CONTENTS 1. Introduction...............................................................................5 2. Spaces of measurable functions...............................................7 3. Proper domain of an integral transformation...........................14 4. Integral transformations in L⁰. Continuity and closibility...........17 5. Extensions by continuity. Compatibility problem.......................21 6. Compactness of integral transformations................................35 7. Miscellaneous results and comments......................................41 8. Bibliographical remarks and comments...................................46 Bibliography.................................................................................48
[ASz] N. Aronszajn, P. Szeptycki, On general integral transformations. Math. Ann. 163, 2 (1966), 127-154.
[B] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux equations intégrales, Fund. Math. 3 (1922), 133-181.
[BD 1] F. P. Bertrandias, C. Dupuis, Espaces $l^p(L^{p'})$, C.R. Ac. Sci. Ser. A 285 (1977), 617-619.
[BD 2] F. P. Bertrandias, C. Dupuis, Analyse harmonique sur les espaces $l^p(L^{p'})$, Ann. l'Inst. Fourier XXIX, 1 (1979), 189-206.
[Bu] A. V. Bukhvalov, On integral representation of linear operators (in Russian), Zap. Naučn. Sem. Leningrad. Otd. Mat. Inst. Im. Steklova 47 (1974), 5-14.
[DS] N. Dunford, J. T. Schwarz, Linear Operators, vol. I, New York 1958.
[Ga 1] E. Gagliardo, On integral transformations with positive kernel, Proc. A.M.S. 16 (1965), 429-434.
[Ga 2] E. Gagliardo, Una struttura unitaria di diverse famiglie di spazi furaionali. Teoremi di compattezza e di chiusura, Rend. Acc. Sci. Napoli, Serie 4, XXVII (1960), 3-5.
[Gr] U.I. Gribanov, The continuity of linear integral operators in metrizable topological vector spaces of measurable functions, Funkc. Analiz, 4, 127 (1967), 110-113, Univ. of Kazan.
[HLP] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge 1934.
[HS] P. R. Halmos, V. S. Sunder, Bounded Integral Operators on $L^2$ Spaces; Springer 1978.
[J] Konrad Jörgens, Lineare Integraloperatoren, Stuttgart 1970.
[Ka] S. Karlin, Positive operators, J. Math. Mech. 6 (1959), 907-937.
[K] V. B. Korotkov, Integral Operators, Novosibirsk 1977.
[KF] Ky Fan, Minimax theorems, Proc. Nat. Ac. Sc. USA, 39, 1 (1953), 42-47.
[LZ 1] W. A, Luxemburg, A. C. Zaanen, Riesz Spaces I, Amsterdam-London 1971.
[LZ 2] A, Luxemburg, A. C. Zaanen, Compactness of integral operators in Banach function spaces, Math. Ann. 149, 2 (1963), 150-180.
[M] B. Maurey, Sur une application de la théorie des opérateurs p-sommants, C.R. Ac. Sci. Paris 274, 17 (1972), 1304-1307.
[N] E. M. Nikišyn, Theorems of resonance and nonlinear operators, U.M.N. 25, 6 (1970), 129-191.
[Se] A. R. Schep, Kernel Operators (thesis), Leiden 1977.
[Sh] R. Sharpley, Interpolation theorems for compact operators, Ind. Univ. Math. Journal 22, 10 (1973), 965-984.
[Sz 1] P. Szeptycki, Domains of integral transformations on general measure spaces, Math. Ann. 242 (1979), 267.
[Sz 2] P. Szeptycki, On functions and measures whose Fourier transforms are functions. Math. Ann.
[Sz 3] P. Szeptycki, Some problems related to the extended domain of Fourier transform, Rocky Mountains Journal of Mathematics, 10, 1 (1980).
[KZPS] M. A. Krasnoselskii, P.P. Zabreiko, E.I. Pustylnik, P. E. Sobolevskii, Integral operators in spaces of integrable functions (in Russian), Moscow 1966.