (F (i − 1),H(i − 1)) lies above the diagonal, and (F (i),H(i)) lies below it)

then |pi − qi| = (H(i− 1)−F (i− 1))+ (F (i)−H(i)); (H(i− 1)−F (i− 1)) enters

DL(P,Q) while (F (i) −H(i)) enters DR(P,Q). This justifies the definition

Dϕ(P,Q) = DR(P,Q) −DL(P,Q).

This index has values in [−1, 1] and satisfies (i)–(v).

6.4. Numerical measures of dependence. We concentrate here on the

Gini index of monotone dependence based on the correlation curve (cf. Sec. 5.3).

According to Sec. 5.3, the correlation curve of Y with respect to X is the directed
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divergence curve for the pair of distributions (PX , λ
r(X)
PX

), where r is the regression

function of Y on X. Then the directed Gini index for this pair of distributions

is a measure of monotone dependence of Y on X. But in this case the situation

is slightly different from that described in Sec. 6.3. As said in Sec. 5.3, all cor-

relation curves of Y on X appear in the area bounded by two curves: LY and

L−
Y . This means that measures of dependence must be connected with measures

of inequality of Y .

It follows from Theorem 5.3.1(iii) that for ϕ(x, y) = x we have

−G(Y ) ≤ −G(r(X)) ≤ Gϕ(PX , λ
r(X)
PX

) ≤ G(r(X)) ≤ G(Y ).

Therefore we define the correlation curve Gini index as

γ(X,Y ) =
Gϕ(PX , λ

r(X)
PX

)

G(Y )
.

Proposition 6.4.1. The correlation curve Gini index γ has the following pro-

perties:

(i) −1 ≤ γ(X,Y ) ≤ 1.

(ii) γ(X,Y ) = +1 iff there exists a nondecreasing function g such that Y =

g(X).

(iii) γ(X,Y ) = −1 iff there exists a nonincreasing function g such that Y =

g(X).

(iv) γ(X,Y ) = 0 if E(Y | X = x) = E(Y ).

(v) Under the assumptions of Theorem 5.3.1(iv),

γ(X,Y ) = ̺ if m+(x) = ̺x+ (1 − ̺)E(Y ) and ̺ ∈ [0, 1] or

if m−(x) = ̺x+ (1 + ̺)E(Y ) and ̺ ∈ [−1, 0].

(vi) Let (X,Y ), (X ′, Y ′) satisfy X ′ ∼ X, Y ′ ∼ Y . Then

E(Y | X ≤ x) ≥ E(Y ′ | X ′ ≤ x) ⇒ γ(X,Y ) ≤ γ(X ′, Y ′).

(vii) We have

γ(X,Y ) =





G(r(X))

G(Y )
iff r is nondecreasing ,

−
G(r(X))

G(Y )
iff r is nonincreasing.

(viii) If X, Y are continuous random variables then

γ(X,Y ) =
cov(Y, FX(X))

cov(Y, FY (Y ))
.
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P r o o f o f (viii). We compute

Gϕ(PX , λ
r(X)
PX

) = 1 − 2

∞∫

0

λ
r(X)
PX

(u) dPX(u) = −1 + 2

∞∫

0

PX(u) dλ
(r(X)
PX

(u)

= −1 +
2

E(Y )

∞∫

0

FX(u)r(u)fX(u) du

=
2

E(Y )
cov(FX(X), r(X)) =

2

E(Y )
cov(FX(X), Y ).

We note that Schechtman and Yitzhaki (1987) considered the quantity

Γ (X,Y ) =
cov(Y, FX(X))

cov(Y, FY (Y ))

as a measure of association between two random variables with a continuous

bivariate distribution FX,Y .

6.5. Numerical measures of departures from proportional represen-

tation. In this section we will consider once more the problem of proportional

representation using the notation introduced in Sec. 4.1. Election data are there

described by vectors x = (x1, . . . , xs) and y = (y1, . . . , ys) where
∑

i xi = n,∑
i yi = m, yi ≤ xi, xi, yi are positive integers. Let

pi =
xi

n
, qi =

yi

m
, i = 1, . . . , s.

According to formula (6.2.2) the Gini divergence index adjusted to proportional

representation data is

G(x, y) = 1 −
1

nm

s∑

j=1

yi(j)

(
xi(j) + 2

s∑

r=j+1

xi(r)

)
,

where (i(1), . . . , i(s)) is a permutation of (1, . . . , s) such that

yi(1)

xi(1)
≤ . . . ≤

yi(s)

xi(s)
.

The notation G(x, y) is used instead of G(p, q) since in this way we retain the

information on n and m.

Analogously, for the Pietra divergence index we have

D(x, y) =
1

2

s∑

i=1

∣∣∣∣
yi

m
−
xi

n

∣∣∣∣.

Both indices take values in the interval [0, 1). They are 0 if and only if the pro-

portionality is ideal: yi = m
n
xi. But in general m

n
xi are not integers, and therefore

G and D take values in a subset of (0, 1).
It would be interesting to find, for any given (x,m) and for a chosen numerical

divergence index, the minimal (maximal) elements for the ordering �x (defined
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in Sec. 4.2 (4.3)) for which this index attains its smallest (largest) possible value.

We are only able to do this in the case of the Pietra divergence index D(x, ·).
It follows from Sec. 4.2 that the smallest value of D(x, ·) is only taken on at

each vector y ∈ Y(x,m) which is obtained by the Hamilton rule (formula 4.2.2).

On the other hand, we will show below that the largest value of D(x, ·) is taken

on at some (not necessarily all) elements of Y1(x,m). According to Sec. 4.3, this

set contains all maximal elements for �x. We do not exclude the possibility that

the largest value of D(x, ·) is also attained at some y 6∈ Y1(x,m).

Let y1 ∈ Y1(x,m) be the maximal element for �x. If for every j = 1, . . . , s,
y1

j = 0 or y1
j = xj then of course y1 is the largest element, and

D(x, y1) = 1 −
m

n
.

Assume that there exists i0 ∈ {1, . . . , s} such that the components of y1 satisfy

y1
i0

= m0 < xi0 , y1
j = 0 or y1

j = xj for j 6= i0.

It is easy to show that in this case

D(x, y1) = 1 −
m

n
− min

(
m0

m
−
m0

n
,
xi0 −m0

n

)
.

Let

y1
max = arg min

y∈Y1(x,m)

(
min

(
m0

m
−
m0

n
,
xi0 −m0

n

))
,

Dc(x, y) =
D(x, y) −D(x, y0)

D(x, y1
max) −D(x, y0)

.

The index Dc has the following properties:

(i) 0 ≤ Dc(x, y) ≤ 1,

(ii) y �C y′ ⇒ Dc(x, y) ≤ Dc(x, y
′),

(iii) Dc(x, y) = 0 iff y = y0,

(iv) y = y1
max ⇒ Dc(x, y

1
max) = 1.

We have not been able to obtain similar results for G(x, ·). However, it is

known (Duncan and Duncan (1955)) that

1 −
√

1 −G(x, y) ≤ D(x, y) ≤ G(x, y).

But the smallest value of D(x, ·) is achieved for any y0 obtained under the Ha-

milton rule. Thus for any y,

G(x, y) ≥ D(x, y0) =
1

2m

( l∑

r=1

(1 − uir
) +

s∑

r=l+1

uir

)
,

where

ui =
m

n
xi −

[
m

n
xi

]
, i = 1, . . . , s, l =

s∑

i=1

ui
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and (i1, . . . , is) is a permutation of (1, . . . , s) such that

ui1 ≥ . . . ≥ uis
.

Example (see Ciok et al. (1992)). Let x = (10, 25, 35, 50, 65, 115), m = 30.

The following vectors are obtained by the Hamilton rule:

y(1) = (1, 3, 4, 5, 6, 11),

y(2) = (1, 3, 3, 5, 7, 11),

y(3) = (1, 3, 3, 5, 6, 12),

y(4) = (1, 2, 4, 5, 6, 12),

y(5) = (1, 2, 4, 5, 7, 11),

y(6) = (1, 2, 3, 5, 7, 12).

We have

G(x, y(i)) =

{
.0433 for i = 1, 6,
.0467 for i = 2, 3, 4, 5,

D(x, y(i)) = .0333 for i = 1, . . . , 6.

It is worth noting that in the above example the vectors y(i) for i = 1, . . . , 6 are

solutions of the Webster method, y(1) is the solution of the Adams, Dean and Hill

methods, and y(6) is the solution of the Jefferson method.

It remains to introduce the directed counterparts of the numerical measures of

departures from proportional representation, considered in Sec. 6.3. In this case

the function ϕ could be chosen according to the size of the x’s, i.e. ϕ(ωi) = xi; this

would allow us to detect overrepresentation (underrepresentation) with respect

to the size of electorates. This problem was tackled in Bondarczuk et al. (1994)

where the directed version of G(x, y) was introduced:

Gϕ(x, y) = 1 −
1

nm

( s∑

i=1

xiyi + 2

s∑

j=2

j−1∑

i=1

yixj

)
,

where x1 ≤ . . . ≤ xs. Analogously we obtain Dϕ(x, y).
It is interesting to find the smallest and largest values of the directed numerical

measure τϕ. It takes the smallest value for the vector ymin with components given

by (5.4.2), and the largest value for ymax, with components given by (5.4.3).
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Index of symbols

FX distribution function of X
F−1
X

inf{t : FX (t) ≥ y}, 0 < y < 1
r(x) = E(Y |X = x) the value at the point x of the regression function of the random variable

Y on the random variable X
F
(1)

X
F
(1)

X
(t) = (1/E(X))

∫ t
0
u dFX(u) (Sec. 2.2); called the first moment dis-

tribution function

F
(2)

X
F
(2)

X
(t) = (1/E(X))

∫ t
0
(1− FX(s)) ds (Sec. 2.2)

X ∼ P X is distributed according to P
X ∼ Y X and Y have the same distribution
h(ω) = (dQ/dP )(ω) generalized Radon–Nikodym derivative of Q w.r.t. P
LX Lorenz curve for X (Sec. 2.2)
L−
X

upper Lorenz curve for X (Sec. 5.3)
K(P,Q) divergence curve of Q from P (Sec. 1.1)
L(P,Q) concentration curve of Q w.r.t. P (Sec. 1.2)

Cϕ
(P,Q)

ϕ-directed concentration curve of Q w.r.t. P (Sec. 5.1)

C(P,Q) (or C(X,Y ) if X ∼ P, Y ∼ Q) the special case of C
ϕ

(P,Q)
for ϕ(ω) = ω

Ccor correlation curve (Sec. 5.3)

Cratio ratio curve (Sec. 5.3)

�st stochastic ordering

�QD quadrant dependence ordering (Sec. 3.3)

�L Lorenz ordering (Sec. 2.3)

�∗ star ordering (Sec. 2.3)

�D dependence ordering (Sec. 3.2)

�NP NP -ordering (Sec. 1.3)
�C ordering according to directed concentration curve (Sec. 5.1)

G(·) Gini inequality index (Sec. 6.1)

D(·) Pietra inequality index (Sec. 6.1)

G(·, ·) Gini divergence index (Sec. 6.2)

D(·, ·) Pietra divergence index (Sec. 6.2)




