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Introduction

This work is based on two reports to the European Space Agency [3],
(4], which are principally concerned with the attitude control problem
for spacecraft. Indeed, many of the missing details and other aspects
of the problem can be found in these references. The equations describing
the problem are basically those of a rotating rigid body with extra terms
describing the effect of the control.

We shall represent the kinematic equations in two ways. If we require
a global description of the problem, as is usually the case in this paper,
we use the rotation matrix R € 80(3) which defines the transformation
between an inertially fixed set of orthonormal axes e,, ¢;, ¢; denoted
by I, and a set of orthonormal axes r,, r,, ry denoted by @, of the same
orientation, and fixed in the spacecraft:

We may now express the evolution of B by the matrix equation
1) R =8(w)R

where w is the angular velocity of the spacecraft relative to ¢, and S(w)
is the matrix defined by

0 ws _wE
S(w) = | —w, 0 w, |.
Wy, —W, 0

Here w = w,r; -+ w,ry-+w,yry, and S(g)b = b X ¢ is just the usual cross
product of vectors in R?®.

[121]
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Alternatively, the attitude can be described locally by the Euler

angles ¢, 7, y, the consecutive rotations of the spacecraft about the axes
ryy 7a and 7;, respectively. We have

ale COB7 0 siny W,
(2) T 7| = sinytang 1 —cosytang||jw,].
) —sinysing 0  cosysecy | | w,

We derive the dynamic equations by considering a momentum ba-
lance. In the case of control by gas jets we have the equations

(3) Jw = Rh, Rh =‘2b,.u,.

=1

where J is the inertia matrix of the spacecraft, h is the angular momentum
of the spacecraft relative to I, and b; are the axes about which the corres-
ponding control torque w,/||b,|l is applied. r is of course the number of

control torques. By combining equations (1) and (3) we obtain the closed
set of equations

(4) Jw = 8(w)Jw+ Zb‘ui (Jw — RR).
fml
As expected, if we set v, =0, ¢ =1,...,r then we obtain Jw

= §(w)Jw which are simply the Euler equations for a rigid body.
In the case of control by momentum wheels we have the equations

N Jew+w)+Jw = RBh, h =0, 'y

i=]

JP(w+wf) = Rhyy b Rhy = — |Ib,|*u

.

where J is the inertia matrix of the spacecraft without wheels, J7’ is the
inertia matrix of the ith wheel, h is the total angular momentum of the
system relative to I, and h; is the angular momentum of the ¢th wheel
relative to I. w{ is the angular velocity of the ¢th wheel relative to the
spacecraft, and b, represents the axis about which the wheel spins, w,;/|ib;ll
being the torque applied by the motor driving the ¢th wheel to the spa-
cecraft. Throughout the paper ||b|? = b'b is the Euclidean norm.

To obtain a reasonable set of equations we make some additional
assumptions, namely that b; is a principal axis for the i{th wheel, that
is b; is an eigenvector of Jy and that the sth wheel is symmetric about
the axis b;, that is the eigenvalues of J; corresponding to eigenvectors
perpendicular to b; are equal. We also make some additional definitions
by setting J%5 = b;b;j?/|Ib,|* where j¥ is the moment of inertia of the ith
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T
wheel about its spin axis b;, and J* = J+ > (J¥—JY). Since J? — Jg
im]
is positive semidefinite, we see that J* is positive definite.

It now follows by differentiating the expression J}(w-+w!) = Rh,
and taking the scalar product with b;, that

—uibi == :}(w +‘lb}ﬂ).

It now follows that by setting » = D> Ju(w+ wy) we obtain the following
-1

set of equations:

(5) I* = S(w) (J*w+v)+ D'bu;  (J*w+v = EBh),

Tm]
(6) o = — D bu,.

Equations (5} and (6) yield a closed set of equations in the state
variables v and w, whereas equations (1) and (5) yield a closed set of
equations in the state variables E and w.

In this paper we are concerned with deriving conditions under which
equations (1) and (4) are controllable, and equations (1) and (5) are con-
trollable. The conditions will obviously depend on r, the number of control
torques.

We prove controllability by applying the theorem proved by Bon-

m
nard in [2]. This states that an analytic system & = f(2)4 D w,g,(2),
feml

[ < M,-, on a manifold M, in which f is a Poisson stable vector field,
is controllable if and only if it is accessible. Here f is Poisson stable on M
if there exists a dense set of Poisson stable initial states on M, defined
by: For any T > 0 and any neighbourhood U of p, there exist ¢{; and
t, > T such that y, (p) = U and y_,,(p) = U. Here (, x)—>y,(x) represents
the flow of the complete vector field f.

The system is said to be accessible if the Lie algebra I generated
by f, 91y ..., 9., is transitive on M, that is,

L(z) ={X(@); XeL} =T,M, VzelM,

where T, M is the tangent space to M at . We will denote the Lie bracket
of two vector fields f and ¢ by [f, g].

In Section 2 of the paper we will prove Poisson stability of the vector
field defining the free (uncontrolled) system in (1) and (4) and also (1)
and (5). With this result, and Bonnard’s theorem it is sufficient to find
conditions for accessibility of the systems, in order to demonstrate the
same conditions for controllability. This will be done in Section 3. In
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Bection 4 we shall consider the controllability conditions in more detail,
and in Section 5 describe the implications for local controllability and
stabilization algorithms, in the case of control by gas jets yielding two
control torques.

2. Poisson stability

We prove Poisson stability by first showing that the equations

Jw = 8(w) (Jw+10), w(0) =w,,
v =0, 2(0) =0,

(M)

have trajectories which are periodic for a dense set of initial states irres-
pective of v,. We may apply this result to both equations (4) and (6) by
getting v, = 0 in (4) and J = J* in (5). Clearly, initial states for which
the resulting trajectories are periodic are Poisson stable.

In equation (7) w is constrained by the equations

|Jw+ 9l = H = constant, w'Jw = 2T = constant.

Of course, H is just the magnitude of the total angular momentum, and
T is the kinetic energy. Thus Jw lies on the intersection of a sphere of
radius H and centre Jw = —v, and an ellipse centred at the origin. This
intersection is a union of closed curve I' and isolated points. The motion
is therefore periodic unless the intersection is a closed curve I', and the
velocity vector w vanishes somewhere on I' but not identically on I
We need therefore only characterize these situations. Clearly we can
discount the cases where J is a multiple of the identity and H or T vanishes.

Now w vanishes when Aw = (Jw 4 ») for some A # 0, or (I1—J)w = .
Noting that H and T are constant along solutions, we see that this imposes
constraints on the possible relative values of I and H. In fact, in {4]
it is shown that

(8) H = 22T+0'v+0o' (AT —=I)"p
if A is not an eigenvalue of J, and
(9) H? = 22T + vpvp-+vp(AJ ' ~I)p' vp

if 2 is an eigenvalue of J. Here (4J~'—I), is the restriction of (AJ~'—I)
to P, the subspace spanned by eigenvectors perpendicular to the eigenspace
corresponding to 4, and vp is the component of » Iying in P.

Since v = 9, is constant in (7), we see that equations (9) and (8)
restrict o, to lie on some surface in R?, irrespective of the value of v,.
In particular we see that the initial states z, for which solutions of (7)
are not periodic, form a dense set in R?,
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In fact, in the case v = v, = 0, relating to the case of a free rigid
body we have H* = 2T/ where A must be an intermediate principal inertia
of J. This defines the nonperiodic solutions of Euler’s equation,

Having considered the free solutions of (4) and (5) and (6), we must
look at the implications for the full set of free equations which we may
write as

(10) R =8@w)R, Jw =S8(w)Rh, (Jw+o =Rh)
h =0, 0 =0.
The relation Jw+v = Bh determines B up to rotations about the

axis Jw+wv, which has constant magnitude [Jw+ 9| = [k = H, and
therefore, as in Synge and Griffith [6] the equation B = S(w)R reduces

to one of the form él = f(w, v), where 6, is the angle in radians of the
rotation about Jw 4 ». If w is periodic, of period a say, we have
6,(t; +a)—0,(3a+a) = 0,(2;) — 8,(t,)

for all ¢, and ?,. Hence setting 6,(a) — 6(0) = 2nf we have 0,(na)— 6,(0)
= 2nnp and so if B is a rational number (including § = 0), the motion in
(10) will be periodic. If g is not rational the motion will not be periodic.
However in either case, we may parameterize w, which evolves along
a closed curve (neglecting the periodic constant solutions), by a suitable
function 6, of the arc length along I' to obtain

éz = 2n/a mod2r, él = 2nf{a mod2x.

These equations which represent those of (10) evidently evolve on
a winding line of a 2-torus; the motion is again clearly Poisson stable.
Combining this result with the previous one gives

TEEOREM 1. The equations
R = 8S(w)R, Jw =S8SwRh (Jw+v =Rh)
h =0, =0
represent a Poisson stable vector field on the stale space SO(3) x RS,
3. Controllability
In this section we first give necessary and sufficient conditions for accessi-

bility of equations (1) and (4)

 =J ' 8(w)Jw+ Y I bu, R =8wER

fem]
which we shall write as

& = F(a;)+2r‘u,-G,-.

tm=]
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We shall write f(x) for J ! 8(w)Jw, and g, for J~'b;. Further we will always
assume that the set {b,, ..., b,} is linearly independent, and in particular
r < 3. We therefore divide the investigation into the cases r = 1, 2 and 3.

Case 1, r = 3. In this case the vector fields @,, @, and G,

of
[F, 6] () = — [E(w)g‘] , i=1,2,0r3
S(g) R

clearly span T_(SO(3) xR3) for all # €eSO(3) xR? and so the system is
always accessible. Combining this result with Theorem 1 and Bonnard’s
theorem yields the result:

THEOREM 2. The sysiem
R = S(w)R,
Juw = S(w)Jw+byu, +buy+baus, |y < M,
18 always controllable.

Case 2. r = 2. In this case we need to consider the vector fields G,,G,,

of
[F, @] (7) = — [% ‘””)""]
S(g) R
and also

Gslys, 72) = [[F, (71G4 +9.G,)1, (7.0 -l—}’sz)] - [93(7:; 7’!)]
where

Ga(y1y 72) = 2J_IS(?1§'1 +¥292) (Y101 + V2 92)s

Q
T @i, n)].

S(ga(}’u 72))3

Let P be the subspace of R® spanned by b, and b, and consider the
condition

(11) R® = Span(b,, b,, S(z)J"'®; ® € P = Span{b,, b,}}.

7, éa(?’n ya)] (@) = — [

Clearly, if this assumption holds then

R’ = Span{g,, gz, §a(¥1, ¥2)) 71, ¥s € R}
and one then sees that the vector fields G,, G,,

{Gs(y1s 72); y1sv2€ R}, [F,G](»), [F,G,] (=)
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and
{[F, Gy(71y 72)] (@); 71,72 € R}

span T, (SO(3) x R?) for all z € 30(3) x R?, and so the system is accessible.

We must now show that condition (11) is also necessary for accessi-
bility. To do this we make the substitution Jw = p,by +yebs-+ 58 (bs) by
into the equation Jw = S(w)Jw -+ b,u,+b,u, to obtain an equation of
the form

71 = f1(¥1y Y25 Vs) + %1,
(12) Y2 = fa(Y1y Y2y ¥a) + %s,
7s = Yafs(¥1y ¥2) + (1, '}'ﬂu)/”‘s(ba)b:l."2

where

fl(VU 72) = b;’s(bz)s(?lbl+72b2)J—l(‘)’1b1+Yzbz)-

Clearly f, is not identically zero if and only if condition (11) holds. If f,
is identically zero then we see that system (12) cannot be accessible since
its maximal integral manifolds are

RNy, =0}, Rn{y;< 0) and R*n{y, > 0}.

Moreover, if (12) is not accessible then neither are equations (1) and (4),
r = 2, On the other hand, these equations are accessible if (11) holds. By
combining this with Theorem 1 and Bonnard’s result we have

THEOREM 3. The system
R = 8(w)ER,
Jw = S(w)Jw+byu, +byu,, |w<M
t8 controllable if and only if
R® = Span {b,, b,, 8(2)J'o; = e Span{by, b,}}.

Case 3. r = 1. In this case we need to consider the vector fields G,,

3f aZf
[P, 6] (@) = — [E(“’)gl] Ee, 6 - [ o (@ (gl,gz)]
S(g,)E 0
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where
g = 2J7'8(g,)J g4,
“al (@) (P101+ y2ffs)
[F, (7’161"‘?:@3)] (@) = —| oz '
B(y19:+ y:da) B
[[F y (111G + 7’:03)]; (?1G1+?aan)l = [a‘(y‘;’ J’.)] = a4(‘)"19 7s)
where

Fa(y1y va) = 2778 ((1’191+?aﬁa))'](?ngt‘l‘?:fz)y

o
(r, Gc()’u:?a)] (z) = — [ o (@)1, ?')] .
S(ﬁc(?’u 72))3
Consider the condition

(13) R® =Span{d,, 8(b,)J"'b,, 8(#)J'z; & eSpan{b,, §(b,)Jb,}}.

Clearly, if this assumption holds then

R® = Span{g,, 9., §a(?1y ¥2); 71, 72 € R}
and one sees that the vector fields @,, G,

{ac(?'u va); Y1) ¥a € R}, [F, &,] (»), LF, éa] (@)
and

{L¥, Gi(ry, 72)] (2)y 71, 72 € R}

span T, (SO (3) x R*) for all » € SO(3) X R*, and so the system is accessible.
We must now show that condition (13)is also necessary for accessi-
bility. As before we make a substitution

Jw = y,b, + 8 (b)) by + 7, 8(b,) 8(b,)J b,

in the equation Jw = §(10)Jw +b,u, toobtain an equation of the form
Y1 = f1(¥1y ¥2) 73) + %1,

(14) P2 = f2(¥1) V21 ¥o)»
Vs = Vafa(¥1y ¥a) +fa(v1y ?a)/“‘g(b1)‘g(bx)J-lb1”z

where

Jalyry va) = "biJ_lS(bl)S(bl)S(71b1+Y2‘S(b1)Jhlb1)Jhl (71b1+
+yzs(b1)J-lb1)o
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Clearly, f, is not identically zero if and only if condition (13) holds. If f,
is identically zero then as in case (2) we see that system (14) cannot be
accessible. In particular, system (1) and (4), r = 1, cannot he accessible
either. If f, is not identically zero then we know that system (1) and (4),
r = 1, is accessible. By combining this result with Theorem 1 and Bonnard’s
theorem we have

THEOREM 4. The system

R = S(w)R,

Jw = S(w)Jw+bu,, |u,| <M,

18 controllable if and only if
R® = Span{b,, 8(b,)J by, S(x)J'w; & ¢ Span{b,, §(b,)J] b,}}.

We note that the system cannot be controllable if 8(b,)J 'b, = 0,
which is the case if b, is an eigenvector for J. That is, a necessary condi-
tion for controllability is that b, is not a principal axis of JJ, which is physi-
cally obvious.

We now consider the case of control by momentum wheels, described
in equations (1) and (5) and (6):

 =J'S(w)Rh+ D I bu;, R =Sw)E (Jwtv = Rh)

{=1
r
i&=0, é=—2b‘u".

We first note that if r < 3 then we may take a vector ¢ # 0, per-
pendicular to b, and b, so that d/dt ¢’v = 0, and hence o'v = constant.
In particular, ¢'Rk = ¢’Jw-+c’v, which represents a constraint on the
evolution of the state variables K and w. Thus the system cannot be
controllable if r << 3. We therefore deal only with the case r = 3, although
some comments are made about the structure of the maximal analytic
surfaces in the case r < 3 in [1]. However, the computation in case (1)

for control by gas jet goes through in exactly the same way, on
setting

J ' S(w)Rh J1b; X
F(a:)=[ S(u(:;vl)i ], G,=[ 0 ], 1=1,2,3.

We can therefore combine these results and those of Bonnard to obtain

9 - Banach Center t. 14
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THEOREM 5. The system
J = S(w)Rh+ > byu;,

f=1
R = S(w)R (Rh =Jwtv, o= —Zr:b,-u,, h = o)

18 mot controllable or accessible ¢f r << 3, and is controllable with |u, < M,
if r = 3.

4. Analysis of controllability conditions

In this section we give alternative descriptions of the conditions for con-
trollability, in the case of control by gas jets, with one or two control
torques. It is clear that the condition for lack of controllability in each
case is equivalent to .

018(02)8(7101+7202)J—1('}’1"1+720a) =0

for arbitrary ¥, and y, and arbitrary vectors o, and ¢, in some two-dimensio-
nal subspace of R®. By expanding and recombining this expression we
obtain the equivalent condition:

(15) Allyse+ye6.0 = HJ—UZ(7’101 +yelly, Y ¥:€R
where

A? = ciJ "V egfeq0, = e;d Moy fcrey .

Clearly this shows that J 2 is a transformation which scales lengths
by a constant A, but leaves angles between vectors constant. We can
apply (15) directly to the conditions for controllability as obtained in the
previous section to obtain:

The system (1) and (4), r = 2, fails to be controllable if and only if

(16) 34 5 0 such that Aliy1by+vaball = 1772 (y1b1+72d0)l,
Y1, ¥e ER.
The system (1) and (4), r = 1, fails to be controllable if and only if
(17)  3A # 0 such that A |y, b,+v.8(b)J 18,
= ||J=2 (y1b1 -+ 728 (8) I~ b1)]|, ¥1, ¥a € R.

We note that conditions (17), (16) for lack of controllability, or
equivalently (13), (11) ensuring controllability, are also applicable, in
exactly the same sense, to system (4), r = 1, and 2, respectively, That
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is, once controllability of the velocity equation has been established,
controllability of the full attitude equations follows automatically. In
particular, the controllability (or more precisely, accessibility) problem
for system (4), r— 1, was solved in Baillieul [1]). However, the conditions
derived there are not directly comparable with those in (17} or (13), and
were not applicable to the full equations (4) and (1). The equivalence of
the two sets of conditions is demonstrated in [4]. We summarize them
here.

We let r,, r,, r; be a set of principal axes for J with corresponding
principal inertias j,, j, and j;. We let

A= 73y 73b, _ A NEAN C = rib; 11by
73y 72b, |’ rby 11by |’ r3by 730,
where | | denotes determinant.

THEOREM 6 (Crouch [4]). The system (1) and (4), r = 2, fails to be
controllable if and only if any of the following equalities hold:

2
B
2

(i1) 'ﬁ' (j:_ja) = (j1—J2) (Jald1), B=0,4+#0,0C+#0,

(i) (J1—J2) = (Ja—31) (J2lfa)y, A =0,C #0, B #0,

2

(18) (iii) T (.'ia—.'il) = (ja—ja) (jl/ji)’ C = 0, B # 0, A # 0,

(i"-T) jl =j21 Az""B2 =0, C # 0,
(V) J1 =Js A 4-0° =0, B #0,
(vi) jz =ja: Bz'l'Cz =0, A4 #0.

Clearly, we may now obtain conditions under which system (1) and
(4), r =1, fails to be controllable by substituting 8(b,)J 'b, for b, into
this theorem. We note that conditions (18) (iv), (v) and (vi) then imply
that the subspace P = Span{b,, 8(b,)J'b,} concides with a subspace
spanned by two principal axes of J.This implies that J~1b, has to be a prin-
cipal axis, which is impossible if the system is to be controllable since
as we have seen b, cannot be a principal axis in the case r = 1, It follows
that conditions (18) (i), (ii) and (iii) may be replaced by the condition
that any two of 4, B and C vanish. We also note that if none of 4, B or
C vanish the system is automatically controllable, for » =1 or r = 2.
This is equivalent to the statement that if the torque axes b, and b, are
in general position then the system is controllable.
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Setting J~'b; = 719, + 7Py +rapsand ay, = (Jo —Ja) /i1, %2 = (Ja—J1) fas
ay = (J;—J2)/js, We can show the following

THEOREM 7 (Crouch [4]). The system (1) and (4), r = 1, 18 controllable
if and only if the following imequalities of Baillieul [1] hold:
a3P; # ;D3,  GyP; F P53, G P; F GD)-

5. Practical applications

In this section we consider only the system
(19) Jio = S(w)Jw+bu, +b,u,, R =S8wR.

In practical applications it is often desired. to stabilize the motion of
the spacecraft about one in which it is spinning on principal axis r; say
with a desired constant angular velocity |w;]|. We include in this case
the situation where we are required to stabilize the motion about w = 0
and a particular desired attitude. If we consider the error variable w,
= w —wyg wWhere w; = 1;3llw;l| then we may obtain (see [41)

(20) Jw, = S(w,)Jw,+8(wg) (J —jsI)w,+byu, +b,u,.

Now we may represent the angular position in a neighbourhood of
the equilibrium motion by equation (2) written as
6 = A(6)w

where 0" = (¢, 7, ) = (6,, 0, 0;) represents the vector of Euler angles
about axes ry, r, and 7;, respectively. (We have noted that A(6) does
not depend on u.) Now A(8) = I-+4(6) where A(6)|y_y =0. If w; =0
we may now linearize equation (2) to obtain

(21) 6 = w,.

If w; # 0 we note that we are only interested in 6, and 0, and so we define
a projection = by

q = (211'1+a21‘2+£13’)’3i—*7£a = a17‘1+a27'2.

Now we may write § = A(6)w, as 6 = w,+wz+A4(0) (w,+w,), so that
the linearization becomes §f = w,+w;, and upon applying 7 we obtain
{noting nw; = 0)

(22) (n6) = mw, .
Now it is clear that the linearization of (20) is
(23) Jwg = S(wy) (J —JsI)we +byu, +b,%,

50 that the linear stabilization problem reduces to driving either (21)
and (23), or (22) and (23) to the zero state. Clearly if w; = 0 then system
(23) is not controllable.
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We now show that even if w; # 0 systems (22) and (23) are not
controllable. If P is the subspace spanned by r, and r, then 8(w,;) (J —j;1I)
maps P into itself. Let A be its restriction to P and let B be the matrix
(nby, nb,). The controllability rank condition applied to (22) and (23)
now shows that a necessary condition for controllability is that the rank
of the matrix

is at least 3. However, 42 = ul, = — |w4)’j,j»I, and A is nonsingular.
Thus there exists a matrix T such that 4B = uB = (4B)T, AB = BT
and A°B = (4°B)T. It follows that the matrix C has at most
rank 2.

THEOREM 8. The attitude conirol equations (19), linearized about w = 0,
or w = |lwgllry, and any orientation, are never controllable.

From this result it is clear that if one is to construct an algorithm
to stabilize the system about these equilibrium states, the full nonlinear
model must be used. The aim of any such stabilization algorithm will
be to drive the current state in the direction of the equilibrium position,
at any point in a neighbourhood of the equilibrium position. If we consider
only the velocity equations, we may resort to the description given in
equation (12). It is clear that such a stabilization algorithm is possible
only if the term F,(y,, y.) takes opposite signs as y, and y, take values
in a neighbourhood of zero. As we have seen, controllability is equivalent
to the nonvanishing of f,(y,, ¥.). In faet, local controllability about the
equilibrium states is equivalent to controllability and is in turn equi-
valent to f,(y,, v.) taking opposite signs. It is this property of local con-
trollability which makes stabilization possible.

THEOREM 9 (Crouch [4]). For system (19) the following statements are
equivalent:

(i) Controllability.
(ii) Conditions (16) or (11) (fy(y1, y2) tn (12) does not vanish).

(iii) Local controllability about w = 0 or w = |jw,||rs and any desired
orientation.

(iv) The bilinear form fi(y1, y:) in (12) takes positive and negalive
values.

In [4] a stabilization algorithm has been constructed using a method
of Hermes [5]. '
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