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INTRODUCTION

Let F;[«] be the ring of polynomials in one variable over the finite
field of ¢ elements. It is well known that these rings are closely analogous
to Z and we may do analytic number theory over them as Artin [1] did,
showing the mumber of primes (i.e., monic irreducible polynomials) was
the right size or as Hayes ([4], [6]) who considered Goldbach’s conjecture
and the extension to F,[#] of Vinogradov’s result on the sum of three
primes.

In this paper we study Waring’s problem, that is, whether given an
integer %> 2 there is an integer s such that an arbitrary polynomial
Ne Fy[#] may be written as

(1) N =Pi+...+PF, where P;eF [x].

In additive problems in F,[z] it is not natural to Trestrict ourselves to
monic polynomials (which in some respects are the analogues of the posi-
tive integers). This is because if P were a “positive” polynomial, then,
presumably, so also is

P4...+P = —P,.
N —
p—1 times, p = char Fq

Therefore, in this paper, we consider the number of representations, say
r(N,m,s,k,q), of a polynomial N as

(2) N =Pi+...+P¢ where P;eF,[2], degP;<m,i=1,...,s.

For the classical Waring’s problem essentially three proofs are known,
but only one, the Hardy-Littlewood method, gives sharp bounds for s
and an asymptotic formula for the number of representations. Here we
adapt the Hardy-Littlewood method to prove the asymptotic formula:

TEEOREM 30. If (a) 0 < e < 1, (b) degN < (k—1-+¢)m, (¢) 8 = 2F+1,
(d) 3< k < charF,, then there exists & >0 such that

U(s, 0 .
(3) *N,m,s,k,q) = qg—,q_,lq) S(N, s, k, q)q(a—k)m+0(q(a—k—a)m)’
where

0
(4) 1< I8 gy o kg <1
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Here U(s, 0, ¢q) is the number of s-tuples 6y, ..., ¢c,e F, such that

¥4 ...+ 6f = 0, with not all ¢; = 0. The value of the “singular integral”
U(s,0,q9)

series. In particular, if the conditions (¢) and (d) -of the theorem are
satisfied, letting m—>oco ensures that N is always represented in the
form (2).

Many of the proofs for the singular series follow those for the Hardy-
TLittlewood method for Z , see [2], [9]. The proofs for the singulal integral
al'e necessarily different.

We now turn to five remarks on the quality of the theorem:

, and &(N,s,k,q) is the analogue of the singular

(1) Since we are considering P; of deg < m, we would expect infor-
mation on representations of ¥ up to degree = k(m—1) rather than
(k—14¢)m as stated. This is possible but a bit messy (see Lemma 17).
The difficulty arises because we must now also consider the solutions of

(8) ot e =D

where b is the leading coefficient of N. The value of the singular integral
then varies according to b and degXN.

(2) We must have s> 3%k+1 in order to prove that the singular
series converges absolutely (Lemma 23) and s> k+1 in order to show
that the singular series is positive. In the classical case, if s = 2% (k odd)
or § =>4k (k even), the singular series is positive and if s > 2k+1, the
singular series converges absolutely. The stronger assumption that s > 2% 41
comes from our reliance on a Weyl-Hua inequality.

(3) Since we have assumed % < p = charF,, every polynomial N is
a sum of kth powers. In general this is not true. For example if & = p* —1
and ¢ = p", b > 1, then the constant term of any polynomial P* (over F,)
is either 0 or 1. Therefore no polynomial whose constant term is in F,\ Z,
is & sum of kth powers. It is true (Theorem 37) that if p4%, then W is a sum
of kth powers if and only if ¥ is congruent to a sum of kth powers (mod?P),
for all irreducible P such that ¢%8F < (k—1)2. (See Theorem 40 and
Example 41 for further considerations.)

(4) Let K, be the field of formal power series in #~' over F,. Then

K, plays a role similar to R in the Hardy-Littlewood method, and the
“interval” orda < 0 plays the role of [0, 1]. This “interval” is divided
into major and minor ares and an exponential e(f(P)) is defined that
satisfies conditions sufficient for the Hardy-Littlewood method. (See
Lemma 1.)

The principal defect of the theorem is the restriction # < p = charF,.
It seems likely that p{%k is the proper restriction. The difficulty arises
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in the proof of Weyl’s Lemma (Proposition 12) which states that if %
< p, aeminor arc, and
¥

Si(fy= D e(f(P),
deg P<m
where

f@) = ay*+a,y* ' +...+ 4, with a0, ¢;¢eK,,
then for every ¢ >0,

1-——te)m
(6) ' 18,(F)] < q( et

The idea of the proof is essentially a recursion. We relate the sum S,(f)
to several similar sums 8;_,(4, f) where 4, f(y) has degree k—1 in y.
Using this reduction %¥—1 times, we arrive at sums

8(dy, .. 4y, f)

where 4, ... 4, f(y) is linear in y. We must go this far since the only
sums we can effectively estimate are linear in the variable.

Here 4, f(y) =f(y+y.)—f(y) so that
(7 Ay, .+ 4y f(y) = klay+terms independent of y.

When % < charF,, k! # 0 and (7) is linear in y but when % > char#,,
k! =0 and (7) is no longer linear in y, so the proof of Weyl’s Lemma
falls apart. '

(B) The restriction s > 241, in the case of Z, is not the best known
(for k> 10 or so). Indeed Vinogradov [9] has shown that s> ck?logk,
where ¢ is a constant, suffices.In case k< charF,, although the work has
not been carried out, the present author foresees no difficulty in proving
a Vinogradov-type result. However when k > charF,, there is again
a difficulty in principle. Vinogradov’s proof is essentially an intricate
reduction based on the fact that the sums

.’L'1+...+{0k,
2.t ad,

where

Ogm.iEZ’ 1:= ’-uu,lc,

are independently distributed in intervals of size proportional to the

exponents j on “well-separated” intervals. This is false in F o], if %
= charF,, since

(m1+-o-+mk)p =m?+...+w§:.
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In addition to the principal Theorem 30 (the asymptotic formula)
we prove a result of the following type: Let g(k) = g(k, ¢) be the least s
such that every polynomial that is a sum of (arbitrarily many) kth powers
is a sum of s kth powers. Let @ (k) be the least s such that every sufficiently
large rational integer is a sum of s kth powers of positive rational integers.
Then Vinogradov [10] showed that G(k) < ¢-klogk. By an analogous
proof, we show §(k, q) < ¢ klogk.

We get a result for g rather than a result only for polynomials of
large degree because of the structure of F [x]. If s is sufficiently large,
in Z the asymptotic formula gives

r(N) ~ ¢ Nek-1

so for small N there are fairly few representations of N. In F,[z], for s
sufficiently large
’)‘(.N) ~ c_q(s—l.:) m

when the P; are restricted to degP; < m, and so the numbelr of repre-
sentations of NV of small degree and of large degree is about the same.
This behavior persists when charF % and naturally leads to a proof for
g(%) and not G(%). (Sec § 8, Theorem 37.) ‘,

In the case of Z, G(&) < ¢-klogk is very good since we know G (k)
> k+1. However in case of F [z], the result §(k) < ¢-klogk is not nearly
as profound. Let 7, (k) be defined analogously to §(%k) except we now con-
sider

N = +Pi4 . L P

(the so-called easier Waring’s problem). Paley [6], in the only previous
regearch on Waling’s problem in F,[#] of which the author is aware,
showed that if & = p*4-1 then §, (k) < 6. The essential point of the proof
is that the various powers & = p"+1 satisfy an identity based on

(A4 B)* = A*+ A*"1B 4+ AB*' B,

and this leads to the uniform bound for §, (k). So, in this respeect, the
result g(k) < ¢-klogk is not very satisfactory, but the present author
does not know how to adequately exploit the difference.

This paper is my thesis submitted in partial fulfillment of the require-
ments for the Ph. D. to the Rackham School of Graduate Studies, Uni-
versity of Michigan. Professor D. J. Lewis guided the research. The late
Professor Harold Davenport also made the suggestions. Dr. Peter Wein-
berger and an anonymous referee carefully read the manuscript and
each made a suggestion that simplified the statement of the main theo-
rem. I thank all four men.
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1. PRELIMINARIES

Let F, denote the finite field of ¢ = p” elements. Elements of F,,
the constants will be denoted by a, b, ¢, ...; while F,[2] will denote the
polynomials in one variable with coefficients in ¥,. Elements of #,[x]
will be denoted by XN, P, Q,:4, B, ... The field of formal power series in

£

x~! over F,, that is, the set of all expressions a = Saat, a; #0 (and

a = 0) with the usual operations will be denoted by K,. We define
orde =t with ord0 = —oo, Thus if e is a polynomial, orda = dega.
‘The field K, is a locally compact field under the valuation

(1) laf = ¢* = g™,
We define O, = {a] orda< 0} and « "0, = {a| orde < —n}. Then

&~ 10, is a compact (additive) subgroup of I, and so we may normalize
the Haar measure on K, by

(2) [ 1:a =1.

orda<o

This implies that for any fixed fe¢ I, and any ne Z,

(3) J 1da=gm,
ord (a—p)<—n
that is, the measure of the coset g+ 2~""10, is ¢~". The polynomials form
a discrete subring of K.
For aeF,, we have the usual trace function which we denote by
trace of a = trp vz, @ = tra. If, in the homomorphism Z —Z,, v—tra
and v —tra, then €2™? = ™", Therefore we may define ¢,: F,— C by

(4) 8,_,((1) — e‘_'niulp’
where « is any preimage in Z of tra.
t

For « = ¥ a;a%, we define the residue of a as

~ 00

(5) resa = d_q,
with res0 = 0. The exponential of a is defined as
(6) ' e(a) = g (resa) = e {a_,).

LedMA 1. (a) If la—B| < ¢! then e(a) = e(B); that is, e(a) is a locally
constant function of a.

(b) e: K —~C is a continuous function.

(c) e is not identically 1.

(d) e(e+p) =e(a)e(f).
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(e) e(P) =1.

g~ if ordN < n,
® o,daf<_ne(Na)da —l-O, otherwise.
@ = (i ,)=[1, if QIN,
d Q1 oraiShraq \ €. 0, if @TN.

Proof. (We recall that 4, P, @, N automatically are restricted to be
. ’ t’ )
polynomials.) (a) Suppose a = Y a;a* and f = 3 b;2°. Then [a—f] < ¢7},
i.e. ord(e—f) < —1, says that

avi =b{, fOl‘ 7:2 "‘1.

S0 6(a) = e,(a_,) = e(b_y) = e(B).

(b) is trivial since any locally constant function is continuous.

(c) follows since the trace is not identically 0. '

(d) e{a)e(B) = egla_y)e,(b_y) = eg(@_;+Db_;) = e(a+f).

(e) If P is a polynomial, then resP = 0 and e(P) = ¢,(0) = 1.

(f) It ¥V = 0, then ¢(Na) = 1, and the formula (f) is our normalization
convention (3). Now let N = bo+b,2+...+b2" with b, # 0. Since by

—n—1 .
assumption orda << —n we can write a = )’ a;4*. If I < n then res(Na)

= 0 and ¢(Na) = 1 and so the conclusion (—f) follows again from equation
(3). If 1 > n then

¢(Na) = 6q(a’-n—1bn FOpgbpprt ot a1 by).
Therefore, '

e(Na)da

orda<—n

= 2 Z see Z f eq(a’—n—lbﬂ"""a'—l—lbl)dy

G_p—16Fg a_p_ocFy  a_j_1eF, yez—l—204,

= 2 2 (@ 1B+ F+a_ib ) X

ap—1¢Fg a1efy .
X D elayby) [ Ll-dy.

a_j1eFy pez—t=204,

But ’z 1-dy = ¢! and since b, # 0, this last sum is simply
yexz— —'*'Om
it

s
SZ'H%‘ 6ga) =g Y e? . Since the trace is mot identically 0, the
acFy ge R

trace maps F, onto Z, and the number of times any particular pth root
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of 1 is the image of some ae F,is simply the cardinality of the kernel
of the trace. Thus

»-1 2ni

Dela) = (3 ¢? ) -card fer (tm)} = 0.

acFy J=0

Hence our integral has value 0 when ord N > n.

A
(g) If QI[N then e(—q—?-N) = ¢(polynomial) = 1, and

1 (A ) 1

— el —N)=— 1=1.

IQI ordgrdq Q IQI ordgrdo

N . N .
If Q1N then we may reduce —Q— to lowest termns Q_’ with @, # constant.
1
As 4 runs over a complete set of residues mod@, AN, runs over %QQLI
1

complete sets of residues mod@,, so that

"(%N) - llglll 2 g(g—:)'

Suppose @, = go+...+¢,2" where n>1 and ¢, #0, and R, =7,+
4 ...47,_,3" % Then

ord 4<ord @ ord Ry<<ordQ

-2

R o 2 :

1 = ."’_nlm—l_l_. aim"_
Q q —

This implies that

R R Y
(B S IS of22)] <o,
Q — qn
ord R; <ord@Q roeFy rp—geFg rp_1¢F,

since, as in part (f) the sum in brackets is zero.

LEMMA 2. Let Ik be an integer, = 2, m and s be integers, m,s =1 and N
a polynomial. Let (N, m, s, k) be the number of ordered s-tuples (Py, ..., Py)
where each P; is a polynomial of degree < m and

(7) Py, +PE=N.

Let

(8) T(a) = Tp(a) = D e(aP".
ordP<m

Then

(9) r(N,mys,k) = [ (T(a)f'e(—Na)da.

aez—104,



12 Waring's problem for Fg[%]

Prooi.
f T#(a)e( — Na)da

acz— 100
= > .. D[ e((Fi+...+PE—N)d)da.
ord Py<m ordls<M geg—10,,
By Lemma 1(f) (with # = 0) the integral inside the summation
is 1 or 0 depending on whether P¥+...4+P5 = N or not, and so the
Lemma is proved.

2. THE FAREY ARCS

For ae K, there are a unique Pe F,[#] and a unique fe2~'0,, such
that a = P+ f. We define [a¢] = P and ((e)) = 8, the integral and fractio-
nal patts of a. Clearly [¢] and ((a)) are F,linear functions of a.

LedMa 3. Let r be a positive integer. For every ae 210, there are
'um'que polynomials A,  such that

(a) ord@ <7, @ # 0,
(b) @ is wmonie,
(¢) ord A < ord@,
(d)
(

(4,Q) =1,
e) a—-‘i < !
Q@ d1Ql

Prootf. If ¢ = 0, the result holds trivially with 4 = 0. Now suppose
a # 0. There are ¢"*' polynomials R of degree < 7, so there are ¢"** power
series ((Ra)). These are distributed in ¢" equivalence classes of 2710,
(modaz~""104). Consequently, there are Ry, R, such that R, # R, and

((Bya)) = ((Bya)) (moda™"0).

Put @, =R,—R, and 4, =[Q,a]. Then @, # 0, ord@,<r and if
A; #0 then ord4d, < ordQ,o < ord@,. Also, ord(Q,e—4,) = ord((@,a))

1
= ord (((Rya)) — ((R;0))) < —7, that is a—Q— <q " o0 Dividing @,
1 1
and 4; by the leading coefficient of @, and by their greatest common
(monic) divisor, we get @ and 4 satisfying (a)-(e).

For uniqueness, suppose that 4, @ and B, R are two pairs that satisfy

the lemma. Then
4_3B a L mmt( 1 1 )
— —— a—— .
Q q Q1" |R|

Therefore |[RA—@QB| <1 and since RA—@B is a polynomial, we must

A

)

< max (

Q@ R
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4 B
have RA = @QB. Thus — = —, but such a representation is unique

Q
when the denominator is monic and numerator and denominator are
relatively prime.
For the next four sections, we let & > 2 and m be fixed positive inte-
gers. We fix 7 to be » = (k—1)m, and consider all pairs 4, @ satisfying

A
(a)—(d) of the lemma. The Farey arc about 6- is the set

M(4,Q) ={ae 2~ '0, where

"A ’< 1 1 }
a—— —— -
Q@ ¢ el
We shall say M (4, Q) is a major (minor) arc if ord@Q < m (ordQ > m).

From Lemms 3, it follows that the Farey arcs are pairwise disjoint and
their union is #710,,.

3. THE CONTRIBUTION OF THE MAJOR AND MINOR ARCS

Let
(10) T(a)= ) e(aP¥
ord P<m
and
(11) S(4,Q) = Z e(i'l—zk).
Z (mod Q) Q

A
ProrosiTioN 4. If M (A, Q) is a major are and a = ?—I-ﬂeM (4, Q),
then

(12) T(a) = l—QlTS(A, AT(B)

Proof. We may write P uniquely as
P=QY+Z, with ordZ < ord@ <m.
In (10) we have ord P < m, therefore ord ¥ < m—ord@. Also,

(&) - ff ro0) - fhrer - )

But the first factor being the exponential of a polynomial is equal to 1,

and so
o(77) =<lq=)
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Then
’ 4 A
T(a) = e((-—+ﬁ) P") = e(——P") e(fP"),
’ ord2P<m : Q ord P<m Q
and by the preceding comment,
(18) T(a) = e(‘—é—Z") ¢(B(QY +2)")

ordZ<ord@ ord Y <m—ordQ

- Z e(izk) 2 e (B(QY +2)").

ordZ<ord@ ord ¥<m-—ord @

A
To handle the inside sum, notfice that since a =— 48 where

Q
ordf < —(k—1)m—ordQ, we have
ord (B(QY +Z) — B(QT)Y) < ord B + max md( J@Ty—z"

LU
< —(k—1)m—1—ordQ -+ max {(k—v)m+v(ord@ —1)}.
1<k
Since ord@ < m, we conclude that
ord (B(QY + 2 — QYY) < —1,
and, therefore,
(14) e(B@Y +2)) = e(f(@T)).
Summing over ¥, we get the inside sum of (13) as
(16) D e(BRY+ZH = D e[pQTN,
ord ¥ <m—ord @ ord ¥ <m—ord Q

which is independent of Z. On the other hand, there are Q| elements
in F,[#]/QF,(») and hence summing (14) over Y and then over |@| residue
classes Z(mod@), we obtain

(16) TH) = Y D epeY+2)

ordZ<ordQ ord Y <m—ordQ

R D e(B(QYY.

ord ¥ <m—ord Q

Substituting this back into (13), using (11), we get the proposition.
PROPOSITION 6. If M (4, Q) is a minor arc and aelM (A, Q) then

(17) T(a) = T(%).
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A
Proof. Suppose a = ?+ﬂ. Then

T(a) = Z e(%l’") 6(BPY).

ord P<m

However, ord fP* = ord f+kotdP < — (k—1)m—ord@+k(m—1). Since
M(4,Q) is a minor arc, ord@ > m+1, so 0rdfP* < —1 and so

e(pP*) =1.
Hence (17) holds.

DEFINITION. Let 9 denote the set of major arcs. Let m denote the
set of minor ares.

LrmmaA 6.
(a) We have

1 8
fTs(a)e(—Na)da= (—S(.A,Q)) X
om Qmonic ord A<ord @ |Ql
ord@sm (4, Q)=1

X e(—-l-vi) f T*(B)e(—NB)dB.

Q ord f<—(k—1)m—ord Q

(b) If ord N < km, then

fT'(a)e(—Na)da

e 3 a3 )2

Q@ monic ord4<ord Q@
m<ord Q<(k—1)m (4, Q)=1

Proof. (a) If a=%+ﬂ- then e(—Na) =e(—%A—)e(—Nﬂ). By

Proposition 4, the integral over the major arcs M (4,Q) gives the cor-
responding term on the right.

(b) If a='—g—+,8, then e(— Na) =e(—%—)e(—Nﬂ). If ordN
< km, then

ord(— NB) < km—(k—1)m—ordQ—1 < —1.

Therefore e¢(—Np) = 1. By Proposition 5, the integral over the minor
arcs M (4, @) gives the corresponding term on the right.
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4. WEYL’S LEMMA

The purpose of this section is to show that T'(a) is relatively small
on the minor arcs provided %k < charF,, and so the contribution of the
minor ares is negligible.

LEMMA 7.

9", if  ord((B)) < —m,

(18) 2, e‘ﬁl’):lo, if  ord((g) > —m.

ord P<m

Proof. If ord((f)) < —m, then for each of the ¢™ polynomials P of

deg < m, we have resfP =0, and so e¢(fP) = 1. On the other hand, if

—i-1 m—1
((B)) = ) b;a* where b_,_; =0 and 0> —¢t—1> —m and P = } p,,
0

then ~°
res ﬂP = _’P;b_g..l +pt+1b—t—2 EaERT ol S b—m‘

One now Tepeats the calculation used in Lemma 1(f) to obtain (18).
Again, in the sum (18), we are summing (perhaps several times)
over all the pth roots of 1.

LeMMA 8. Let d(R) be the number of mowic polynomials dividing R.
If B # 0 then for every ¢ >0,

(19) a(R) < |BI°,
that is d(R) << C(e) |R|*, where C(e) 18 a constant depending only on & (not

on R).

Proof. If P = constant, d(P) = 1 and the result is trivial, so we may
assume ordP > 0,
If P is an irreducible polynomial, then, for » > 1,

a(P") =n+1<fn+1 < n+1 < 2 .
|P ™ |P|™ g™ nelogg ~ elogyq

Furthermore, if ord P > 1/e, that i3, if |P| > ¢"* then

a(pPm) < n+1
P 9

<1.
For arbitrary R # 0,

d(R) AP 2 2
— < SEEe < < .
LA W | PP ﬂ elogg ” elogyg

ordP<1/s
Pirred ordP<1/s Pirred
Pirred

This last term is a function only of ¢ and so the lemma follows.
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' 4
LEMMA 9. If a =’—Q—+ﬁ where ordQ < (k—1)m, 4, Q are relatively
prime, A # 0, and
1
20 <—
then the number D of ordered (k— 1)-tuples of polynomials Py, ..., P,_,,

where ord P; < m, 1 =1, ..., k—1, and

(21) ord((aP; ... Py_y)) < —m
18: ’

g _@I_)( q(k—-l)M)
(22) D« g1+ (145 20).

Remark. Here and in all subsequent work the constant implied
by < will be independent of m, though it may depend on %, g, ¢, ete.

Proof. Let us collect together those (k¥ —1)-tuples with the same prod-
uct, say, U =P;...Py_,. By Lemma 8, the number of such tuples is
not moTe than

(23) (=D a(D)? < ¢TI < g™,

sinece ord U < (k—1)m and the factor ¢°~! may be absorbed in ¢'™.
Now any such U may be written as

(24) U=V+QW

where ord V < ordQ and ordW < (k—1)m —ord Q.
Suppose a particular U, = V,+QW, satisfies the inequality

(25) ord((alU,)) < —m.
Then any other U of the form U = V+QW, satisfies (2b) if and only if
(26) ord ((a(U — U,))) = ord((e(V —V,))) < —m.
, A
Since o = ?—1- B,

(27) ord ((a(V —V,))) = ord {((—%—(V—- V.,))) + ((ﬁ(V—Vo)))}.

Now by (20), we have ord((f(V—V,))) < —20rdQ+ordQ < —ord@.
Also, since (4,Q) =1, if V # V, then A(V—-V) = 0(modq), so that

A .
ord ((6(17—170)))} — ord@. Therefore, the ord of the sum on the right

of (27) is simply the larger of the two, i.e.,
A
ord ((a(V —7,))) = o'rd((-— vV ))
((O.( 0))),/:—:7—\ Q ( 0)
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18 Waring’s problem for Fy[z]

‘We further note that since (4,Q) = 1, as V runs over a complete
set of residues (mod@) so does A(V —V,). Also there are precisely

Y
max (1, ¢"™|¢|) residue classes Y such that ord ((72-)) < —m. (The max

depends on whether ord@ < m or not.)
Combining this facts, we see that as there are at most O(¢™) tuples

g-1m
1@ )

choices of W, and for each W, at most max (1, l—fml) choices of V. Thus

we have
Q] ) ( q"‘"””‘)
D < £ (1 +_'nT 1 +‘ .
: g 9]

LEMMA 10. Let f(y) = ay*+... +a, be a polynomial in K_[y]. For
each ze Fy[x], we define

(28) 4,(f) =Sy +2)—f(y).

leading to a particular value U = V4 QW, and at most max (1,

Then A,: K [y]—>E, [y] is a map such that

(a) 4, is linear over K.

(b) 4, = 0. ;

(¢) If f has polynomial coefficients, that is fe F [z, y), then A,(f)
has polynomial coefficients and z divides the conient (A4,f).

(d) If degf = k < charF, and z = 0, then

degd,f = k—1,

and the leading. ooefficient of A,f is kaz.
(e) If degf = k< charFg, and 2y, ..., &, # 0, then

A‘k—l("'(dﬂf)) = klaz, ... 2,_,y + terms free of y.

Proof. (a) and (b) are trivial. (¢) and (d) follow from (a) and the fact
that

A, = ke + () 2 2

(e) follows from (d) by induction.
Levma 11. If fe K [y] and 8(f) = D' e(f(P)) and n > 1, then

ordP<

(29) SN < g™ 3 3 3 8(dp (e dp (f).)-

ord Pyj<m ordPy<m ord P, <m
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Proof. We proceed by induction. For n =1,

IS =8(HBF) = D e(f(Q) D e(—F(P)

ord@Q<m ordP<m

= ) D elf@Q—5(P).

ord P<m ord@<m :

Writing @ = P+ P;, and summing instead over P,

(30) WAE= D D elf(P+P)—f(P) = > 8(4pf).

ord Py<m ordP<m ordPy<m

This is (29) for n = 1.
Now suppose we have shown (29) for »n, where » > 1. Then

(31) ISP = (18(HIFP
< (@ S 8(dp, ... dp ()

(P, -, Pp)

< (gt l o 3 S(dp, L A I
Py, ., Py)

gince 2(2" —n—1) = 2" —2(n+1) = 2" —(n+1)—1 —n. Now weapply

Cauchy’s inequality
(Daf <(Xa)(X),

with © = (Pyy ..., P,)y a; =1, b; = |8(dp_ ... dp (f))], to get

(32)  IS(HPT gm0 A 18(dp L dp (D)
(P .. Pp)

To each of the terms of the sum on the right we may apply the first in-
duction step (30) for f = 4p_... 4p (f) to get the lemma for n+-1.

ProposITION 12 (Weyl). If f(y) = ay*+ a9 ' +... +ay, ;¢ K,
and
(a) 2 <k < char F,

A
(b) @ = —Q—-}-ﬂ where A and Q are relatively prime and

1
3 i

then, for every & > 0,

1 |Q|)1'2"“

I I (| Ry e e =

ord P<m




20 Waring's problem for F,{z]
In partioular, when m < ord@ < (k—1)m,

NPT i =)

Proof. From Lemma 11, when » = k—1, we find that

B5)  WANOFT <m0 N N §(dpy, e Apy ()

ord Py _j<m ordPj<m

In this sum, when any P; = 0, it follows from Lemma 10 (a) and (b) that

AP"_I e APIf = 0’

so that, when some P, = 0, we have

(36) 8(dp, .- dp ()= D e(dp,_, ... 4p(f(P) = g™

ordP<m
There are ¢™%*-Y choices of Py, ..., Py, and (¢" —1)*! choices with each
P; # 0. Therefore the number of choices when some P, = 0 is

@ = @ =1 = 1) - (P o
ST TR =
m (k—2) R | P
<4 %( j )(q'")

1 k-1
<ersfprd]

3 k—1
<(E) g"%-2  (since ¢™ > 2)

< qm (k—2) )

Therefore (35) becomes

BT T < (@R @ T 3 Y84y, e A ),

Pr_ Py

where * indicates the sum is over those P; # 0.
By Lemma 10(e),

|S(Apk_1...AP1(f))|=| > e(k!aPl...P,,,lP)|.

ordP<m

By Lemma 7, the sum on the right is either 0 or ¢™ depending on whether
ord((k!aP; ... Py_,)) = —m or not. Since k < charF,, we see that k! is
& non-zero unit and,

ord((klaP;y ... Py_y) = ord((aP; ... P,_y)).
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By Lemma 9, the number of tuples P,, ..., P;_; contributing to the sum is

o 2ot

q" 19

Therefore (37) becomes

e e =

< Gt g

PROPOSITION 13 (Hua). Let 8(a@) = 3 e(aG(P)), where G(y)e

ord P<m

F,[z]1[y] and let v be an integer suchthat 4, ... A, G(y) e Filz] [y, Y15 ..y %]
satisfies

(38) A”v ot Avla(?/) #0.
Then, for every ¢ > 0,
(39) Iv = ;];O [S(aG)P da € qm(z —p+8) )

In particular, if k = deg, G(y) < charF,, then
(40) Ik <& qm(z"—k+;) .

Proof. The last remark is an instance of (39) since (38) is automatically
satisfied if k¥ < charF,. We proceed by induction noting that (38) for »
implies the stronger condition

deg,4,,... 4, ¢>1

for u < ». For » = 1, condition (38) says that k = deg,@ > 1. Also,
L= [ D e(+a@(Py)) D e(—a@(Py)da=2
acx~10y, oraPi<m ord Py<m

where 9 is the number of tuples (P,, P,) such that ord P, < m, ord Py < m
and

G(Py) = G(Py).

(See ‘Lemma 1(f).) Picking P, arbitrarily, there are at most % solutions
P, of G(P,) = G(P,). Therefore

I, < kg™ < g™ < q"@' -1+,









































































































