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1. Introduction and notation

1.1. This paper intends to give a concise survey over the field of
sequential density estimation without claiming completeness. Nevertheless,
compared with the literature about density estimation in general, there has
been done only little work about the sequential part of the theory, and many
open problems are left open until now.

In Chapter 2 we give a general (negative) result about uniform consist-
ency of sequential density estimators due to Farrell. In Chapter 3 the most
usual recursive estimators are discussed; there we have very weak regularity
assumptions in view; additionally, some material about the nonrecursive
kernel estimators is included in order to compare the efficiency, the speed of
convergence of the estimators etc. Under somewhat stronger conditions this
is done at some length in Chapter 4; we use some different sets assumptions
systematically. For simplicity of notation we restrict ourselves to the case of
one-dimensional observations from Chapter 2 on, but most of the results can
be extended to higher dimensions. In order to make the results more
transparent, we give the asymptotic expressions for the variance and bias of
the estimators separately (see, e.g., 4.4, 4.5 and 4.6). In these two chapters
stress is laid on the local estimation problem.

For the investigation of the asymptotic behaviour of a global error of
the estimator (mean integrated square error) the method of stochastic ap-
proximation in Hilbert spaces can be applied; some results of this type are
included in Chapter 5.

Chapter 6 treats sequential methods, for the local estimation problem as
well as for the global one. In particular, asymptotic fixed-length confidence
intervals and confidence regions are given.
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1.2. We use the following notation:

R(N) set of real (natural) numbers;

1 indicator function;

[ essential supremum norm ol a function;

f probability density;

E (V) expectation (variance) computed with density f;
&4 convergence in distribution;

N(E, a9) normal distribution;

TR product measures.

1.3. Let there be given a statistical model (X, X, ¥}) and suppose that
each Pe '} has a Radon—-Nikodym density f with respect to a given measure
p. ¢ denotes a random variable defined on some probability space (2, U, P)
mapping into X and having distribution Pep, ie, P[{eA] = | fdu for

A
every AeX. ¢,,...,¢,.... denote independent random variables distributed

RS
like &, E":= (&4, ..., En)s X, denotes values of £, x":=(x,,..., x,) realizations
of &" (By the way, some of the results can be generalized to the case of
dependent random variables under suitable conditions.)) Further we denote
by & the class of densities corresponding to ‘.

1.4. A stopping variable v is a measurable function v: @ > Nu {x]
such that P[v =] =0 and weQ: v(w) =n] belongs to the os-algebra
generated by ¢,,...,&,, for every n. For details and references we refer, e.g.,
to [8]. Obviously, it is possible to redefine v as a function on X ™.

1.5. For given finite sample size n, every measurable function f: X"
x X — R 1s called a (density) estimator of f. Usually further restrictions are
imposed on f, e.g,, f belongs to some suitable function space. The estimation
problem can be formalized as follows (for details see [26], [27]): let B a
Banach space (or more generally, a locally convex topological linear space),
¢ a nonnegative convex function on B. Let d: §— B be an arbitrary
function, D a subspace of B serving as decision space;

L(g.f):=P(g—d(f) (9eD,fe ®

is used as loss and an appropriate space of strongly measurable functions
h: X" — B as space of estimators. Then

R(h, f):= E; L(h(&y,-- . &037). f)

is the risk of h at f.

Taking B as a proper space of measurable functions defined on (X, X, )
and ®(g):= [ pogdAi, where ¢ is a nonnegative convex function and 4 an
appropriate measure on (X, X), gives the density estimation problem as a
special case. Choosing 4 as a point measure yields a local problem, choosing
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/. as a measure, equivalent to u yields a global problem. Mostly we use ¢(z):
= t%. From the general theory complete class theorems, existence theorems
for optimal solutions etc. for density estimation can be obtained.

For example, the risk of a density estimator f of f with i = point
measure concentrated in x yields the mean square error

R(f.))=E,[f (& 0)—f(x]~

1.6. A sequential density estimator f, is a pair ((f,,), v) consisting of a
sequence of fixed sample size density estimators f, and a stopping variable v.
The corresponding sequential risk is

R(fvsf) = Z Ef [(p(j:n(éna)_f) I[v=n]]

2]

=Y | o)) T fx)dux". (1.1)
i=1

a=1 [xPv=n)

2. Nonexistence of uniformly consistent sequential estimators

2.1. In the following chapters several types of consistent density es-
timators will be discussed. However, it is not possible to construct uniformly
consistent sequential density estimators, even pointwise, under rather weak
assumptions. The following results is due to Farrell ([20])):

2.2. THeoreM. Let x 23 and GF be the set of all one-dimensional
probability densities [ which are piecewise continuously differentiable and fulfil
f1l. < x. Let &, be the subclass of all {¢ €% which are continuously differenti-
able. Let | be a sequential estimator of f at the point O and the risk be
based on quadratic loss, i.e.. the sequential risk (1.1) is given by

xXN

RGN=Y [ L 0~fOF [] fix)dx”

n=1 {v=n}

Then

(i) there is a two-parameter subclass & of €F with supR(f,, f) = 1/16
fed
provided supE v < o0;
fek
(i) supR(f,,f) = 1/16 provided supE,v < = .
fel, e,

The idea of the proof is the following: let for y >0 and f€R
C(y)-e I+ it t+0] =7y,

[t + 0|

10, 9):= —
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with a norming constant C(y). Clearly, F:={f(-;0,7): 6eR,y>0) is a
subclass of @F. Application of Wolfowitz’ sequential version. of the Fréchet—
Cramér-Rao inequality (see [65]) yields a lower bound for R(f,; f(-; 8, )
and some computations yield the first result. Since every element of €* can
be approximated almost everywhere by functions of &,, a simple application
of Fatou’s lemma gives (ii).

2.3. Theorem 2.2 yields of course a lower bound also for the maximum
risk of fixed-sample-size estimators.

3. Recursive estimators — fundamental properties

3.1. One of the most popular estimation methods for curves is the
kernel method. It has been introduced in 1956 in a paper of Rosenblatt ([35])
and further investigated by Parzen ([31]); since that time a great deal of
work has been done about this kind of estimators (the literature up to 1977
is listed in [42], a survey over the most usual methods is given in [60]).

The original idea was to estimate the density by a two-sided difference
quotient of the empirical distribution function; this can be expressed in the
form

-

121 (x—x
flrienxix) == ¥ bK(xb x') (3.1).

where b, is a positive real number and K =3 1,_, 4.
More generally, estimators of the form (3.1), where (b,) is a sequence
with

b, >0, lim b, = 0, lim nb, = o© (3.2)

n—=*® n—a

and K: R— R 1s a measurable function with

K()=K(-1 for every teR, [K(f)dt=1 (3.3)

are called kernel estimators (of the density). Additionally we shall always
assume K to be nonnegative. Under these conditions, x> f,(x,, ..., X,; X) is
a probability density itself for every set of observations. b, is called bandwidth
and K kernel. We shall refer to this type of estimator as Rosenblatt—Parzen
estimator (RPE).

3.2. Let us suppose that the loss is measured by some mean integrated
square error formed with measure 4 on R; then, under suitable conditions,

R(fp, ) = E; [ [ (E" )1 (x)]? dA(x)
= [ E,[fo(&" )= E, f,(&" )12 dA(x) + [ [E; £,(€"; x) =1 (x)]? dA(x).
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The integrand of the first integral is ¥; f.(&"; x), the integrand of the second
one is [B(f,, /)]% the square of the bias of f,. The problem turns out to
make the variance and the bias of the estimator small simultaneously. (We
remark that unbiased density estimators do not exist if the statistical model
1s large enough, see [35] and, for a refinement, [3]; concerning problems of
unbiasedness, Lehmann’s concept (see [28]) is more appropriate in nonpar-
ametric statistics than the classical one.)

In case f,, is a kernel estimator with fixed kernel K, the choice of a large
bandwidth makes the variance small (the estimators are smooth then). It will
be discussed below that

1 t
tHKn(l)zb—K(b—)

is an approximate identity under a few regularity conditions and

-~

Effn(élv"" éns x) = (Kn *f)(X),

small b,’s give a good approximation, hence make the bias small. The
problem is to find a medium size for b,, meeting both requirements.

3.3. The estimators (3.1) can be easily generalized to the r-dimensional
case. One possibility is

~ "1 X—X;
e Xy X) =)y — K . 34
fn(x11 X x) & b; ( b" ) ( )
with K: R — R; condition (3.2) is substituted by
b, > 0, lim b, =0, lim nb, = 0 (3.5)

(see [5]). A more general definition is due to Viduva ([51]): let x;
=(x!,...,x), x=(x',...,xX), b, =(b},...,b) and

bi>0, lim|bJ=0, limnbt-...-b, =0; (3.6)

n—a n—a

then the estimator is defined by

n xl_x_l r r
(b;-...-b;)—l-K( L ) (3.7)
igl b'll bn

f;l(x17'-'7xrl; x) =

|

Kernel estimators for more general sample space (topological groups,
homogeneous spaces, etc.) are dealt with, e.g., in [9], [59] and [61].

3.4. Further generalizations are treated by several authors. Let (K,) be
a sequence of measurable functions; under different conditions ensuring (K,)
to be an approximate identity, Watson and Leadbetter in [56], [57], Vaduva
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in [52] and others investigate estimators of the form

N 1 -
Salxq, oo, X, = _Z (3.8)

Watson and Leadbetter ([55]), Hasimov ([68]), Mirzahmedov and Hasimov
([30)) study estimators (3.8) by means of Fourier analytic methods. Whittle
([64]). Foldes and Révész ([22]), Foldes ([21]), Walter and Blum ([54]), and
Susarla and Walter ([50]) investigate the even more general class

~ |
.fn(xla"'a ; Z (39)
with bimeasurable functions K,: their crucial property should be
lim | K,(x, y)- o () dy = ¢(x) (3.10)

for every sufficiently smooth function ¢. (Some authors call estimators of the
type (3.8) and (3.9) delta-sequence estimators.) Many kinds of estimators, e.g.,
(3.1), (3.4), (3.7), orthogonal series estimators, histograms, certain interpol-
ation estimators, turn out to be special cases of (3.9).

For purposes of sequential analysis and recursive estimation theory,
a general definition, due to Deheuvels ([15]) is advantageous:

~

f:r(xlv'-'sxn; x) = Z Kn.k(xv xk) (311)
k=1

with K, , fulfilling conditions similar to (3.10). The following special case of
(3.11) 1s convenient for our purposes:

fulxyaox [Z bi-H(b)] ™! Z H(b)K ( hx“),

k

where (b,) {ulfils (3.2), H is some fixed positive function and y K(x, y) is a
probability density for every x (see [13]). We shall consider in particular

_1 X = Xy
[Z biH (b Z Hib ( n ) (3.12)

and special cases of this estimator given in (3.15) and (3.16).

35. Deheuvels ([16]) has given the most general form of recursive
estimators of the form (3.11): a sequence (f,) of estimators is called recursive
(or, par abus du langage, f, is a recursive estimator) if

fn+l(x1s"' Xp+11+ X )__‘Rn(ﬁl(xl:"'vxn;x)’ xn+1’x) (313)

for every ne NV, x and every sequence (x*) of observations with appropriately
measurable functions R,.
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TueoreM ([16]). Let f, be a recursive estimator of the form (3.11),

ub> Ry(u, X4 1, x) and yi> K, i (x, y) be differentiable, the latter function not
constant. Then f, can be expressed in the form

-~

SulXgs X Xy =c(x)- D) K¥(x, x) (3.14)
k=1

with certain constants c,(x) and kernels KfF.

3.6. In the sequel we shall mainly consider the following types of kernel
estimators:

(i) the RPE (3.1);

(1) Deheuvels’ estimator (3.12), abbreviated DE;

(i) the estimator defined by Wolverton and Wagner ([66]), and inde-
pendentlv by Yamato ({67]), abbreviated by WWYE:

. 1 2 1 (x—xk
ces Xpy X) =~ —K : 3
f;l(xl, > xns -x) n kzl hk hk )! ( ]5)

{iv) a more special estimator defined by Deheuvels ([13]), called DE*:

. . PR X—X
fn(xla'-'axn; X)——‘[Z bl] L Z K(—*-k) (316)
i=1 k=1 by '

(i11) and (iv) are special cases of (u1), corresponding to the choice H(h)
= 1/b and H = 1, respectively. As will be seen below, these both cases have
certain asymptotic optimality properties.

3.7. The following lemma, due to Parzen (part (3)), and Devroye, is
fundamental for establishing asymptotic properties of kernel estimators:

LemMma ([31}, [17]). Let K and f: R" — R be integrable functions, ||K]|| ..
< 20, b, >0 and lim b, = 0.

We say that condition [D] is satisfied if one of the following conditions
holds:

(1) [ is almost everywhere bounded and x is Lebesgue point of f,

(2) K has compact support and x is Lebesgue point of f;

(3) lim ||{"K(t) =0 and [ is continuous at x;

el = oo
(4) | v 'L(udu < oo and x is Lebesgue point of f;
0 _
(5} [ IX(y)dy < oo, x is Lebesgue point of f; here
K
L(u):= sup |K(x)| and X¥(y):= sup |K(x).

x| Zu ixi 2yl
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1 t
Let K, (t):= b—K (b—) Then, under condition [D],

lim (K, *f)(x) =f(x)- | K(y)dy

holds.

From a statistical point of view, conditions (2), (4) and (5) are most
convenient, because there are no assumptions about the underlying function

f; it is well known that almost every point x is Lebesgue point of the
integrable function f.

We further remark that Lm |[[¢||"-K(t) = 0 (in condition (3)) i1s equiv-
el ~a

alent to lim u’ L(#) = 0 which is a little weaker than | "~ 'L(u)du < o
0

(in (4)).
The proofs are in [17], [18], [46]. As mentioned earlier, for sake of
lucidity, we shall only consider the case r = 1.

38. CoroLiary. Let ¢ be a random variable distributed with prob-
ability density f, K an essentially bounded probability density and condition
[D] hold with r = 1. Then

lim Efik (x_f) — f (%)

n=« n bn

39. CoroLLARY. Let K be an essentially bounded probability density
and [D] with r =1 be satisfied. Then

1 —
MnbyF}E;K(%bé)]=flﬂ-jKZWMw-

n—a

3.10. Next we apply these results to the RPE, WWYE and DE. By
Toeplitz’ lemma we get:

THEOREM. Let K be an essentially bounded probability density, condition
[D] be satisfied and (b,) a sequence of bandwidths fulfilling (3.2). Then we have

() For the Rosenblatt—Parzen estimator (3.1)

lim E; f,(E, .0 &ps X) = () (3.17)
and
lim nb, V; f(&1, -, &ns ) =1 () [ K*(y)dy (3.18)

n—aw

hold.
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() Let
nb,

lim — - b H*(b) =« exist with 0 <a < o0. (3.19)
TULY bHEB)]
i=1

Then for the Deheuvels estimator (3.12), {(3.17) and

lim nb, ¥, fu(Ersoos &ns X) = 0 f (%) [ K2 (p)dy (3.20)
is valid.
() If
- b" . 1 . -
lim (—) —=a exists with 0 < a < oo, (3.21)
nawo \ N/ = by

then (3.17) and (3.20) hold for the Wolverton-Wagner—Yamato estimator (3.15).
(iv) Let

n

limnb, () b) '=a  existwith 0<o<o0; (3.22)

R0 i=1
then (3.17) and (3.20) are valid for the special Deheuvels estimator (3.16).
Of course, (3.21) and (3.22) are special cases of (3.19).

Remark. Under much more restrictive conditions, (i) has been proved
by Parzen ([31]) and (1) by Yamato ([67]), (it) and (iv) by Deheuvels ([15]).
A popular choice of the bandwidth is b,=7-n"% (> 0,0< B < 1); with
this b,, a =1/(1+f) in case (iii) and « =1—p in case (iv). Further by
Schwarz’ inequality

n . bin(bi)
(X b) ' <3 :
=1 [ biH(®B)]?

i=1

hence H =1 yields the minimal asymptotic variance in the class of all DE’s
(3.12). Hence the variances of the estimators satisly asymptotically

V(iv) < Vi) < V() and V(v) € V().

Banon ([17) constructs a (rather complicated) recursive estimator with asymp-
totically smaller variance than (3.16). Considerations involving also the bias
term are treated below.

3.11. We remark that there is a great variety of possible choices of b,,
eg, b,=y [n"-logn-loglogn-...-loggn]™' with 0<pB<1, leZ [>0,
p+1> 0. Again condition (3.21) yields « = 1/(1 + ) and (3.22) gives « = 1 — 8.
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Similar choices of bandwidths, having interesting effects on the mean square
error, are discussed by Deheuvels ([16]).

3.12. By the preceding results, one can prove the following weak and
strong consistency results due to Devroye; since in the next chapter even the
exact rate of convergence will be given (Theorem 4.8), for the sake of
simplicity we only deal with the WWYE.

THeOREM ([17]): Let K be an essentially bounded probability density,
(bn) satisfy (3.2), the assumptions of Lemma 3.7 be satisfied and f, the WWYE.
Then [(&y,..., ¢, x) = f(x) in probability. If additionally

mon  _ (3.23)
,.l_.r?o loglogn * '

then P[lim f,(&y,..., ¢ x)=f(x)] =1.

The proof makes use of Lemma 3.7 and Bennett’s inequality ([2]). For
the strong formulation an appropriate version of the strong law of large
numbers (see [29], p. 253) is applied.

3.13. THeorReM. Let the conditions of Theorem 3.12 be fulfilled, but
instead of nb, — oo we assume the (weaker) condition
1 21

5 ,-:Zl N 0. (3.24)

Then Ef[_f,,(cf"; x)—f(x)]* =0, i.e., mean square consistency. If the (stronger)
condition

0 1
y S < oo (3.25)
n=1 n

is satisfied, P[lim f,(E" x) =f(x)] = 1 follows.

n—m

Remark. Conditions (3.25) and (3.23) do not imply each other.

3.14. For the RPE (3.1) and the DE* (3.16) analogous results are valid
(see [18] and [17], respectively) under corresponding conditions (in par-
ticular assumptions of Lemma 3.7). For the RPE weak pointwise consistency
holds if (b, satisfies (3.2), strong pointwise consistency if additionally

Z e "™ < o for all @ >0. If (b,) satisfies Z b, = <o, strong pointwise

n=1 n=1

consistency holds for the DE* (3.16).

3.15. Application of a lemma of Glick ([23]), which is a generalization
of Scheffé’s convergence theorem ([38]), vields:
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CoroLLARY ([17]). Ler the conditions of Lemma 3.7 be fulfilled and f, the
WWYE; for (b,) we assume b, — 0. If (3.24) holds, then

F1AE™ ) —f (x) dx -0 in probability.

If (3.23) or (3.25) is valid, then
P[lim [|/,(&" x)—f(x)ldx =0] =1 (3.26)

follows.

Remark. The use of the L,-norm as a loss i1s quite natural when
estimating densities globally: if P and Q are probability measures and f and
g their Radon—-Nikodym densities with respect to a dominating measure g,
then

Sl:pIP(A)—Q(A)I =3[ 1/—gldu.

Hence (3.26) can be interpreted in the following way: if P, denotes the “true”
probability distribution and Pjen., the estimator defined by Ppen.,(A4)

= [ f(€" x)dp(x), then

A

P['}er: SUPIP,( my

A)—P;(4) =0} =1.

3.16. A recursive series estimator. The series method for density esti-
mation has been established by Cencov ([69]). Rutkowski gives the following
recursive version: assume fe L, has a Fourier series with respect to an
orthonormal base {g;}:

f(x) ~ Z a;- @;(x) with a; = E; ¢;(%).

Then
n k(i)
Z Z @;(x)" 9; (),

1
n

j;l(xl? n’ ) =

where (k(i)) is a truncation sequence with lim k(i) = co, defines a recursive
i~
estimator.

Assuming |¢;(x) < ¢; for all x and every index j, convergence almost
everywhere of these estimators is proved in [37] under the following
condition:

k{n)

3 als dp <.
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4. Pointwise asymptotic properties of kernel estimators

4.1. For a more detailed analysis of the asymptotic behaviour of the
estimators discussed in the preceding chapter, more stringent conditions have
to be imposed on /. As before, we treat also the RPE in order to compare it
with the recursive estimators.

In the following we shall consider mainly two sets of assumptions:
f .is differentiable, {' is essentially bounded,

4.1
K, z+» zK (2) integrable, | zK (z)dz = 0; (41)

and
f is twice differentiable, {*" essentially bounded,
K, z1> 22 K (2) integrable, K even.

4.2. LemMma. Under condition (4.1),

Ef[bix(xb_é)]—f(x)-jK(z)dz_:o(bk) as koo (43
k k

and

b

If the condition |zK(z)dz =0 is dropped, we get b|\f'll, - ||zK(2) dz
= 0(b,) as a bound in (4.3) and

bllflle: §1zZK2(2) dz+O(b7)  in (4.4).
Under condition (4.2)

by Vfl:lK (x—é):,—f(x)j K?(z)dz +by f2(x) = o(by) (4.4)

1 — )
E, [BIK(xbf)]—f(x)- [ K(zydz = 360 f"(x)- [ 2 K (2)dz +o () (45)

and

bklf,[lx("‘é)]—f(x) [ K2 (@) dz+b, £33
b\ b

= %b,ff”(x)~jzsz(z)dz+o(bf). (4.6)

1 (x=¢ S (%)
V.| —K ~ " [ K*(2)dz.
f[bk ( by )] by [ (2)dz
Remark. In view of the application of this lemma, it should be remarked
that improvement of the order of convergence by imposing stronger

Anyhow,
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differentiability conditions on f is only possible if the nonnegativeness of the
kernel K is dropped. This is obvious by (4.5).

43. We further need the following
Lemma. Let K > 0 and ||K|j, < w0, x and y points in R, x # y, b; — 0,
and one of the following conditions be fulfilled:

(1) f is essentially bounded,
(2) lm zK(z) =0;

z—+t®

@xN
(3) felL,, x and y are Lebesgue points of f, j' sup K(u)dz < oo.

0 jul2z

: 1 (x—=¢\ (y—&\]|
k'L“;Ef[mK( b, )K( b, )]‘0'
Proof. We choose 0 <& <|x—y|/2. Then obviously,
1 (x=¢E\ . (¥=¢
e[y k(50 < (5]
1 X—z y—z)
=(¥) = + —K -K ‘ dz.
= o | R )RR e

|z~ x|>¢ z— x| <S¢
z—y|>¢

o l x—z)\ y—=z\
I (e):= j ka( b )K( by )f(z)dz

1 X—2z
< ”K“m ||fHao J bﬁK(T)dz_) 0
k k

jz— x| >¢

Then

b \b
In case (2) we write

_ 1 |x—z  (x—z\ (y—z\
I,(e) = J x—z b K( by ) K( by )f(z)dz

1 . Ix—zf o (x—z)\ |
<- 1Kl |z§'i|p>s[ by K( by )] J flz)dz

lz— x| >¢

) 1 z\ . . . .
in case (1), because zl—»—K(A) 1s an approximate identity.

1
< —||K|lg: sup [t|K(t)—0 by assumption.
€ [t] >e/by
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In case (3),

1 X—z 1 y—z
2 LU K2 . K2 2
[I,.(e)]) < J b K ( by )dz J‘ by K (bk )f (z)dz.

|z—x|>¢ lz— x| >¢

The first integral tends to O because K is integrable and bounded almost
everywhere, and the second one converges to f2(y) | K?(z)dz by Lemma 3.7.
The second integral in (*) is treated similarly.

44. In what follows we shall always assume (3.2) for (b,) and (3.3) for
K. further ||K||, < ~.

THEOREM. -Asymptotic unbiasedness.
Under condition (4.1) we have

E; fu(E"; x)—f(x) = o(b,) for the RPE;

> b H(b) ©

=0 (‘T—-—- , provided Y b}H(b,) = oo for the DE;
Y, biH(b) !

i=1

ac

=o() b/n), provided Y b, = o for the WWYE.
i=1 i

k=

(The remarks of Lemma 4.2 hold correspondingly. For the big-O ver-
sions the additional conditions about b, for the DE and WWYE resp. are
superfluous.)

Under conditions (4.2) the following is valid:

E; fu(&" 0~ (%) =%f”(x)‘J-ZZK(Z)dZ'bHO(bf) for the RPE;

S b} H(b)

=3f"(x) JzZK(z)dz-"i:—-[1+o(1)],
> b H(b)
i=1

provided ) b H(b,) = oo for the DE;
k=1

. Y b2
=%f"(x)'J22K(z)dz-"=1 T +o(D)].

h

provided ) bi = oo for the WWYE.
k=1
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(For sake of brevity, we shall write in the following c¢-a,+ o0 instead of
c-a,+o(a,)).

45. THeoreM. Asymptotic variance.
Let (4.1) be valid. Then

Ve fu(E75 X)

_ -f(x)-sz(z)dz—lj"'(x)+o(l) for the RPE;
b, n n

i b, H*(b,) Z b2 H*(b,)
=it f (%) jxl (z)dz——= f2(x)+o,
[X bH®)] L2, b:H b))

provided z b H2(b,) = o for the DE;

iz an S (x)- JKz(Z)dZ—— f?(x)+o for the WWYE.

Let (4.2) be satisfed. Then
V, [ x) =

'J-Kz(z)dz—l'fz(x)+ﬁ'f”(x)'jzsz(z)dz+o(§5)
n 2n n
Jor the RPE;
=[X": b,-H(b,-)]‘z-[z": kaz(bk)-f(x)-JKz(z)dz-i b2 H?*(by) f*(x)+
i=1 k=1 k=1

+ 3 B HN b)) j'zsz(z)dz]+0,
k=1

provided ) b H?(b,) = o0, for the DE;
k=1

-

n 1 1 n
== 2 —'f(x)-sz(z)dz——-fz(x)+7 )3 bk-{;f”(x)-J‘zsz(z)dz+
ne =1 O h n- =
+0(;12- ) bk), provided Y b, = co, for the WWYE.
k=1 k=1

4.6. Combination of Theorems 4.4 and 4.5 yields expressions for the
mean square error (MSE):

34 — Banach Center 1. 16
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THEOREM. Let (4.2) be satisfied. We introduce the notation

¢y 1= [1f" (%) [22 K (2)dz]? and  cy:=f(x) [K*(2)dz.
Then

MSE = E,[f,(¢"; x)—f (x)]* =

1
=bj-c,+(nb,,)_1fz—;1'f2(x)+0 for the RPE;

Y b H(by
MSE=|2L — | ¢+

Y. by H(by)
k=1
+[ X b HG)] [ Y, beH (b)) ca—f2(x)- Y bZH*(b)]+o
k=1 k=1 k=1

provided Y b}H*(b) = cc, Y biH(b) = o for the DE;

k=1 k=1
’ n

bi
MSE=(Y =)c+

k=1 N

Ll (xm(z)w((% ))

provided ) b} = oo, for the WWYE.

k=1

Remark. Under different conditions, expansions of this type have been
given by Deheuvels, see [15].

4.7. Now we are going to discuss the (asymptotically) optimal choice of
the bandwidth b,, the function H and the kernel K for the types of
estimators considered before. We restrict b, to have the form b, = y-k~#
(y>0, B>0) and H to have the form

Hb)=bf =¥k P  (0cR)
() The RPE
MSE =c, y* n ¥ 4c, -y n7 @ P Lo *)4o(n @ H),

The best rate of convergence is achieved by taking f = 1/5, the best
choice of y is y=(cy/(4c;))'’®, hence the best rate of the MSE is
cl®-c}>-5-2785. 0745 = 1,65938-c}/5-c3® -n~*5 (see [36]; the factor “4”
in Rosenblatt’s formula (21) has to be deleted, in expression (22) “23/5 is
superfluous). Now the problem remains to minimize ¢}’ -¢3> by appropriate
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choice of K. In order to make the problem well-defined we only take kernels

K, fulfilling the norming condition { z? K(z)dz =1 into consideration. Then
the minimum of K { K*(z)dz is attained at

2

3 z
—— | 1—— for |z| <€ /5,
Ko(2) = 4\6( 5) V3
0

otherwise
(see [19], [36]), and this yields the solution for minimizing the MSE.
(i) The DE

. e 1_:8(1+Q) 2‘ — 48 . —1[1_ﬁ(1+g)]2
MSE = ¢, -»* [1—/3(3+g)] m G Ry 20)

n1tP4o

3 o\!/5
Again f =1/5 yields the best rate of convergence, and y = (fi. 409) is
3|

the optimal choice of y, giving a

(4—g)?
P 5. 415

The optimal ¢ 1s ¢ = —1, hence the WWYE 1is the best of the DE’s with
respect to local MSE (cf. [16]). The optimal kernel is again K,.

For the optimal value of the MSE of the RPE and DE’s we can write
A-cil3-c5° -n"%3; here

MSE = 5-40~%5-

-4/5

1,75 for the WWYE,

1,82 for the DE* (3.16) (H =1).
It is not surprising that the RPE yields the best results. On the other hand,
the superiority of the WWYE to the DE* does not contradict the remark in

3.10: whereas the variance of DE* (3.16) is asymptotically smaller than the
variance of WWYE (3.15), the MSE behaviour of the WWYE is better.

48. A law of the iterated logarithm.
THEOREM. Let f(x) > 0. Let (3.19) be fulfilled,

{1,66 for the RPE,
A =

loglog {(nb,) "' [ 3. b H (b))}
lim =

n— oo log logn

=5 4.7)

exist with 0 <6 < o0 and

[Y b H(b)]

lim nb, [ Y b H(b)] 2-H*(b,) loglog—~=" — =0. (48)
n—@® k=1
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Then for the DE,

. nby, \'? L@ 0-Efu@x)
d [I‘Tﬂp (loglogn) (203 (x) | K2(2)dz)"? 1]_ &

If additionally (4.1) and

( b, )Z G

— is bounded, Y BfH(b)=0; (49)
loglogn S b H(b,) =
k=1

or (4.2) and

lim

n-—*a

— 0, (4.10)

" b3 H(b

( nb, )1/2'1‘21 « H(by)
loglogn n

68 Y b, H(by)
k=1

are fulfilled, then for the DE even

. nb, \?  fEm0-fx) ]
P[llTaS;lp (log log n) (2a6f (x) - | K*(z)dz)'? 1] =1 (410

holds.
For the WWYE, the conditions are: (3.21), further:

log log (n/b,)
m e —

=4 (0<é <) 4.7
now loglogn
lim (nb,)” 'loglog(n/b,) = 0; (4.8)
b 112 n @
—_ . b, is b b, = w; 4.
(n log log n) kgl « is bounded and kgl K = 00} (4.9)
b 1/2 n 5
lim | ————— . b = 0. 4.10
,,Ln; (n loglog n) ,;1 , (410

Choosing b, and H as in 4.7, the restrictions are: f(1+2¢) <1, B(1+9)
<1, f(1—g) <1 and f = 1/3 if (4.9) whereas B > 1/5 if (4.10) is assumed.
The optimal choice of B is f = 1/3 for case (4.1)+(4.9) and B = 1/5 for case

1-p(01 2
(4.2) +(4.10). In all these cases, 6 =1 and a = H—ﬁ&i% . Hence (4.11)

has the following form:

P[ﬁmsup(”'"lﬂ)m Fu(&™ %) =1 (%) _ 1]=1
n-w \loglogn [-BU+1® . ¢ 2 }”2 |
{2 T fr2g T [ K*(z2)dz

4.12)
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(Under slightly different conditions a similar theorem is proved in [15]).

Remarks. 1. This theorem gives the exact rate of convergence almost
surely; The optimal choice of b, is y-n~ '3 and y-n~ !5 in case (4.1) and (4.2)
respectively. (4.12) is independent of the choice of y, hence great y give
quicker convergence. This 1s due to the fact that the factor “loglogn” makes
the bias term asymptotically negligible and, according to 4.5, great values of b,
give a good convergence of f, — Ef,. The optimal value of f is the same as for the
MSE (cf. 4.7); hence a resonable choice of y is, e.g., to make the MSE
asymptotically minimal.

2. The condition f(x) >0 is essential to get an exact rate of conver-
gence; it is easy to see that arbitrary good rates of convergence are available
if f vanishes in a neighbourhood of x. Using Theorem 4.5, however, 1n case
J"(x) # 0 an exact rate of convergence can be established.

3. In [58] a similar result is claimed for the WWYE under several
technical assumptions concerning (b,); but in fact, the method of proof of
[58], using a strong approximation theorem applied to an auxiliary estimator,
yields a weaker result than (4.12) (namely only an inequality). Further, for an
estimate of the bias term Ef,—f the authors use a condition about the
characteristic function of f, which essentially implies f” to exist and to be
bounded. (Obviously, a relation as (4.11) with “lim” instead of “limsup” (as
claimed in [58]) cannot hold in general).

4. There are results about the exact rate of convergence of sup| ﬁ,(é"; x)
xel

—f (x)l/\,/f(—x) (I a compact interval) for nonrecursive estimators (e.g., [10],
Theorem 6.2.5, [48], [49], [13]). The author has not yet been successful in
proving a pointwise result like (4.11) for the RPE, but conjectures that in this
case (4.11) holds with a =6 = 1.

49. Asymptotic normality
THEOREM. Let f(x) > 0. Then for the RPE

b, [f.(€"; —EA,1 "
i sup e So[mew] =0 @3

holds. (& denotes the distribution function of the normal distribution 4°(0, 1)).

If

Z bk H2+6(bk)
lim (nb,)!+ 42 21 =0 for some &>0 (4.14)

e (3 beH B

and (3.19) hold, then (4.13) is true for the DE.
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For the WWYE, (4.14) is equivalent to

lim (b, /n)!*¢- Z by U1*9 =0  for some & >0.

n®

If moreover, the conditions of Lemma 4.3 are satisfied and x,,...,x, are
distinct points with f (x;) > 0, then (n,...,m) =5 A (o, I). Here A (o, I) denotes
the k-dimensional normal distribution with mean vector o and unit covariance
matrix I and

nyi= N VASTEN R T AISEEN)
g [f(x) [ KX@)dz]7F

fu(€"; x) the RPE. If additionally Y b,H>(b,) = o is valid, then
k=1

—'1 . _‘k _)._4/‘(0 I)
sy )
hOldS fb’ the DE.

If additionally (4.1) is satisfied and nb} bounded or (4.2) fulfilled and
lim nb? = 0, then for the RPE

Sol & x)=f (%)
{‘ﬁ[f(x) K™ S’ } %’"

lim sup

n—a yeR

holds.
In case of the DE the following conditions are assumed:
Let (4.1) be satisfied,

Y. biH(by o
Jnb,*='———— be bounded  and Y biH(b) =00 (4.15)
Y. by H(by) el
k=1
or (4.2) be fulfilled and

i b3 H(by
§

lim \/nb =0. (4.16)
e H(by)
Then b € 0= } o0 =
"l_.nl Syl:ll:: { [o-f (%) IKZ(Z)d ]l/z gy | =

holds.
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In case of the WWYE, (4.15) is equivalent to
(b/m)''?- Y b, bounded and Y b=
K=1 k=1
and (4.16) is equivalent to

(b/m)' 2= Y b, —0.
k=1

Under appropriate conditions (cf. in particular Lemma 4.3!) multivariate
versions hold also for the DE’s.

5. Some further results concerning recursive estimators

8.1. The recursive character of the WWYE suggests to apply the
method of stochastic approximation in Hilbert function spaces (see [39], [40]
and [53]). Using properties of the Robbins-Monro process, Schmetterer
proves the following

THeOREM ([41]). Let f and K be square integrable densities and b, | 0.
[|-|| denotes L,-norm. Then

P, [lim [|f,(&% )—f () =0] =1 (5.1)

and for every € > 0 there is a constant C(g) with
PrOAE" ) =S (Ol = €] S e, (5.2)

(A shghtly weaker inequality — with e " as right hand side of (5.2) —
has been proved by Révész ([34]); earlier this inequality has been established

by Rejté and Révész by a direct method under considerably more stringent
conditions, see [33]).

5.2. Applying similars ideas, Gyorfi proves (5.1) for dependent obser-
vations, by this generalizing a result in [25]:

THEOREM ([24]). Let ...,¢_,,....¢ 1, &0, &yyeiny&ny... be a sequence
of identically distributed random variables with density f. Suppose (&,)
to be strictly  stationary and  ergodic. We  denote Q,(A)
=P[& Al 1, Emqy---, &y, &gy, Ey,...], assume Q, to have a density
Ja for every n and E|fy| < oo (as before, ||*|| is Ly-norm). If K is a square-

integrable probability density, b,—0, ) (nb)™' <o and

n=1

1"t b b
sup-- 3, kH LIIK(';:Ix)—K(x) dx < oo, (5.3)

n B x=)
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then (5.1) holds for the WWYE.
(Condition (5.3) is discussed in [24]).

5.3. For simplicity of exposition we only mention the work about
uniform consistency ol the WWYE and DE (see [11], [13], [15]. The
corresponding rtesults for the RPE are proved by Schuster ([42]).

6. Sequential density estimators

6.1. Apparently the first paper dealing explicitly with sequential den-
sity estimators is [45]; however, the stopping rules considered there are
independent of the observations and, as Carroll ([6]) remarks, several details
are not correct.

Later Davies and Wegman ([12]) consider stopping rules depending on
the observations, in the sense of the definitions of Chapter 1; they define

v, = inf {nM: | fopr(E™; X)—fino 1y (E7 VM x)| < e}, (6.1)

where ¢ >0 and MeN are fixed and f, denotes the RPE. In [12] a strong
consistency theorem is proved under rather stringent conditions:

P [limf, (¢°; x) =f(x)] = 1. (6.2)
£]0

6.2. We start from the stopping rule (6.1) (for simplicity with M = 1)
and apply it to a recursive estimator, say the WWYE. Then

Zonon n—1, _L (x—xn . 1 ."_li (x_xk‘
Ja(X" X)—fro 1 (x ,x)—nan bn)n(n—l)k=nka be )’

1
the first term is of order (nb,)” ', the second one ~;f(x) and hence

asymptotically small; this leads to the new stopping rule

y, = inf%n: n;nx(x;f") < s} (6.3)

which is unsatisfactory intuitively, in so far as it depends only on one
observation. Nevertheless the following can be proved for the WWYE:

THeorReM ([58]). Ler limb,=0, K satisfy (3.3), ||K||x <o and

n—+ao

lim tK(t) = 0. Then (6.3) defines a stopping variable, Evf < oo for all ke N
[t] = o0
and Ee'" < oo for all te R. Further, if K >0, limv, = cc almost surely and,

el0
under the assumptions of Theorem 3.12, (6.2) holds.
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6.3. The following lemma is a slight generalization of a theorem due to
Chow and Robbins ([7]) and enables one to construct a variety of stopping
rules, in particular the stopping variable (6.13):

LemMMa. Let G: N x(0, oo) = R be a function such that ki~ G(k, ¢) is
monotonically increasing for every ¢ > 0; e G(k, €) is monotonically decreas-

G(k, ¢
ing for every ke N; lim G(k, &) = o0 and lim —(i =1 for every ¢ > 0;
lim G (k, €) <0 for every ke N.
£e—+0

Let (n,) be a sequence of random variables such that n, > 0 almost surely
and P([limn,=7y])=1 with an appropriate y>0 and v,:=inflk:

k—a

m < Gk, e)).
Then v, is a stopping variable (finite almost surely), ¢ — v, is mono-
tonically increasing a.s. if ¢ |0;
limv, =00 as., lim Ev, = o and IimG(v,e)=y a.s.
c|0 el0 el0
6.4. Carroll studies in [6] the problem of estimating the density f at a
point xo with f(xg) > 0, which may be given or may be unknown, e.g., some
quantile of the unknown distribution. Using the Chow-Robbins approach,
fixed-width sequential confidence intervals for f(xg) are established.
THEOREM ([6]). Let K be a bounded probability density fulfilling a
Lipschitz condition of order 1. Let the following conditions be satisfied: b, — 0,
nb} — w, "
for every ¢ >0 there is a constant M (c) > 0 such that

K(xo—é+t, a,,)_K(xi—§+tl a,,)_K(xO—é+t2a,,)+
bnsl bnsz b’lSI

Xo— ¢+t a,
K(=20—>T"2%
" ( b )

E;

r

ns3
K M(c) b, |sy—s,|"? |t,— 4" for each s,, 5, >
with ns;, ns,eN and for r.=1, 2, 3, 4; (6.4)
| Xo—E+ta, Xo—¢C
lim - E; [K ( < ——)—K( )] =0, (6.5)
"u: Gsﬂ b n b[ﬂS] b[ﬂu]
Let (h,) be a sequence of estimators of x, such that
h, = xo+o0{a,) as n— o« almost surely, lim a,/b, =0 (6.6)

and v, such that

.V . g
lim—= =1 for a sequence (n,) of constants with limn, = . (6.7
rl10 Mg £l0
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Then for the RPE f, we have

S| i@ [k (B2 ) rgpar|

Ve

4 (.4‘”(0, £ (xg) j K2(z) dz).
6.5. A similar result holds for the WWYE:

THEOREM ([6]). Let the conditions of Theorem 4.9, regarding the asymp-
totic normality of the WWYE and conditions (6.6) and (6.7) be satisfied. We
further assume: nb} — oo, and

K is Lipschitz of order 1 and lim a,/b, =0

n=—x

or

K is continuously differentiable with bounded derivative K’

lim at/b]} =0 and limsup | [K'(y(1+c))]*" f(x—yc)dy < oo

n—w n—x

for every sequence c,— 0 and for r =1, 2;
further a,/(nb?) = 0(n~?% for some & >0 and lim na2b, = 0.
Then ‘

verby, [‘( b ()~ Z - (ﬁf@)f(y)dy]

Ve k=1 k

L N0, a-f (x0) | K*(z)dz).

6.6. CoroLLarY ([6]). Let (4.2) be satisfied, f" bounded, lim nb,a? =0

n—aG

and in case of the RPE lim nb) =0, whereas in case of the WWYE,
lim (b/m)'/2 Y. b, =0 is assumed (cf. (4.16)!).

n—wm k=1
Let further the conditions of Theorem 6.3 and 6.4 respectively be satisfied.
Then

\/ Ve by, [fv (&"; h, (Cve))—f(xo)] P
[az f (%) | K*(z)dz]"/?
holds for the RPE and the WWYE (for the first one, a:=1).

Remark. In case x, is known, the assumptions, in particular (6.4) and
(6.5), are simplified considerably, namely, one takes a, = 0. For simplicity of
notation we shall write “f,(h,)” instead of “:,(é"; h, (&MY etc. from now on.

£ 4(0, 1) (6.8)
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6.7. As examples for stopping variables v, fulfilling (6.7) we treat a local
and a global one (see [6]):

Local stopping rule:
v, :=inf{n = ny: nb, = (c/e) [,(¢"; h,(EM)}
with c:=[a-jK (2)dz]Y2- D71 (1 —3y) O0O<y<l). (6.9)

Tueorem ([6]). Let v, be defined by (69) and f, be the RPE or the
WWYE.

1. Suppose P [lim f,(h) =f(x0)] = 1. Then

A=

P [l L 1] 1
mm-— = =1.
4 sLOb Cf(xo)

2. Let lim by/b,_, =1 and let the conditions of Theorem 6.4 or 6.5 be

satisfied, with e:J/cception of (6.7). Then (6.8) holds for the RPE and WWYE,
respectively. In particular

lilrg P (I, (h)=f(xo)l Sel=1-7 (6.10)

yields a fixed-width sequential confidence interval.
3. If, additionally to the assumptions of part 1, lim Ef,(h,) = f(xo), if

n—x

there is a constant C > 0 with Z P [|f,(h)— Efy(h) > C] < 0 and if b,
=n"? (0< B <), then imE, /e —1 holds with n, = (cf (xo)/e?)t/ ~ 2,

£l0

4. Under the conditions of part 1 and for b,=n"% (0 < f < 1),

2(xo) [ | K? (z)d,.]”2 .
nuI P2 ve f—n; P15 470, 1)

holds.

Remark. The conclusions of this theorem do not essentially depend on
the special form of f,; a more general formulation can be found in [6].

Global stopping rule: This stopping rule is of interest when estimating
/ at its unknown mode.

THEOREM ([6]). Let [ be unimodal, x, the unique mode: f(x;)

= max f (x), and let us assume that
x

P, [lim SUPﬁ.(&"; x) =f(x0)] =1

n—a X
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(sufficient conditions can be found in [31], [43], [52], [67]). Let
v.:=1inf [n = ny: nb, > (c/e)? -sup f,(&"; x)}. (6.11)

(¢ as before).
If by=n"? (0<f <1) and n, = (c*f (xo)/e*)"!2 =P then

oy
lim-—= =1 as.
elo Mg

If additionally a C > 0 exists such that
Y Prlsuplfa(é™ x)=f(x) > C] < 0
n=1 x

(sufficient conditions for this are given, e.g., in [43]), then
Ev,
elo H,

Whereas it is possible to achieve a result like (6.10) also for this stopping
variable, nothing is known about the limit distribution of v, until now.

=1.

6.8. Under much more pleasant conditions than those used above,
Stute derives a fixed-width sequential confidence interval for f(x,) at a given

point Xxg:
THeEOREM ([47]). Let f be twice differentiable and f'(xo) >0, K be a
bounded probability density with compact support and differentiable in the

interior of its support, admitting one-sided derivatives at the boundary,
[ zK(z)dz =0. Let b,=n""% >0, 0 <y <1, further

IKZ dZ 1z [f'(ﬁn 0)]1/2_ -1 1.,
6". ( nb f;,(i" xo) b (1_—7))a

L= [fi(xo—6), flxo+8)]  and  v:=infin>1: || < 2)

(|, denotes the length of the interval 1,). Then

lim —% = lim —¢7; E =[xl [ K2(2)dz]¥* [#~ 1 (1 =4 9)]** (6.12)
£l0

06 7
(both as. and in the mean) and
imP[f(xo)el,]=1—y.
el0
Remark. (6.12) allows to define the notion of efficiency of one kernel

K, with respect to another one, K,, under the norming restriction
{22 K;(z)dz = 1:
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2 5/4
eff (K, :K,):= [M] .

| Ki(z)dz
The optimal kernel is K, discussed in 4.7.
6.9. The following theorem treats a global stopping variable; the

author is sure that it is possible to relax the conditions imposed on the
density f considerably.

THEOREM ([62]). Let
lim byb,_, =1, b,=o0(n"%°,

n—a

n~*(logn)!'? (loglog n)*’* = o(b,)

(eg, b,=y-n"? with y >0 and 2/9 < B < 1/4). Let { vanish outside a known
compact interval [a, b] and let f(x) > 0 for xe(a, b); let f be twice differenti-

able, {" and f ’/\/f be bounded. Let K be a symmetric probability density,
z 22 K (z) be integrable and either: K have compact support [ — A, A] and be

lﬁ’erenttable in (—A, A) or : K be differentiable, j'IK (2)ldz < 0 and
fIK’ (2)?dz < . Let f, be the RPE and

n 1/2
V= mf{n : [; kg, fa)]

nb,e— [ K?(z)dz
\/2[[jK(z+t)K(t)dt]2dz @ 1(1-1y)

} (6.13)

Then
lim P [ [/, (€ 0~f (912 dx < &] = 17

by this relation a global sequential fixed-width sequential confidence band for [
with covering probability 1—7y is established.

The proof is given in [62]; the idea is to stop, if a certain degree of
smoothness of the estimator is achieved, in the sense that j FE(E"; x)dx is
compared with { f?(x)dx; this is possible, because the rate of convergence of

[f2E" x)dx =~ n? k; @ &) to [f2(x)dx is known (see [44]).

Now the limiting distribution of j[f,,(f";x)—f (x)]*dx (see [4] and
[36]) and Lemma 6.3 is used to finish the proof.

Acknowledgment. The author is indebted to Jacek Koronacki f[or
several discussion improving the first version of this paper.
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