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1. Introduction

In this lecture we shall give results on uniqueness in the Cauchy problem
and propagation of singularities contained in parameters for linear differen-
tial operators. But let us begin with some applications of these properties.
Consider e.g. the socalled von Karman equations

(1) A u—b(u, v) =/,
(2) A*v+b(u, w) =0,

used in the theory of elasticity, where 42 = (824 07)* is the biharmonic
operator and b(u, v) is the bilinear form 0Zud} v—202,udl v+ 3} udiv. It is
known (see e.g. [7]) that the buckled equilibrium states of elastic plates can
be well described by these equations under the boundary conditions of
Dirichlet type:

(3) ul, = d,ul, =0, v, = vy, o0l = vy,

where I' is the contour of a bounded simply connected domain £ which is
the projection of the plate onto the horizontal plane {(x, y)}; &, is the
derivative in the normal direction of I'. In the von Karman problem (1), (2),
(3), a solution (u, v)e(H3(Q) N H*(Q)) x H*(Q) has to be found under the
following assumptions: f e [?(9), voe H>'*(I'), v, e H¥*(I'), where H*, H} are
the Sobolev spaces (see e.g. [1], [11]), L? = H®. The function u = u(x, y) eg.
has a physical interpretation as the vertical deflection of the plate at the
point (x, y). An essential reason to have constant coefficients in equations (1),
(2) is the hypothesis that the plate is homogeneous and isotropic (see [6]). So
if we disregard these restrictions, we c xpect variable coefficients. Then we

can formulate the hypothesis: |
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There exist buckled states of inhomogeneous and anisotropic plates well
described by elliptic equations of the following type:

(4) Z d, (x, ,V) (?.\',y; u+ Z bﬁ',[j”(xs Y) aﬁ;,y)uaﬁ;:y) V= f(xa .V),
f2] =4 1811871 =2

(5) Z Ca (X, Y) P:x.y) v+ Z dﬁ’-ﬂ" (x, ¥) aﬁ;.y) ua&:y) v=0,
ja] = 4 18118 =2
where a = (!, a?), f =(B', p?) are multiindices.

Now let us consider the following practical question: Suppose we have a
tensed plate which cannot be seen directly. Can we establish whether a given
part of the plate is horizontal — by suitable measurements of a little segment
only? And what kind of data will it be better to measure? If we can measure
the Cauchy data a positive answer can be given for functions f vanishing on
an open subset of 2. The nonlinearity in (1) e.g. does not play any role in
our considerations because for a given v equation (4) is linear with respect to
u.

2. Properties of system (4), (5) following from
uniqueness in the linear case

Let us consider a differential operator P =) j,/<m,(X) &%, x€ R", with conti-
nuous coefficients in a neighbourhood of x = x, for || = m (and q, are eg.
locally bounded for |a] < m). The roots z = 4(x, <, 0) of the equation
Z|a|:maa(x)(é+z())“ = 0 are called characteristic roots of P (or of the equa-
tton Pu = f) in the direction € at the point x, where ¢, 0e R*'0 and £ is not
parallel to 0.

THEOREM 1. Let f =0 in a domain w = Q (f can be #0 in Q' w).
Suppose the coefficients by. 5. are locally bounded in w and the characteristic
roots A{x, y, (&, n), 0) of (4) are at most double and belong to C'*%(w), 0 < &
< 1, for every fixed (¢, n), 0e R*'0, (&, n) not parallel to 0. Let us have a
solution (u, v)e H*(w) x H*(w) of (4), (5) such thar u|, = const, Ful, =0,
j=1,2,3, where y cw is a C*-curve. Then u = const in w. An analogous
statement is true for v.

Proof. We shall give below a uniqueness theorem [rom which it will not
be difficult to deduce the following uniqueness property for the operator in
(4):

(UP) For an arbitrary given ve H* and a sufficiently smooth curve
y < w we have u = const in a neighbourhood of (x, y)ey, for every ue H*
satisfying (4) and the Cauchy data u|, = const, éiui),, =0 (=1, 2, 3) near
(x, ¥).

Take an arbitrary compact @, < w, where w, is an open connected set.
Then by property (UP) it is easy to see in addition the following fact: If u
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= const near a point (x, y)€ wo, then u = const in the circle C, (x, y) with
center (x, y) and radius equal to o, where gy = dist(w,, dw) does not
depend on (x, y). Now apply property (UP) near a point of y and join this
point with an arbitrary point (x, yJew, by a curve ». Then by a finite
number of steps using circles Coo(xis ¥i)s (x5, yen, j=1,2,..., N, we get
u(x, y) = u|, = const.

For the next theorem we need the hypothesis:

(D) The Dirichlet problem (4), (5), (3) has a unique solution
(u, Ve H'Y(Q) x H’2(Q) for suitable s, >4, s, >3, when the coefficients
Uy, Cyy by g, dy g, the right-hand side f, the data vy, v; and the contour
I of Q are smooth enough, and |vy). |r,| are sufficiently small.

Note that Ciarlet and Rabier have proved in [7] that the von Kdarman
problem (1), (2), (3) has a unique solution (u, v)e(H3(Q) N H*(Q)) x H*(Q)
when I is sufficiently smooth, f'€ I2(Q), voe H¥?(I'), v, € H¥*(I') and |v|, |v,]
are small enough. '

THEOREM 2 (A maximum principle for the level lines). Suppose the system
(4), (5) satisfies hypothesis (D) for every domain @' < Q with sufficiently smooth
contour, f = 0 in a domain w < Q and the characteristic roots of (4) satisfy the
assumptions in Theorem 1. Assume that for a solution (u, v) of (4), (5), u has a
closed locally extremal level line y = @ which is smooth enough. Then u
= const in w. A similar statement is true for v.

Proof. First we recall that a line y is a level line for u if u|, = const; a
level line is locally extremal il u|, < u|, (or u, = ul|,) for any other level line
7' close enough to y. Now it is clear that 0, u|, = 0. Then it is easy to see that
from hypothesis (D) it follows that « = const in ', where éw’ =7y. Now
Theorem 2 is an obvious consequence of Theorem 1.

3. Uniqueness in the Cauchy problem for linear operators

As we have seen the uniqueness for the Cauchy problem in the case of linear
operators is essential for certain properties of equations similar to (1), (2).
Consider a linear operator of the type

(6) P(I’ X, ars ax) = Z aa(tv x) a(zt..wc)a

la] <m
where (t, x) = (t, x*, ..., x™ varies in a neighbourhood of (0, x,). We shall
use an arbitrary conic neighbourhood U, =(—3d(n), 6(n) x Wy, X enél
—n/|n|| < ¢(m} of (0, xo, 1), where 8(n), £(n) are positive numbers and Wxg.q 1S
a neighbourhood of x, depending on ne R"\0. In the next assumptions all
the derivatives are Schwartz ones. The membership of functions p(t, x, £) (as
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functions of (x, &) for a fixed ¢) to the Zygmund-Calderon classes S%%" is
uniform for almost every t in (—d(n), 6(n); the elements of S‘;O"i,' are
restrictions to conic neighbourhoods of (x,, #) of functions belonging to the
traditional Zygmund—Calderon classes (see e.g. [6], [14]). The requirements
on the characteristic roots A(t, x, £) of P (in the direction 8 = (1, 0, ..., 0)

normal to {t =0}) are the following:
(@) If ImA =0 in U, then at least one of the conditions (7), (8) holds:

(7) Or AeL*(U,), Vo o<1, VB |fl<n+1+]e|
(fe L*(G)<|f| < + o almost everywhere in G);
(8) AeSSoﬁ‘.

(b) When Im A # 0 at (0, x4, ) we require one of the conditions:

9 - #FGqel™(U,), Vo: Ja| <2 when g=Imi and |o| <1 when g¢
=Red, VB: |Bl <£n+5—]af, and at least one of the derivatives
0,#ImA (Ifl <n+1), 6 EImA (ja| < 2n) belongs to L*(U,);

(100 AeS4t5', 1<pu at least one of 4Ima (B <n+l),
6 0:Im A (|la] < 2n) belongs to L*(U,).

(c) If ImA(0, xo,n) =0 but ImA# 0 in U, let one of the Nirenberg
conditions (11), (12) be true:

(11) ImAz=0in U, and Im4 satisfies (13) below;
(12) 4Imi< ) (%GRei #ImA—GRed - GImi)

le|=1
almost everywhere in U, and 0, Im4, G A, &4 satisfy (13), Va, : |af, |f] = 1:
(13) c pel>(U,), Va,y: |0t| <2, [yl <n+3—Jof

(p=1mAi, &, Ima4, g4, &A).

Now we have the following general result (valid not only for elliptic
operators):

THEOREM 3. Assume that: near (0, xo) the coefficients a, of P are at least
continuous Va: |a| =m, and a,e L*, Va: |a| < m; Ve R"\0 the characteristic
roots A(0, x4, n) are at most double, the real ones are simple and Ai(t, x, &)
satisfy the requirements (a), (b), (c). If ue H™(0) is a solution of the equation
Pu =0 such that (0o nsuppu)\ (0, xo)} = \t >0} for some neighbourhoods
0, Oy of (0, xo), then u =0 in a whole neighbourhood of (0, x;).

Notes on the proof

A traditional tool (see eg. {51, [10], [12], [13], [15], etc.) to prove a
uniqueness assertion are the Carleman estimates — inequalities e.g. in the
form:
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T T
(14 [T Y (|, ol 2dt < Clkt+ T [T 0% Pg||2dt,
0 la| <m 0

YoeCS(R™1), suppo < 0., x[0, T], k=', T small enough; O, <R 1s a
neighbourhood of xo; [IfI* = f|f(x)|*dx. A basic method for obtaining
estimates like (14) 1s due to Calderon. The Calderon scheme consists in
several steps (see e.g. [15]):

(1) A reduction of the operator P to a system D,— M(t, x, D,) with the
same characteristic roots as those of P and obtaining the estimate (14) by a
Carleman estimate for D,—M (D, = —id, D ;= —id ).

(2) Estimating D,—M by a corresponding inequality for a system D,
—N(t, x, D.), where the principal symbol of N(t, x, D,) is a canonical form
A7(t, x, &) of the matrix #(t, x, £), the principal symbol of M.

(3) Obtaining the estimate for D,— N(t, x, D,) by proving Carleman
inequalities for operators of the type

)'l(ta X, Dx) C(t, X, Dx)
D,— 4 D D,—
t (ta x, x) or ] ( 0 '{2 (t, x’ DI) ]

where A(t, x, D,), A;{t. x, D,) have principal symbols equal to A(z, x, &),
A;(t, x, £) which are characteristic roots of .#(t, x, ) and 4,(0, xo, 1)
= 4,{(0, X, 1) 1s a double root for some ne R"\0.

But to apply the Calderén scheme in our case we have to solve two
basic problems.

The first problem: If .# is a smooth matrix, is there a regular and at
least continuous matrix %,(t, x, ¢) such that we have

(15) €, #%€,;' =.#, in a conic neighbourhood of (0, xo, #)
for a given ne R"\0, where .47, = .4 (t, x, £) has a block diagonal form
A
Ny = ?
B

(All elements outside the blocks 4, are equal to zero). The question is not
trivial because .# can have eigenvalues of variable multiplicity. Then (as 1s
not difficult to see) .4, (¢, x, {) cannot be the Jordan form of .#(t, x, &),
because it is not even continuous. There is no answer to this question in any
known paper using the Calderon scheme. But a positive answer can be given
using a canonical form of Arnold ([3], [4]) for a matrix depending on

parameters. When .#(t, x, £) has at most double eigenvalues the result of
Arnold yields for the blocks of .47, that #; = 4;(t, x, &) or

F=\7 atxd 400, xo, nflDIEI+ B x, O

J
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in a conic neighbourhood of (0, x,, 1), where 4;(t, x, £) is an eigenvalue of
At x, E), aft, x, &) and B(t, x, &) are homogeneous functions of ¢ of degree
1 as smooth as .Z(t, x, £), and «(0, x4, ) = B(0, x4, ) = 0.

The second problem: Let A(t, x, D,) be a pseudodifferential operator
with principal symbol A(t, x, &) which does not belong to C® in all variables.
Note that the eigenvalues A(t, x, &) of .#(t, x, £} may not belong to C* even
when . #(t, x, £)e C*. Then the traditional C*-theory of pseudodifferential
operators cannot be used. Now the problem is to make certain operations
possible for operators whose symbols are not very smooth. A positive answer
to this problem can also be given under conditions like those in (a), (b), (c).
Note that such restrictions on the smoothness of the symbols lead generally
to operators different from those.considered in the known papers in the field
(see e.g. [8]).

Remark. In Theorem 3 the direction § =(1, 0, ..., 0) is assumed to be
noncharacteristic for P at the point (0, x,).

EXAMPLES.

t2, >0,

0, t < 0.

(This operator is a “deformation™ of the biharmonic operator near the point
(r. x)=1(0,0))

2. [0 =(1+ay (0)(32+ ) —(x* + y2) 82]° + 4(82 + 82) 32,

1. (7:‘+(l+a2(t))2 Oe+2(1—ay ()22, a0 = {

where !/ is a large enough integer.

For the operators in Example 1 (n = 1) and Example 2 (n = 2) Theorem
3 is true. These operators have nonsmooth characteristic roots of variable
multiplicity. The roots in Example 1 are equal to

T, = =it /a, ()8, ty4=10l+ /a,()¢,

because we have
4+ (14+a,) 84+ 2(1 —ay) &1’
= [1?+2i{t —(1+a,) £¥] [1?* - 2il1 — (1 +a,) €2],

and those in Example 2 are equal to

1o = —iJE+n*+ Ja, (E+ ) +(x* +yH)n?,

T34 =i /E N+ Jay ()(E +0D) +(x¥ + ) 12,

because we have

[* —(1+a) (£ + ) = (x¥ +y*) n* 1 + 4 (&2 + 1?12
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=[12-2 JE+nPr—(1+a)) (B2 + 0¥ —(x* + y*yn?]
[P 420 JE Pt —(L+a))(E2+ D) —(x* + y*)n].

At the end of this section I would like to underline that recently many
authors have obtained interesting uniqueness results: see e.g. Egorov’s paper
[9]. Very useful articles are the survey of Alinhac [2] and the course of Zuily

[17].

4. Propagation of singularities contained in parameters

Let us consider an elliptic operator with respect to x

P(x,y, 00 = ), al(x, »

laj €m
with C*-coefficients in a neighbourhood w,, x0,, of (xo,yo), where
x = (x', x?) (for the sake of simplicity) and y = (y!, ..., y') are parameters.

THEOREM 4. Suppose P has in any direction at most double characteristic
roots satisfying the smoothness requirements of Theorem 3 uniformly with
respect to y when (x, y) varies in w,, x0O, . Then if PueC*(w,, x0,.) and
(x0, Yo)Esingsuppu, then (x, yo)esingsuppu, Vxew,,.

The proof uses a technique of Sjdstrand [16] based on a method of
Hérmander and Carleman estimates. An easy consequence of this assertion is
the following

PROPOSITION. Let the coefficients of the system (4), (5) depend on parame-
ters y = (¥1, ..., ) and belong to C*(Q xG), ye G. On the characteristic roots
of (4) we impose requirements analogous to those of the above theorem. Then if
(X0, Yo, Yo)esingsuppu\singsuppv and feC™ near (xqo, Yo, Yo), wWe have
(x, ¥, yo)esingsuppu, V(x, y) in a neighbourhood of (xq, yo). A similar asser-
tion is valid for v. '
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