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1. Introduction

In many areas of applied mathematics the problem of finding the equilibrium
states of a dvnamical system reduces to solving an equation of the form

(1.1) G(x)=0

where G is a mapping R" — R" (so (1.1) consists of p equations in n variables) or,
more generally, G: X — Y where X, Y are Banach spaces. Often p = n, as lor
example when G = grad f for some function f: R" —> R.

If one of the variables (call it 2) is thought of as being under control, such as
an externally applied [orce, while the other variables represent the unknown state
of the system, then solving

(1.2) G,(x)=G(4;x)=0

as an equation in x as A varies is what we mean by a bifurcation problem. In these
notes we shall discuss -some current approaches to finding the structure of
solutions to equations of form (1.2). The methods will apply in many contexts
where x is an infinite-dimensional variable, which among other things allows the
apparently “static” nature of the problem to have an interpretation for some
dynamic bifurcations (periodic solutions, etc) as illustrated for example in &a)
below. We suppose that all data are smooth, i.e., infinitely differentiable or at least
sufficiently differentiable for our purposes.

2. The Implicit Function Theorem

Let G, be a mapping R" — R" depending on an r-dimensional parameter g, and
suppose G4(0) = 0. If the origin is a reqular point for G, i.e., the derivative DG, (0)
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is an invertible linear operator R" — R" (i.., nonsingular matrix) then G, (x) = 0
has a unique solution x = x, close to x = 0 [or y sufficiently small, and x, varies
as smoothly with u as G, does. This is the Implicit Function Theorem (IFT)
(Dieudonné [ 12]), equally valid with a Banach space in place of R". Under these
circumstances there 1s no actual bifurcation taking place near u = 0.

If DG4 (0) is not invertible (certainly the case when G, maps from R" to R?
with n # p) the IFT still yields results. Choose coordinates so that the null space
(kernel) of DG, (0) corresponds to the first k > 0 coordinates in R”, and the range
of DG4 (0) corresponds to the last (n— k) coordinates in R”. Write u = (x,, ..., X;)
and v =(x,.,,.--., X,); also write

(2.1) G, (x) =G, (u, v) = (H,(u, v), K,(u, r))

where K,: R" - R" *and H,: R" — R withc = p—n+k. Now apply the IFT to
the problem

(2.2) K,.(@0)=K,(u, v) =0.

By construction DK, o(0) is invertible, so there exists a unique solution
v = u,, to equation (2.2). Thus finding solutions x, to G,(x) = 0 is the same as
finding solutions to

(2.3) Huw=H,(uv,,)=0

which is now a problem in u, parametrized by p. In other words G,: R" — R? has
been replaced by H,: R* — K. The IFT cannot be pushed any further here
because D, H (0)is identically zero (no linear terms in u in H ) and new techniques
are necessary. This use of the IFT is the Ljaponov—Schmidt process for reducing
a bifurcation problem to its essential core. Commonly + =1 and u = 4.

The reduction process 1s especially valuable in infinite-dimensional settings.
If the dimensions k(= dim ker DG, (0)) and ¢ (= codim range DG, (0)) are finite
(that is to say DG (0) is a Fredholm operator, which is not unusual in physical
problems), the original problem in infinite dimensions is by this method reduced
to a finite dimensional one. In this setting the equation (2.3) represents c
equations in k variables (varying with parameter y) which are often called the
bifurcation equations for the original problem.

3. Methods for finding solutions

The problem of finding what the set of zeros of p functions in n(or n+ 1) variables
looks like is of course a very fundamental one in mathematics. When the
functions are polynomials, this problem is what algebraic geometry is (or was) all
about. Let us mention a few methods for attacking it.

(1) Pretending the functions are polynomials (by forgetting high order
terms), and doing algebraic geometry.
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This is fine, provided the algebraic geometry problem can be solved.
There is then the worry about whether the higher order terms seriously affect
the solution or not.

(i) Trying solutions in the form of infinite series with unknown coeffi-
cients, substituting appropriately into (1.2), and reading off the coefficients.

Methods of this type are generally known as perturbation methods. The
drawbacks here are, firstly, deciding which variables to expand as series in
which other variables without a qualitative picture of the solutions to start
with, and, secondly, verifying that the expansions are indeed convergent
series on some neighbourhood of the origin. There is then the uncertainty
about whether all solutions have in fact been found by this approach.

(111}  Particular simplifications.

Sometimes it is easy to spot from the form of the Taylor series for
G (~; x) what the solution set must be like. For example, suppose ¢ =k =1
and the bifurcation equation is known to have a solution x = p,, differenti-
able in 4, for 4 in a neighbourhood of 0. Then the bifurcation equation has
the form

3.1) (x—p,)H(:x)=0

and so il we take u = x—p, as a new coordinate we convert (3.1) into the

form uF (7; u) = 0. Now if we find the zeros of F near (0; p,) we shall have
al

F L
found those of G. For example, if ;—)(0; po) # 0 the IFT implies the zeros of -

F near (0: py) have the form of a graph A = A(u). so the zeros of G consist of
the u-axis plus the graph cutting it transversely at (0; pp). This is the core of
the theorem of Crandall and Rabinowitz [10] in the differentiable case. See
also Hale ([22]. ¢ 3). and Example 4.2(ii) below.

(iv) Re-scaling the variables.

If n=p=1 a classical technique allows the solution branches to (1.2)
near the origin to be expressed as series expansions of one variable (say x) in
terms of fractional powers of the other (say 4). (See e.g. Walker [40], p. 97.
This 1s usually carried out for complex variables, but is readily interpreted in
the real case; it is sometimes called Puiseux expansion) The key to this
method is the geometry of the Newron diagram, meaning the set of all points
(r, s) in the plane R®> where r, s are non-negative integers such that A" x'
appears in the Taylor series for G(4, x) at (0, 0). For n > 1 and for p > 1
things become more complicated, but the Newton diagram can still be
usefully exploited ([25]). Setting x = ¢ ¢, A = &’ v where a, b are determined
from the analogue of the Newton diagram, the equation G(4, x) =0 can be
converted to the form E-G(e, v, £) = 0 where E is a pxp diagonal matrix
whose entries are powers of ¢ and G has the form

(3.2) Ge, v, §) = Golv, {)+0(e).
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Now if G, = 0 has a solution (v, o), and if" the IFT can be applied there to
G, (& =Gle, v (ie. il DGO_VO(éO) is invertible) there is a unique nearby
solution ¢ = £, , which can in turn be interpreted as a solution for x in terms
of 4. On the other hand, if DGO,VO(QG) is not invertible more work is needed.
See Sather [30] for discussion (on the real case in particular) and further
references. See also Satuinger [32].

Rescaling methods of a slightly different flavour are effectively used also
in multi-parameter problems by Hale and others: see Hale [22]. § § 9-15).

(v) Topological methods.

There is a wide literature on the methods of ropological degree theory
and their applications: see for example [24]. This can be very successful in
detecting the existence of solutions, but is less effective in counting them
geometrically. Other more sophisticated topological invariants have also
recently been brought to bear on bifurcation problems. See Alexander [1],
Fadell and Rabinowitz [13], and also Conley [9] with particular reference to
dynamic problems.

The methods sketched above are all attempts to bridge the frustrating
gap between (a) those relatively easily-soluble problems (usually polynomial
ones) that may be written down as examples and illustrations of various
types of bifurcation behaviour, and (b) those problems that actually arise in
applied mathematics. It would be delightful if the latter could somehow be
persuaded to become the former.

In fact there is a sense in which this does indeed frequently happen. The
basis for this is the work of Golubitsky and Schaefler ([18]) on singularity
theory as a tool for bifurcation theory, which we next try to explain.

4. [Equivalence of bifurcation problems

Let G, H: R" — R? be two mappings with G(0) = H(0) = 0. It is natural to
regard G(x) = 0 and H(x) = 0 as being qualitatively the same problem if there
are sufficiently regular invertible coordinate changes ¢ in R” (with ¢ (0) = 0)
and ¥ in R? (with ¥ (0) = 0) such that

(4.1) H(¢(x)) = ¥ (G (x),

so that ¢, ¥ convert the graph of G precisely into the graph of H as subsets
of R"xR".

Suppose G, H to be smooth, and stipulate that ¢,  and their inverses be
also smooth. Then if (4.1) holds for all x in some neighbourhood of the
origin we say G, H are A-equivalent at 0 in R". This is current terminology
from singularity theory (cf. Gibson [15]).

If G, H are A-equivalent their main features are qualitatively identical.
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For example, the zero set for G is taken by ¢ to the zero set of H, and
likewise for the set of singular points (those where the derivative matrix DG
fails to have maximal rank); also y takes the range of G to that of H, and
takes singular values of G (i.e., points G(x) where x is a singular point) to
those of H. These facts can often be used to show easily that certain pairs G,
H are not A-equivalent: see the examples below.

This form of equivalence is very strong, saying that in converting graph
G to graph H the rescaling v of the “y-axis” R? must be the same over every
point in the “x-axis” R". In fact some rigidity can be relaxed to allow ¥ to
vary with x without losing much essential information. In this case (4.1)
becomes

(4.2) H (¢ (x) = ¥, (G (),

where we still assume ,(0) = 0. In particular, the set of zeros for G will still
be taken by ¢ to the set of zeros for H, and the “degree of contact™ (so far,
as that makes sense) of the graphs of G, H at 0 will not be aflected. This
weaker equivalence is called contact equivalence (see papers of Mather) or K-
equivalence, and turns out to be very appropriate for classifying bifurcation
phenomena.

4.1. Lemma. In (4.2) there is no loss of generality in taking Y. to be ua
linear transformation L. of R".

Proof. As ,(0) =0 we can write ,(y) =g,.(y)-y where g,(y) is the
1
p x p matrix j%(n//x(ty))dt. Then replace ¢,(y) by L, =4¢,(G(x)) and we
0
have L, G(x) = ¢,(G(x)): G(x) = y(G(x)). =

4.2. Exampies. (i) G(x) =x*+x* H(x)= x* where n=p=1. Then
G(x) = x3(1+x) =(x')® where x" = x(1+x)"?. Hence G. H are K-equivalent
(in fact A-equivalent) at 0 with ¢(x)= x(1+x)'° and ¥,.(y) =¥ () =)
(Note ¢ is only defined for |x| < 1. Obviously G, H are not K-equivalent
over all of R, as their zero sets away from x = 0 are qualitatively different.)
The same argument applies to G(x) = ax™+(higher order terms), H(x)
= +x™ depending on the sign of a # 0.

(i) Take p=1 and any n, and let G(x) = Q(x)+h(x) where Q is
a nondegenerate quadratic form and h has vanishing first and second
derivatives. The Morse Lemma (see [21] or [28] for a proof) asserts that G is
A-equivalent (hence K-equivalent) to Q, with y(y) = y. As a special case with
n=2 and Q(x) = Q(4; u) = Au+au®* we recover the Crandall-Rabinowitz
result ([10], § 3 (m)).
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(i) n=1,p=2 G(x)=(x% x%), H(x) =(x? 0). Here G(x) = L, H(x)

10
where L, is IJ’ so G, H are K-equivalent with ¢(x) = x.
X

(iv) n=p=2 G(x,x2) =(x{, x2), H(x;, x3) =(x]+x{x3, X;). This
1 x?
time H(x)= L,G(x) with _L,=| :

01 | so again G, H are K-equivalent

(p(x) = x).

Observe that in neither of cases (iii), (iv) could G and H be A-equivalent.
In (iti} the ranges of G, H could not be converted to each other by a single y,
while in (iv) the singular points cannot correspond under any ¢ (nor the
singular values under ¥): check this! Nevertheless the zero sets for G, H do
correspond (simply the origin in R") in each example.

All this so far is for a single mapping G. Replacing G(x) by G(4; x) we
get a similar story for bifurcation problems using L,., and ¢(4; x), if we
make the common sense restriction that the coordinate change ¢(/; x)
should have the form

(4.3) ¢ (42 x) = (u(4A); x(4; x)

to distinguish state variables x from parameters 4 in order to remain
consistent with physical interpretations.

So much for definitions. What use can be made of them? It would be
satisfying to be able to prove a statement of the following kind:

43. Assertion. Any bifurcation problem is K-equivalent to a poly-
nomial problem.

Unfortunately, this assertion is false. However, in a certain sense a
modified version is true:

4.4. Assertion. Any practical bifurcation problem is K-equivalent to
a polynomial problem.

By “practical” we mean “arising from a problem in the real world”. To
explain this possibly startling assertion we turn to the extra ingredient that
singularity theory adds to bifurcation theory, namely structural stability.

The idea here is that if a piece of mathematics is to model a phenom-
enon in the real world, then the essential features of the model should
persist under small enough changes in the numerical input because this input
can in any case only be given to within a nonzero margin of error. This was
first explored in the context of ordinary differential equations (under the
name of roughness) by Andronov and Pontryagin [2], and more recently
developed extensively into many areas of mathematics and of natural philo-
sophy by Thom [38]. Its role in singularity theory emerges in the works of
Mather [27] and Arnol'd ([3], [4]) in particular, or the collected papers
in [5]
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5. Structural stability

Any mathematical system may be called structurally stable if when it is
perturbed by a sufficiently small amount quantitatively it remains qualitat-
ively the same as it was belore. This only takes on a rigorous sense, however,
if precise meanings are assigned to the terms “perturdb” and “qualitatively
the same”. In our contex we take “qualitatively the same” to mean “K-
equivalent”.

5.1. DeriNniTioN. The mapping G: R" — R? with G(0) = 0 1s structur-
ally stable (more precisely: K-stable) if, given any 1-parameter family of
mappings H': R"— R" with H® = G there are coordinate changes ¢', '
converting H' to G as in (4.2), viz

(5.1) H'(¢'(x)) = Y (G ()

for sufficiently small 1. Here we do notr assume H', ¢' and ¢/, take 0 to O (in
the relevant spaces), but do assume all data smooth in all variables including
t, and defined on some neighbourhoods of the origin in R" xR, R° xR as
appropriate.

The same definition applies to bifurcation problems, using G(4; x}
instead of G(x). Remember that each ¢'(4; x) now has to have the special
form as in (4.3).

Since the majority of interesting bifurcation studies in the literature are
for the case n = p (so that solutions form curves with branches meeting at
bifurcation points) we shall make this assumption in what follows.

Experience shows that with the above definition (or any other sensible
one!) most bifurcation problems are unlikely to be stable. Indeed, this is
what the whole theory ol imperfection-sensitivity analysis is concerned with:
analysing the effect on a bifurcation problem of arbitrarily small changes in
the equations. This observation represents a theorem, a simple consequence
of the analysts of Golubitsky and Schaeffer.

5.2. THeoreM. If G(4; x)is srrucrurally'stable at (0; 0) then it is not u
true hifurcation problem: either DGy(0) is nonsingular (in which case the 1FT
gives a unique solution for all small ) or G is K-equivalent at (0;0) ro

(5.2) F(: X, X3, ooy X,) =(X2=4, X5, 0.0, X,)

1.e., the origin is a limit point.

The possibility of removing the effect of 4 from the last n—1 coordinates
is another way of interpreting Ljapunov-Schmidt reduction in this case.

Thus all true bifurcation problems are structurally unstable, and so
according to the philosophy of structural stability we should not use them to



168 D. R.J. CHILLINGWORTH

model reality. If fact they are of course used extensively in this way, but they
carry with them the knowledge that in practice a system will not behave
according to the actual model but will, in virtue of “imperfections”, adopt a
behaviour described by some small perturbation of the original problem. To
understand this practically and theoretically a natural step is to insert extra

imperfection parameters o = (a,, ..., a,) into the problem and look at the
perturbed bifurcation problem
(5.3) G(x, 1; x) =0,

hoping to analyze how the behaviour as a problem in (4; x) changes as «
varies near 0 in R

The ideas of K-equivalence and structural stability apply equally well to
perturbed bifurcation problems as they do to unperturbed problems or to
single mappings: we insist now that ¢(«, 4; x) has the [orm

(54) ¢ la. i; x) = (B(@), pla, 4); x(a, 4: x))

to protect the special status of the imperfection parameters. Golubitsky and
Schaeffer study stabibty of perturbed bifurcation problems, and classify those
which are stable with small r. From this analysis we extract:

§3. THeoreMm. If r <2 and G(x, A; x) is stable at (0,0;0) then G is
K-equivalent at (0, 0;0) to F(a, ; x) = (h(a, 4; x,), X4, ..., X,) where h is one
or other of the jollowing:

r=1:
hy(a, 4; x,) = x4, regular point;
hy(a, A5 x,) = xi—A4, limit point;
hy(a, A; x,) = x§—Ax, +a, unsymmetric bifurcation
(exchange of stabilities);
hy(2, A; %) = x2 4+ 12 +a, isola {unusual in solid mechanics);
hs (2, A: x;) = x3 +ax, — A, hysteresis.

r = 2: The above examples (read a, for a on the right hand side of h,.
hs, hs) together with:

he(a, A3 x,) = x3+ayx3—Ax, —ay, symmetric bifurcation;
ho(a, Az xy) = xt+oaxi+o, x, — A4, quartic “limit point”;
hela. A; x,)=xt—A—a,i+a, (unusual in solid mechanics).

In fact if G(a. 4; x) i1s stable and r < 7 the results in [18] show that G
must still be K-equivalent to F(a, 4; x) = (h(a, 1; xy), X, ..., x,) for some h,
ie., there is only one essential variable x, and we are dealing with bifur-
cation “at a single eigenvalue”. This looks like a severe limitation of the
theory, for bifurcation at multiple eingenvalues is obviously very important
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in solid mechanics. But such bifurcation normally arises through the impo-
sition of symmetry on a physical structure, and symmetry is the key to
extending Golubitsky and Schaeffer’s theory to a great variety of interesting
problems.

6. Symmetry

The importance of symmetry and symmetry-breaking [or the understanding
of natural phenomena has been recognized and profitably exploited in
theoretical physics for many years, while the-mathematical tools have found
slower use in solid and fluid mechanics. It is only quite recently that the
general role of symmetry in abstract bifurcation problems has begun to be
sertously researched. Here briefly are some results obtained by explorations
in various directions.

(a) Implicit function theorem with symmetries.

Suppose [ is a group of linear transformations acting on R" and on R’
(in possibly unrelated ways). If 7 is an element of I', write yx for the eflect of
7 on X. Suppose also that the mapping G, respects these symmetries for every
4, namely G,y = vG, for all 7 in G. Then the interaction of the IFT with the
I-actions may yield more results than either on its own.

With the notation as above lor the Ljapunov-Schmidt reduction, it is
straightforward to show (see e.g. [11]) that the coordinates can be chosen so
that the I-actions preserve the decomposition of R” as R* x R" ¥ and of R” as
R x R* % and then the reduced problem H; also respects these symmetries.

6.1. THeorem (Dancer [11], Vanderbauwhede [39]). Suppose the
only point of R which remains fixed under the TI'-action is [0!, which is the
same as saying that any point of RP fixed under the I-action must lie in R* X
= range DGy (0). Then x = x, =(0, v(4, 0)) is a solution to G,(x) =0 for
small A. (In fact it is the only solution of the form (0, v), and it is fixed under
the action of TI.)

Proof. By construction G, (0, v(4, 0)) lies in R’. Thus for any y in I' it is
also true that yG,(0, v(4, 0)) lies in R'. But yG, (0, v(4, 0)) = G, y(0, v(4, 0))
= G, (0, yv(4, 0)) so yv(4, 0) = v(4, 0) by uniqueness of v(4, u). Therefore
G,(0, v(%, 0)) is fixed by 3, which from our hypothesis implies G, (0, v(4, 0))
=0 =

Application (Vanderbauwhede [39]). Nonlinear oscillations.
Consider looking for 2r-periodic solutions of the ordinary differential
equation

(6.1) X"+ ¢(x) = Ap(r)

where x i1s a real variable, p i1s a continuous 2n-periodic function of ¢ and

d . . o
denotes i Here ¢ is some C? function R— R. Let x, be a 2r-periodic
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solution to

(6.2) _ X"+¢(x)=0

and seek solutions to (6.1) near x,. This problem can be expressed in the
form (1.2) by taking X (resp. Y) to be the space of C? (resp. continuous)
2r-periodic functions R — R and setting

(6.3) G, (x) = (xg+x")+ ¢ (xo+x)— Ap.
With sensible norms chosen for X, Y the mapping G,: X - Y is C' and
satisfies the conditions for Ljapunov—Schmidt reduction at 0 with

2n
(6.4) range DG, (0) = fall y in Ywith | xo () y(t)dr = 0}.

0
Let I' ~ Z, be the group of two elements |e, T} with e the identity and
acting on X and Y by (tx)(t) = x(—1t). If p is fixed by t (ie, p is an eten
function) it follows that G, is -equivariant. The hypotheses of Theorem (6.1)
can then be verified to hold if x, is an even function. Likewise if p and also
¢ are odd functions the hypotheses hold if x, is an odd function. Thus we
get

6.2. ProposITION. (i) Suppose p is even. Then from every even sol-
ution xq to (6.2) there bifurcates a 1-parameter family of even solutions x; to

(6.1);

(i) Suppose p and ¢ are odd. Then from every odd solution x, to (6.2)
there bifurcates a 1-parameter family of odd solutions x; to (6.1).

(b) Symmetry in the higher order rerms.

Suppose G;(x) has no linear terms in x when 4 = 0, so that the IFT can
give no further simplification. The next step is to look at quadratic terms or,
if there are none of those, at cubic terms, and so on. Since I' acts linearly on
R", R, the terms GX(x) of homogeneous degree k in x will themselves define
a mapping G%: R"-> R® which is I'-equivariant, for each k=2, 3, ... The
mere fact that G% is I'-equivariant obviously imposes strong constraints on
the coefficients in G%, and these constraints can be systematically determined
in very many cases by existing methods of group representation theory. These
can then be used to give information about possible bifurcation geometry
quite independently of the actual physical data. It is only after this analysis
that the physical data are then used to determine the choice among limited
possibilities. This is an approach which has becn developed and exploited
fruttfully in Sattinger [33], [34].

Application (Sattinger). The Bénard convection problem.

When a layer of fluid is heated from below, convection causes in-
stabilities and in certain circumstances can give rise to very regular patterns
of flow which have a “cellular™ structure: see for example the picture of
hexagonal cells in Sattinger [34], taken from Koschmieder [23]. Supposing
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the problem suitably idealized (assuming, for instance, that the fluid covers
an infinite plane) so that it can be set up in appropriate function spaces in
the form (1.2) (see File [14]), and assuming a priori invariance with respect to
a discrete lattice of translational symmetries in the plane, Sattinger shows
that the bifurcation equations (2.3) are 6-dimensional and the first coordinate
of H; is forced to have one or other of the following forms:

hexagonal lattice: Au; +cu, ug +(au? uy + bu, (uy us +usy u,)) +(order = 4),
(6.5) square or rhombic
lattice: Al + aui uy+buy uyuy + (order > 4).

The remaining five coordinates are found by cyclic permutation of u,,
u,, ..., Ug. The constants a, b, ¢ depend on the physical data of the problem
but the analysis of solutions of (6.5) up to terms of order 3 is now a matter
of relatively straightforward algebra. In this way the symmetry assumptions
about the problem have reduced the nonlinear calculations to manageable
proportions. See [33] for further details, as well as discussions of stability
and general interpretation.

The question of which possible stable state of lower symmetry a physical
system will actually adopt (without a priori assumptions) when bifurcating
from a state of higher symmetry is a very fundamental and important one,
especially in physics of elementary particles. See discussions in Sattinger [31],
which address the general problem as well as the case of Bénard convection.

(¢c) Contact equivalence and symmetry.

The previous method of analysis by symmetry properties of homogene-
ous quadratic, cubic, etc. terms using group representation theory is very
eflective for some problems, but does not seem to deal satisfactorily with
questions of the influence of higher order terms. structural stability and
imperfection-sensitivity. Golubitsky and Schaeffer [19] are able to handle
these matters by incorporating I'-equivariance into the theory of K-equiv-
alence as outlined in § 4. Most of the ideas there continue to make sense
when we insist that all the coordinate-changes involved should respect the
action of I' in an appropriate way. For example, two ['-equivariant mappings
G,, H;: R"— R’ (where we suppose I" acts on R", R” but not on the A-axis)
are called I'-K-equivalent if they are K-equivalent as defined before, using a
linear transformation L, and a coordinate change ¢(4; x) as in (4.3), with
additional conditions that L and ¢ = (u; y) satisfy the symmetry constraints:

(6.6) o xyxy =gy x), Ly =7vLhis
for every y in I'. From this we derive a definition of I'-structural stability by
analogy with Defnition (5.1) and the remarks following it.

Application (Golubitsky and Schaeffer [19]). Buckling of a rectangular
plate.

A model for buckling of a rectangutar plate is provided by the Von
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Karman equations (see e.g. Chow, Hale and Mallet-Paret {8]), which lead
via Ljapunov—Schmidt reduction or finite-element approximation (Bauer,
Keller and Reiss [6]) to a two-dimensional bifurcation problem of the form

(6.7) G (xy, xy) = (P(Xla X3). ¢ (xy, xz))_l(-"h X3)
where p, ¢ begin at degree 3. Symmetry of the physical problem leads (see
[19]) to symmetry of G: R* » R? under the group I' =Z, xZ, of pairs
(61, &) where ¢ = +1 and the group operation is coordinatewise multipli-
cation; the action of I' is defined on R* (both copies) by

(+1, — 1) takes (x;, x3) t0 (x;, —X,).

6.8
(68) (=1, +1) takes (x,, x3) to (—x,. —X,).

After factoring out harmless constants and ruling out certain degenerate
cases the general such G, can be shown to have the f[orm

(6.9) G (x1, x3) = (x{ +bx; x3, ex§ X3+ x3) = A(X, X))

up to degree 3, where ¢ # | and b # + 1. Now this is certainly not struc-
turally stable, and indeced Golubitsky and Schaeffer show that it needs the
inclusion of 14 extra imperfection parameters in appropriate places to make
it so: a quite intractable state ol affairs. On the other hand, by restricting
attention to symmetry-respecting perturbations and coordinate changes they
show ([19]) that only one extra imperfection-parameter is then needed in
addition to the parameters b, ¢ already appearing on G;. Thus

(6.10) Flyea(xy, X3) = GF (x1, X5)+2(0, x;) =0

is structurally stable as a perturbed bifurcation problem, and in particular
the higher order terms which were omitted in (6.9) may be honestly [or-
gotten. The great simplification and yet completeness that this achieves sheds
light on the analyses of Bauer et al. [6] and Chow et al. [8], helps to
organize information in Magnus and Poston [26], and is used by Schaeffer
and Golubitsky [36] to explain the curious phenomenon of “mode jumping”
in rectangular plates.

7. Conclusion

Singularity theory is a natural tool to use in bifurcation theory. It combines
geometrical insight with rigorous analysis, and at its present state of de-
velopment the theory of K-equivalence of I'-equivariant mappings G(4; x)
appears to handle very satisfactorily many of the problems of perturbed
bifurcation theory in the possible presence of symmetry. Here we have given
only the barest sketch: for full details see Golubitskyand Schaefler [18], [19],
and for further applications see Golubitsky and Keyfitz [16], Golubitsky,
Keyfitz and Schaeffer [17], Golubitsky and Schaeffer [20] and Sattinger
[31]. For an entertaining general survery of these and other applications of
singularity theory see Stewart [37]. A good introductory reference for the
ideas of singularity theory is Callahan [7]; for an accessible account of K-
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equivalence and such more technical matters Gibson [15] is recommended.
Of coursc much has been written on applications of singularity theory in the
particular case of elementary catastrophe theory: see Poston and Stewart
[29] and Zeeman [4]1] and references therein.
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